NMANENIZTHMIO OE2zZAANIAZ

MOAYTEXNIKH 2XOAH

TMHMA HAEKTPOAOIQN MHXANIKQN KAl MHXANIKQN YNOAOTIZTQN

IxeSLOOMOG Kat Avantuén Mkpo-Edappoywv Kowwvikig
Awtuwong/

Design and Development of Mini-Social Networks

AutAwpatiki Epyacia

Katapdkn¢ AnpuAtplog

ENIBAENQN/ONTEZ:
TooumnavormoUAou Mavaylwta

BaowakomouAog MuxanA

BoAog 2018

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Design and Development of Mini-Social Networks

Diploma XXXXXXXX

Katarakis Dimitrios

Supervisor/s:

Panagiota Tsompanopoulou

Michael Vassilakopoulos

Volos 2018

Copyright © Katapdkng Anuitplog, 2018
Me erupuAan mavtog dikatwpatog. All rights reserved.
AnayopeUetal n avtiypadn, amobnkeuon kol Stavoun Tng moapoucac epyoociag, &
OAOKANPOU N TUAMUATOC QUTAG, YO EUTIOPIKO OKOMO. Emitpémetal n avatunmwon,
amoBrkeuon Kot Slavour ylo oKomo HUn KEPOOOKOTIKO, €KMALOEUTIKNG 1) EPEUVNTLKAG
dUoEwWC, UTO TNV MpoUTOBeon va avadEpPeTaL N Ny MPoéAeuong Kal va Slatnpeital To
Tapov pnvupo. Epwtiupata mou adopolv Tn XpNon TNG £pyaciog yla KepSOOKOTIKO
OKOTIO TIPETIEL VAl arteuBuvovtal mpog To ouyypadea. Ot andPelg Kal T CUUMEPATHATO
TIOU TIEPLEXOVTOL OE QUTO To Eyypado ekppalouv To cuyypadéa Kal Sev TIPEMEL va

£pUNVEVOEL OTL AVTLTPOoWIEVOUV TIC eMionueg O€oelg Tou Mavemiotnpiov Osooaliag.

EYXAPIZTIEZ ZXOAIA

Oa nbeha va svuyoplotriow Bepud TNV K AvamAnpwtpla kadnyntpla tou MNavemniotnuiou
Oeooaliag ka TooumavormoUAou Mavaylwta yla Tnv Kabodrynaor tng Kal Tnv Katavonon
¢ ot OUOKOAIEC TIOU QVTIHETWTILOO. XWPIC TNV UTOMOVH TNG KAl TNV EUYEVN
OVTLUETWTILOT TNCS N OAOKANPwWON TG epyaciag autn¢ Ba Atav aduvarn. Eniong, 6a nBeia
va guxaplotiow tov ¢ido kot ouvadeddo k. Kwvotaviivo Mdplo Poupméa yia tnv
TIOAUTLUN cuvdpoprn Tou. TéAog Ba Bela va ekppdow amod ta Badn tng kapdlag pou tv
OYATn KOl EVYVWHOOUVN HOU OTNV OLKOYEVELA HOU YLO TN CUMIMOPACTACK TOUG KoL TN

oTAPLEN TOuG Kat Ldlaitepa TN UNTEPA OV OTNV omola adLlEpWVW TNV EPYACLa AUTH.

BoAog, louAlog 2018

Katapakng AnuntpLog

Vi

Vi

NEPINAHWH

H oApatwdng texvoloyikn €€EALEN, N KaBLEpwaon dTnvoU Kal ypriyopou SLtadlkTuou Kal n
pelwon tou K6oToug uAomoinong edpappoywy £xouv aAlAAgel pLltka tnv KabnuepLVvoOTNTA
Tou KatavalwTtr. H evnuépwaon, SIKTuwaon, emkovwvia Kot Slekmepaiwaon Kabnuepvwyv
ovaykwv HEow €EUTVWV OUOKEUWV, Klvntwv, tablet kTtA. €xouv OnuloupyrnoesL VEEG
KOTOVOAWTIKEG QVAYKEG KoL omoteAouv mpoodopo €dadog yia TNV Plopnyavia
epoapuoywv. H avaykn yla ouvexrn mopoucio oto SLadiktuo Kal €EaTtopikeuon Twv
epopUOYWV WOTE VO AVTOTTOKPLVOVTOL OTIG AVAYKEG TOU KABe atopou amotelouv Baon
oavantuéng yla tnv epyacia autr. Komog tn¢ epyaciag eivat n Snuoupyla evog template,
SnAadn pag Asttoupyikng, Baolkng popdnc epoapuoyng, n omoia Oa mapouctalsl TG
Baolkég Aettoupyleg Tig omoleg kaBe Kowwviko diktuo Ba mpémel va mepthapBavet kot Ba
amoteAel tn Paon ywa TNV UAomoinon mwo efelntnuévwv edapuoywv Tou Ba

OVTOUTIOKPLVOVTOL OE CUYKEKPLUEVEG OUASEC Kol Ba UAOTIOLOUV OTOXEUMEVEC AUCELG.

viii

ABSTRACT

The rapid technological advancement, the introduction of cheap and fast internet
connections and the reduction of application costs have fundamentally changed the
consumer's daily life. Performing everyday tasks, communicating and meeting daily
qguotas through mobile devices, tablets, etc. have introduced new consumer needs and
present new opportunities for the application industry. The need for continuous web
presence and the personalization of applications to meet the needs of each individual is a
field of interest for this thesis. The purpose of the thesis is to create a template, a
functional, basic application form, which will explore the functions that every social
network should include and will be the grounds for implementing more sophisticated

applications that respond to specific groups and will implement targeted solutions.

Xi

TABLE OF CONTENTS

TIEPINHWH...........ceeeeeeeeeeeeereeeeeeereeernnernsereseresssasernsssnssrnsernssrnsssnssrnsssnsssnsssnsssnsssnsesnsesnssenne viii
ABSTRACTceeveiiieiiiiiiiiiisiiiisnsiitneisisssessssissssssssssisssssessssesssssessssessssssssssessssessssssssssesssssssnssass X
TABLE OF CONTENTS ...ccucieeiiiiieiiieesissseisisesersnsisssassns Xii
CHAPTER 1: INTRODUCTION......c.covuuiiireiirenninisesissesersnsissscssrsssissssssssssesssssssssssssssssssssssssssssns 1
1.1 Purpose and OBJECHIVESccciiiiiiiiiiiiiiiiiiiriiririrrrnnrnn s s ssssss 2
CHAPTER 2: ANDROID INTRODUCTIONccevuuireerirennisiecsoreesirsncssssasosssssssscssssnssssssssssssasses 2
2.1 Android History and VErsSiONS.........cceeeeeeeecceeerieeeennnssceeeerneeennssssseesssssssnsssssssssssssnnsssssssssssssnnns 2
2.2 ANAroid FEAtUIES.....cciiiiiiiiiiiiiicicccciccsrece s sseesessss e se s s e e s s s e e s s e s e e e eesseeeeeessaseeseeseeseeeeeeeaeeeaaeens 3
2.3 The ANdroid SOftWarecccciiiiiiiiiiiiciccrrrrrrrrr e e s e s e e e s e e s e s eesseessesaaaeens 4
2.3. 1 OPErating SYSTEM ..uuiiiiiiiiiiie e e et e e e e e ettt e e e e e et et e e e e e e e a e e e e eerab s 5

2.4 Android Application COMPONENTSccceeeieieieiiiiiiieccrereere e rreeee e ereeeeeseeseeeeeeeeeeeeseeeeaneen 6
2.5 Activities and Fragments.........cccceeiiiiiiiiiiiccccccccsssssssssssssssssssssssss s s s ssssse s s e e s s eseeeeseesseeeeeeseneeneeees 7
2.5. 1 ACtiVity LIfECYCle oo 7

B T A o - Y- 0 1 1= | £SO PP PP UPPPR TP 10

72 S 1 =T 0 S 12
2.7 SEIVICES ceeerriieiiiinnnnnensissssiinrensesssssssstnssnnssssssssssssssssssssssssssssnsssssssssssssssnnsssssssssssssnnsssssssssssssnne 12
CHAPTER 3: FIREBASE INTRODUCTION.........cuuuereerereeniireesereesisencserecsissnsssssesossnssssnssessnnns 14
3.1 WED SEIVICES ...cieieeieeiicccccccecceeecee e eese e e eesese s e se s s e e s e e e s e e s e e e e e e e e e e e e e e e s eseeseseeseeeeeeeeeeaneeeeeeennnannnns 14
3.2 Firebase Platform ... sr e s e e e e e s e e e e s e e e e e e e e e e s e e e e naeaneees 14
3.3 FIrebDase SEIVICESccciiiiiiiieiiiiiiiiccicieeceeeseessseeseseseeseeseeseeeeeseeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeseseeeesannens 15
3.3.1 REAITIME DAtADaSE...eiiiiiiiiiiiiiiiiiiiieieiieeeeieeeeeeeeeeeereeeeeeeesaeesesseneres 15

e T A 1 YU 1 d o 1= oY oF= 1 Lo VPP PPPPPPPPPPRt 15

e TR R O o TU o] o T 1= LT PPPPPPPPPRt 16

3.3.4 ClOUA IMIESSAZING....eeviieiiiiiiiiieieeietetereettttrerererressrssssessnsnes 16
CHAPTER 4: ENVIRONMENT SETUPeeeeeeeieciecieiiieicsisciescsescsnscsnsssnsssnsssssssnsssnsssnsssnnes 17
4.1 Setting up Android StUudio Projectcciiiiiiieeicriiiciniieerriccnn e ee e s eennnssssseeeseseenns 17
4.2 Setting up FIirebase SErVICESccuiiiieeueriiiiiiiiiienieiiiieeniieennnessieeesiteennnsssssssssseennnsssssssssssennns 18

Xii

4.2.1 Creating and configuring realtime Databasecooiiiiiiiiiiiiiiiee e 19

4.2.2 AULRENTICATION . c...eiiitieiiee ettt et et 20

4.2.3 STOIAZE SEIVICE ..t s 21
CHAPTER 5: FEATURES AND CODE ANALYSISuuuueevirriiiissssueneeeirriesissssssnnnsnsssssssssssanns 22
5.1 L0ZIN = SiNUP SCrEENeeeuuiiieneiiiieeierteneitienniettenseerennssessensssessnnsssssenssssssanssssssnssssssnnsnns 22
5.2 NEWS SECLION...cciiiietiirietieninte it sne st s sase s s as s s as s e s s an s s s s s ann e s s s an s e s s s annans 25
5.3 Instant Messaging Function and Image Sharingccccccvviiiiiiiiiiiiiinicnnncnncnncencseeeceeeeeeeeeeen 27
CHAPTER 6: CONCLUSION.......ccvvririirrinrinnnnnnnnnnnnnnsnnssens 29
6.1 RESUIES...coireiiiiiiiiitiitinttitreser e e a s s a e e an e 29
6.2 Future Research Possibilities........cccevuiiireiiisrenisniinieiiiniinneiinninennesnesnenee, 29
REFERENCEScoovvvvvveeveemnnnenneennmenmennnemnmsmmmmmmsesmmsssmsmmmmsmmsmsmsssnss 31
APPENDICESuuuuuueuueiiissnns 33
APPENDIX A: GLOSSARY OF ACRONYMS.........uvvssnes 34
APPENDIX B: TABLE OF FIGURES...........coeveutiiiiisssnes 35
APPENDIX C: TABLE OF CODE SNIPPETScceessnnes 36

Xiii

CHAPTER 1:
INTRODUCTION

In 2018, mobile phone use dictates a major part of our daily life and mobile applications
are essential, providing tools and assistance to day to day tasks. We use applications to
connect and converse with friends, family and colleagues; pay taxes or just a coffee; order
pizza or even buy a car; take photos of pretty much everything; and a plethora of other
things. According to statistics we are increasingly spending more and more time in our
mobile devices as they integrate in our daily lives. The average mobile app user spends

2.3 hours daily in the US and these numbers are expected to grow year by year.

Figure 1: Average daily mobile usage in the US®
Even more stunning is the fact that mobile phones gain more and more ground versus the
leading platforms a few years back such as Desktops. Younger generations highly prefer
using mobile apps instead of desktop apps. This fact hints to the huge technological leaps
mobile apps have made the past decade, thus being able to compete regarding their

functionality and features with full scale desktop apps.

Figure 2: Mobile Usage Share compared to other platforms?

! Image Source: https://www.statista.com/
2 Image Source: https://www.statista.com/

https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/

Currently the Android App Store features 3.3 million apps. In 2015, global mobile app
revenues amounted to 69.7 billion U.S. dollars. In 2020, mobile apps are projected to

generate 188.9 billion U.S. dollars in revenues via app stores and in-app advertising.

Figure 3: Worldwide app revenues in 2015, 2016 and 2020°

1.1 Purpose and objectives

It is evident from both the statistical analysis and the observation of current trends that
the mobile app is very promising and will expand in the next years. There are multiple
areas of interests when it comes to mobile app development and the future market
demands. One of those areas is the personalization of app and the rising need to create
apps that are simpler yet more suited for certain needs. Given that need in this thesis we
will develop and present a basic structure of a mini network app. The app will feature
basic capabilities that can be reproduced and then be built upon to meet the various
needs of future clients and individuals. As of right now Facebook obtains the highest
market share when it comes to social network apps. However, there are many apps which

specialize in different fields and use the same “social network” concept such as

3 Image Source: https://www.statista.com/

https://www.statista.com/
https://www.statista.com/

Endomondo Sports Tracker used to measure and share fitness goals or LinkedIn which
aim to monetize the social network for professionals. Our app won’t use a specific
concept or field, but it will explore basic functions needed by the majority of social
networking apps such as: a news section; follow function; instant messaging; and unique

profiles.

CHAPTER 2: ANDROID
INTRODUCTION

2.1 Android History and Versions

The Android Incorporation was founded in Palo Alto, California in October, 2003 by Andy
Rubin, On 17th August 2005 Android was acquired by Google and became a subsidiary of
Google Incorporation. On 5th November 2007 Google formed the Open Handset Alliance
(OHA), a group of 84 technology and mobile companies aiming to accelerate innovation in
mobile, offering consumers a richer, more affordable and improved mobile experience.
The first milestone was reached on October 22, 2008 when the HTC Dream was released
in the USA market, being the first commercially available smartphone running on Android.

HTC Dream was utilizing the initial version of Android (1.0). Interestingly Android versions

are named after sweets! Latest version is Android 8.1 with Oreo API level 27.

Android Updates And WNew Releases So Far

Since 2008 - 2018

Code IName Wersion Number

01 Didn*t use code name 1.0

0z Didn™t use code name 1.1

03 | Cupcake 1.5

04 Donut 1.6

05 Eclair 20 —2.1
o6 Frovo 22 223
o7 Gingerbread 23 —23.7
o8 Honewycomb 3.0 -326
09 Ice Cream Sandwich 4.0 —4.0.4
10 Jelly Bean 4.1 —4.3.1
11 KitKat 4.4 — 4. 4.4
12 Lollipop 50-51.1
13 Marshmallow 6.0 —6.0.1
14 Nougat TO—-7T7.1.2
15 Oreo 80 —-8.1

Figure 4: Android Version History”

4 Image Source: http://www.techsmartglobe.com/android-os/

http://www.techsmartglobe.com/android-os/
http://www.techsmartglobe.com/android-os/

2.2 Android Features

Today Android boasts an 85.9% global market share and it is highly preferred by

developers since it provides a number of advantages over other platforms:

1.

2
3.
4

Android is Open Source and royalty-free eliminating licensing costs.

Larger developer and community reach means better support for developers.
Increased marketing comes along with multiple sales channels.

Android is the best mobile platform between the application and processes
architecture thus enabling integration and tweaking of mobile apps according to
business needs.

All framework provided by the Android community is free reducing the cost of
development.

The huge market share guarantees a higher success rate.

Rich Development Environment enhanced by the multiple sets of libraries.

Figure 5: Why Android?’

> Image Source: https://www.tutorialspoint.com/android/android overview.htm

https://www.tutorialspoint.com/android/android_overview.htm
https://www.tutorialspoint.com/android/android_overview.htm

2.3 The Android Software

Android is an open source, Linux-based software stack for mobile devices. It includes an
operating system, middleware and key applications. The tools and APls necessary for
developing applications on the Android platform are all provided by the Android SKD. It
utilizes the Java programming language or more recently the Kotlin programming
language. The major components of the Android platform are categorized in the following

diagram.

Figure 6: The Android software stack®

6 Image Source: https://developer.android.com/guide/platform/

https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/

2.3.1 Operating System

The foundation of the Android platform is the Linux Kernel enabling it to take advantage

of its’ unique functions such as:

Low level Memory Management: allocating memory to a new file, freeing memory
when specific file is deleted etc.

Power Management: providing power to devices such as the Bluetooth, phone
camera etc.

Resource Management: it allocates resources to each process enabling extensive
multitasking.

Driver Management: it automatically handles the installation of various drivers.

2.3.2 MiddleWare

The Android software stack contains various middleware divided into three sub-layers:

1.

2.

3.

Native Applications:

The use of Java programming language alone does not provide interaction with
native applications, such as programs written in C, Assembly etc, which is why the
support of native libraries for interacting with low level media components is
essential.

Application Framework:

The Android Framework is the set of APIs that allow developers to effortlessly
write applications for android phones. It provides “shortcuts” to implementations.
For example accessing the wifi of a device doesn’t require vast amounts of code
since a wifiManager class handles all the tasks related to wifi. Putting it simply the
Application Framework layer provides higher level services to applications in the
form of Java classes which can be used freely by developers.

Android Runtime(ART):

ART is an application runtime environment used by the Android operating system.
Art replaced the outdated Dalvik virtual machine used till Android version 5.0. It
compiles the intermediate language, Dalvik bytercode, into a system dependent
binary. The code of the application is pre-compiles during installation removing

the lag accompanying the launch of an application on a device. Furthermore, ART

replaces the JIT compilation and since it runs machine code directly (native

execution) results in less CPU usage and battery drain.

2.3.3 Applications:
It is the top layer of the Android Architecture. All applications using the Android
Framework utilize android runtime and libraries. On the other hand android runtime and

native libraries use the Linux Kernel.

2.4 Android Application Components

Application components act as the essential building blocks of an Android application. All
the information regarding these components is provided by the application manifest file,
the AndroidManifest.xml, that contains a description of each component of an
application and their interaction. There are four major application components:
1. Activities:
An Activity represents the user interface of a single screen. An application can
have multiple Activities, each one of them operating independently, however
Activities can be linked together. Activities are always defined in
AndroidManifest.xml.
2. Services:
Background processes which do not require user interaction are described as
services (eg. Music playing in the background).
3. Broadcast Receivers:
Broadcast Receivers handle the communication between the Android
Operation System and the applications. They do not implement a user
interface but they can create a notification to inform the user when an event
happens.
4. Content Providers:
They are used for data sharing between applications since android doesn’t

natively support direct data sharing between applications.

S.No. Application Components | Description

* Dictates user interface
1 Activities

* Handles user interaction with the screen

* Handles the running processes in the background of
2 Services

an application

* Handles interaction between the operating system
3 Broadcast Receivers

(Android) and various applications

* Handles all the issues related to the data and its
4 Content Providers

management (database management)

Table 1: Basic Application Components

2.5 Activities and Fragments

2.5.1 Activity Lifecycle

An Activity represents a single screen with which the user can interact with. A Java class s

considered an Activity it extends the Activity class. The system manages all Activities as an

activity stack. Upon Activity start it is placed on the top of the stack and becomes the

running Activity. Any previous Activity is placed below it in the stack and won’t come to

the foreground until the new Activity exits.

An Activity has four states:

1.

Foreground State:

An Activity is running or is active only if it is on the foreground of the screen,

essentially at the top of the stack.

Paused State:

When an Activity is visible but has lost focus it is in paused state. A paused Activity

is active, meaning it maintains all state and information and remains attached to

the window manager. However it can be killed by the system in case of low
memory.

3. Background State:
When an Activity is moved aside by another activity and it is invisible it stops. The
Activity still retains all state and information but its window is hidden and will
often be killed by the system in low memory situations.

4. Destroyed State:
In cases of low system memory if an Activity is either on Paused State or
Background State the system can request it to finish or just kill its process. If the
Activity has to be redisplayed to the user then it must be restarted and restored to

its previous state.

The movement through an activity's lifecycle uses the following methods:

e onCreate():
It is called when the Activity is initially created. All the normal static set up (views
creation, data binding to lists etc.) should be done in this method. It also provides
a Bundle containing the Activity’s previously frozen state and it is always followed
by onStart().

e onRestart():
It is called after the Activity has been stopped, prior to it being started again. Also
always followed by onStart().

e onStart():
It is called when he Activity is becoming visible to the user. It is followed by
onResume() in case the Activity comes to foreground or by onStop() if it becomes
hidden.

e onResume():
It is called when the Activity starts interacting with the user. In this case the
Activity is on top of the activity stack and the user input is going to it. It is followed
by onPause().

e onPause():
It is called when the system is about to start resuming a previous Activity. The

paused Activity does not receive user input and is unable to execute any code. It is

8

followed by onResume() if the Activity returns back to the foreground or by
onStop() if it becomes invisible to the user.

e onDestroy():
It is called in the end before the Activity is destroyed. The Activity can be
destroyed if it is finishing or if the system temporarily destroys this instance of the

activity to save space.

Figure 7: Activity Lifecycle’

7 Image Source: https://developer.android.com/guide/

https://developer.android.com/guide/
https://developer.android.com/guide/

2.5.2 Fragments
A fragment is a modular section of an activity. It has its own lifecycle and input events,
which you can add or remove when the activity is running. Essentially fragments are
reusable Ul components. The use of fragments presents many advantages. Notably
fragments provide:

e Flexible user interface across different screen sizes.

e Fixed, scrolling or swipe tab displays.

e Dialog boxes.

e Actionbar customization with the list and tab modes.

It is recommended to create fragments in the Java code instead of the XML given that this
approach enables us to change the Ul in runtime. The fragments and the transactions
between fragments (add, replace or remove fragments) are handled by the
FragmentManager. Every Activity has its own FragmentManager that can be accessed
through the getFragmentManager() method.

A Fragment has its own lifecycle and processes its own events. The Fragment lifecycle
contains callback methods similar to an activity, such as onCreate(), onStart(), onPause()

and onStop().

10

Figure 8: Fragment Lifecycle®

8 Image Source: https://developer.android.com/guide/

11

https://developer.android.com/guide/
https://developer.android.com/guide/

2.6 Intents

An Intent is a messaging object used to request an action from another app component.
This way an android component can request actions from and by different components.
Intents are used mainly to start an Activity, start a Service, deliver a broadcast etc. There
are 2 types of Intents:
e Explicit Intent:
If the target component is specified upon the creation of the Intent then it is an
explicit Intent.
e Implicit Intent:
Implicit Intent doesn’t specify the component thus appropriate information must
be included to the system in order to determine which of the available

components should be used.

2.7 Services

An Android Service is a long running task or process without any user interaction. It can
take two forms:
1. Started:
An application component can start a Service by calling startService(). After it is
started, it can run in the background indefinitely even if the component that
started it is destroyed.
2. Bound:
A Service is bound when an application component binds to it by calling
bindService(). It allows components to interact with the service and it runs for as
long as the application component is bound to it. It can also be bound to multiple

components at once and it is destroyed only when all the components unbind it.

The Service Lifecycle depends on the way it is created (started or bound). The typical
callback methods of a Service are:
e onStartCommand():
This method is called by the system when a component request the start of the
service. After the execution of the method the service can run in the background

indefinitely and it can be stopped only by calling stopSelf() or stopService().

12

e onBind():
On the other hand this method is called when a component requests to bind with
a Service. Upon the implementation of this method an interface must be provided
so the clients can communicate with the Service.

e onCreate():
This method is called only when the service is first created and it performs setup
procedures.

e onDestroy():
When the Service is no longer used and there is need to free up resources such as

threads, listeners, receivers etc. onDestroy() is called.

Figure 9: Service Lifecycle’

° Image Source: https://developer.android.com/guide/

13

https://developer.android.com/guide/
https://developer.android.com/guide/

CHAPTER 3: FIREBASE
INTRODUCTION

3.1 Web Services

Web services provide an object-oriented web-based interface to a database server. They
are open standard (XML, HTTP, etc.) based applications that can be used by web servers
or by a mobile app in order to exchange data and construct a user interface to the end
user. Usually web services technologies, such as Amazon Web Services (AWS), allow their
subscribers access to virtual clusters of computers that emulate most aspects of a real
computer; multiple operating systems; networking; pre-loaded application software such
as web servers, databases, CRM etc. Utilizing the web services programmers use server
side scripting techniques to provide a customized interface for the user. These scripts may
assemble client characteristics used in customizing the response based on those

characteristics, the user's requirements, access rights, etc.

3.2 Firebase Platform

Firebase is a web services platform ideal for mobile application development. Essentially
it is a mobile and web app development platform that provides developers with
innovative and unique tools and services that enable the effortless development of high-
quality applications and allow the developer to grow the user base and earn more profit

using automated technologies.

Figure 10: Firebase Basic Features™®

10 Image Source: https://hackernoon.com/introduction-to-firebase-218a23186cd7

14

https://hackernoon.com/introduction-to-firebase-218a23186cd7
https://hackernoon.com/introduction-to-firebase-218a23186cd7

3.3 Firebase Services

There is a variety of Firebase services which are presented in Figure 8. Our application
won’t take advantage of each single service. However, the development process uses a

Realtime Database, Authentication Services, Cloud Storage and Cloud Messaging.

Figure 11: Firebase Services™’

3.3.1 Realtime Database

The Firebase Realtime Database enables developers to store and sync data with a NoSQL
cloud database. Data is stored as JSON and synchronized in realtime to every connected
client. All the app clients share one Realtime Database instance and automatically receive

updates with the newest data. The Data remain available even when the app goes offline.

3.3.2 Authentication

Firebase Authentication provides backend services, easy-to-use SDKs, and ready-made Ul
libraries to authenticate users to an app. The authentication allows the app to securely
save user data in the cloud and provide identical personalized experience across all of the
user’s devices. It supports password authentication, phone number authentication and
authentication through popular federated identity providers like Google, Facebook,

Twitter, GitHub etc.

H Image Source: https://www.quora.com/Is-Firebase-a-good-choice-to-build-a-CMS

15

https://www.quora.com/Is-Firebase-a-good-choice-to-build-a-CMS
https://www.quora.com/Is-Firebase-a-good-choice-to-build-a-CMS

3.3.3 Cloud Storage

Cloud Storage is a simple yet powerful and cost-effective object storage service. The
Firebase SDKs used by Cloud Storage provide top edge Google security to file uploads and
downloads for all Firebase apps, regardless of network quality. Cloud Storage can store

images, audio, video, or other user-generated content.

3.3.4 Cloud Messaging

In order to notify a client app that new email or other data is available to sync we can use
Firebase Cloud Messaging. Through Cloud Messaging notification messages can be send in
order to drive user re-engagement and retention. For use cases such as instant

messaging, a message can transfer a payload of up to 4KB to a client app.

16

CHAPTER 4:
ENVIRONMENT SETUP

4.1 Setting up Android Studio project

Before starting the implementation of our project we need to create a project in Android
Studio and define the parameters of app. Since every app should aim for the highest
possible compatibility with all the majority of the devices on the market we need to select
an appropriate SDK. The project uses APl 15: Android 4.0.3 (IceCreamSandwich) since it is
the only one that can run on the majority of the devices according to Android Studio

project manager.

Select the form factors and minimum SDK
Some devices require additional SDKs. Low AP! levels target more devices, but offer fewer AP| features.
Phone and Tablet
API15: Android 4.0.3 (|ceCreamSandwich) v

By targeting API 15 and later, your app will run on approximately 100% of devices. Help me choose

Figure 12: Target APl and compatibility

Regarding the project structure we comply by the standard practices. All resources are
located in the res folder and divided accordingly. Styles, colors and strings xml files are
located in the values folder. Images are distributed quality wise in the drawables folder
and the layouts are defined in the layout folder. All our java code is located in the java
folder. The dependancies and packages are defined inside the build.grandle (Module:app)
file. A rough breakdown can be seen on the instance of the project file manager below.
Finally the AndroidManifest.xml file contains the package name, the permissions required
for the proper use of the app, the app name and icon and the definition of the Activities

of the app.

17

 Project Files | 4» D = | 8

e app
A manifests
E AndroidManifest.xml

java

ect

= 1:Proj

2
£ A res
3
b ? drawable
= b layout

? menu
B ? mipmap
3
2 3 values
S|v (3 Gradle Scripts

=
=

O build.gradle (Project: and-nd-firebase-1.00-starting-
O build.gradle (Module: app)

11 gradle-wrapper.properties (Gradle Yersion)

= proguard-rules.pro (ProGuard Rules for app)

w1 gradle.properties (Project Properties)

O settings.gradle (Project Settings)

il local.properties (SDK Location)

Figure 13: Android Project Structure

4.2 Setting up Firebase Services

To use the Firebase services we need to register an account. Following the account
creation we create a new Firebase Project that we will link to our app. The firebase
project we contain the realtime database, the Authentication services and the storage
used for images and files. Upon project creation we can customize each of the above
services using the firebase control panel as shown in Figure 14. The firebase console also
provides free analytics for our app. For our purposes we will use the free version of
firebase since we do not expect huge traffic. For commercial apps firebase offers different

upgrade plans.

18

Figure 14: Firebase Project Console

4.2.1 Creating and configuring realtime Database

The first service our app uses is the realtime Database. When configuring the realtime
Database it is extremely important to properly define the rules. The rules are those that
will provide the necessary protection to our server and distribute access to the users. For
example when it comes to messaging our rule set (Figure 15) dictate that users need to
be authenticated to read and write data and also define the structure of a message (if it

contains text or images only).

19

Figure 15: Realtime Database Rule set

In general Firebase allows three main rule types: .read, .write. and .validate. Each of these
can be set to “true” or “false” and can apply to the whole database or a particular

location in the database depending on how they are configured.

4.2.2 Authentication

One of the main advantages of Firebase is the build in Authentication system. Adding an
authentication method to our project services is quite simple. All we need to do is just
enable it from the console and then we can add it to our java code in the android app.
The Authentication panel also provides a complete list of our userbase along with their

info. Our project uses Google and email Authentication (Figure 16).

20

Figure 16: Authentication Methods

4.2.3 Storage Service

Finally our Storage service where images and media files are stored has the same
properties as the realtime database. We also provide a similar set of rules to restrict

unwanted access. The Storage also enables the administrator to arrange the files into

folders and categorize them.

21

CHAPTER 5:
FEATURES AND CODE
ANALYSIS

5.1 LogIn — SignUp Screen

When the user opens the app the first screen he is prompted to is the Login — Signup
screen. In order to use the Firebase Auth services we need to add the component in our
app. This is done by updating the dependencies in the build.grandle file. Since we are
going to use multiple services our build.grandle file should contain all of them (code

snippet 1).

dependencies {
implementation fileTree (include: ['*.jar'], dir: 'libs')
testImplementation 'Jjunit:junit:4.12'
implementation 'com.android.support:design:24.2.0'
implementation 'com.android.support:appcompat-v7:24.2.1'

// Displaying images

implementation 'com.github.bumptech.glide:glide:3.6.1"'
//firebase realtime database

implementation 'com.google.firebase:firebase-database:15.0.0'
implementation 'com.google.firebase:firebase-auth:15.0.0'

// FirebaseUI for Firebase Auth

implementation 'com.firebaseui:firebase-ui-auth:3.3.1'
//Firebase Storage (Images)

implementation 'com.google.firebase:firebase-storage:16.0.1'

Code Snippet 1: Firebase Dependencies

Firebase has a predefined screen to handle Login — Signup. However, upon community
request the screen design can be changed through explicit styles defined in styles.xml.

The default Login Screen is presented in Figure 17.

22

Figure 17: Firebase Default Login Screen

To change the design and make the app more aesthetically refined we defined different
colors and styles. We also need to change the AuthenticationListener (code snippet 2) in
our java code. This way when the Authentication page is being initialized, by entering the

line .setTheme(R.style.LoginTheme), Android Studio loads the style.xml we created

instead of the Firebase default one.

23

mAuthStatelListener = new FirebaseAuth.AuthStatelListener () {
@QOverride
public void onAuthStateChanged (@NonNull FirebaseAuth firebaseAuth) {
FirebaseUser user = firebaseAuth.getCurrentUser () ;
if (user != null) {
// User 1is signed in
onSignedInInitialize (user.getDisplayName()) ;
} else {
// User is signed out
onSignedOutCleanup () ;
startActivityForResult (
AuthUI.getInstance ()
.createSignInIntentBuilder ()
.setIsSmartLockEnabled (false)
.setAvailableProviders (Arrays.asList (
new AuthUI.IdpConfig.EmailBuilder () .build(),
new AuthUI.IdpConfig.GoogleBuilder () .build()))
.setTheme (R.style.LoginTheme)
.build(),
RC_SIGN_IN);

Code Snippet 2: Custom Login Theme

The app design changes according to Figure 18.

Figure 18: Updated Login Design
24

5.2 News Section

Upon Login the user is redirected to the News screen. The app contains a screen where
everyday news can be posted. Each news entry can contain an image, date, author,
section, brief description and title. All the data are fetched from the database. The news
are organized in a list manner. New news at the moment can only be added by the
administration using the Firebase Console. For testing purposes we used articles provided
by Guardian News and implemented them in our app. The list view is depicted in figure

19.

Figure 19: News Section - Posts list

25

Each news post is created using a Post Loader and a Post Adapter. The Post adapter
method performs actions related to requesting and receiving data from our database. It is
also tasked with handling possible exceptions such as problems contacting the database
or identifying missing components of the Post. Code snippet 3 demonstrates such an
exception. In case the photo from a post is missing then the Imageview visibility
containing the image is set to GONE, practically removing the “empty” image cell and

shrinking the post to contain only text.

boolean isPhoto = message.getPhotoUrl() !'= null;
if (isPhoto) {
messageTextView.setVisibility (View.GONE) ;
photoImageView.setVisibility (View. VISIBLE) ;
Glide.with (photoImageView.getContext ())
.load (message.getPhotoUrl ())
.into (photoImageView) ;
} else {
messageTextView.setVisibility (View.VISIBLE) ;
photoImageView.setVisibility (View. GONE) ;
messageTextView.setText (message.getText ()) ;
}

authorTextView.setText (message.getName ()) ;

Code Snippet 3: Handling Missing Image
We should also note that in case our images are outside of scope (Huge dimensions or too
small) to avoid presenting a distorted content to the user we can use the Picasso library.
The Picasso library enables us to resize the image or the Imageview to avoid such graphic
complications. Given that our posts are handled by an administrator and not the average
user we did not implement such a function, however it should be noted for future
implementations that allow user posts. An example of the Picasso library is shown in code

snippet 4.

if (!currentStory.getImagelink () .matches ("")) {
Picasso.with (getContext ())
.load (currentStory.getImagelLink ())
.resize((int)
getContext () .getResources () .getDimension (R.dimen.width of article image), (int)
getContext () .getResources () .getDimension (R.dimen.height of article image))
.placeholder (R.drawable.image placeholder)
.error (R.drawable.no image to download)
.centerCrop ()
.into (imageView) ;
} else {
Picasso.with(getContext ())
.load (R.drawable.no image to download)
.resize((int)

getContext () .getResources () .getDimension (R.dimen.width of article image), (int)
getContext () .getResources () .getDimension (R.dimen.height of article image))
.centerCrop ()

.into (imageView) ;

Code Snippet 4: Picasso Library Example
26

5.3 Instant Messaging Function and Image Sharing

Possibly the most important feature a social network should implement is messaging.
Messaging allows users to connect with each other real time and converse without costs.
Our app implements a group chat indented only for the registered users. All messages are
delivered real time and stored to the RealTime Database. Furthemore the use of the
Realtime Database means that there is no need to refresh the page/ screen in order to
read the messages. Users will receive notifications upon new messages and will be able to
read them at once. Upon exit from the app the messages aren’t stored in the local
memory. The message history is automatically synced when the user logs in again from
any device. Usually messages are kept simple containing only text. However upon further
implementation we can also add images, photos and emoji sharing. Our app supports text
and image sharing from the phones local storage. The personalized messaging experience
is derived from the rules implemented in the realtime Database (Figure 15).

We should note nonetheless that image sharing does not implement the realtime
Database rules. Sharing images requires the Storage service, which is why a new set of
rules must be written for images. The key points remain the same (code snippet 5),
meaning we still require user authentication for read and write. Images however present
more challenges. The app handles rare cases where the image upload exceeds a
reasonable size. The rules in code snippet 5 (3rd match block) are written in the storage

console and prevent users from sending images that exceed 5MB size.

service firebase.storage ({
match /b/{bucket}/o {
match /{allPaths=**} {
allow read, write: if request.auth != null;

}

match /images/{imageId} {
// Only allow uploads of any image file that's less than 5MB
allow write: if request.resource.size < 5 * 1024 * 1024
&& request.resource.contentType.matches ('image/.*"');

Code Snippet 5: Image Sharing Rule Set

27

An instance of Messaging can be seen in Figure 20.

Figure 20: Chat instance

28

CHAPTER 6:
CONCLUSION

6.1 Results

Upon starting the implementation of this project we set certain goals. The aim was to
indentify and implement the basic functions of a Social network. The development
process involved the use of the latest technology stacks and tools. The Firebase Services
were implemented providing databases and servers built for messaging and social apps.
We can safely conclude that the base template for building a social network was
achieved. All the capabilities of the app are deemed necessary for any social app. The
development process was also done in a way that allows further development and

additions.

6.2 Future Research Possibilities

The development of the Mini social Network app was executed in mind to future
development. The goal was not to create and present a complete social network
equivalent to facebook or other major networks. The aim was to create a template for
future applications to build upon. As of such, future research should aim to implement
and develop further those basic applications. Improvement of the messaging feature such
as sending and receiving emojis or files is a field of interest. Providing administration
accounts and capabilities through the app and not the firebase console could also prove
and interesting topic. In general, there are many possibilities for improvement and

extension of the template app.

29

30

REFERENCES

[1] Antoni Zolciak. [Online]. Available: https://insanelab.com/blog/mobile-

development/mobile-app-development-trends-2018/

[2] Artyom Dogtiev. [Online]. Available: http://www.businessofapps.com/data/app-

statistics/
[3] Brief History of Mobile Apps. [Online]. Available:

https://expertise.jetruby.com/brief-history-of-mobile-apps-286fbbf766a9

[4] Android - Statistics & Facts. [Online]. Available:

https://www.statista.com/topics/876/android/

[5] Developers. [Online]. Available: https://developer.android.com/guide/platform/

[6] tutorialspoint. [Online]. Available:

https://www.tutorialspoint.com/android/android application components.htm

[7Z] W3schools. [Online]. Available: http://www.w3school.in/w3schools/android-

tutorial/android-application-components

[8] Developers. [Online]. Available:

https://developer.android.com/reference/android/app/Activity

[9] Developers. [Online]. Available:

https://developer.android.com/reference/android/content/Intent

[10] Developers. [Online]. Available:

https://developer.android.com/guide/components/services

[11] tutorialspoint. [Online]. Available:

https://www.tutorialspoint.com/webservices/index.htm

[12] Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Amazon Web Services

[13] Hackermoon. [Online]. Available: https://hackernoon.com/introduction-to-

firebase-218a23186¢d7

[14] Firebase. [Online]. Available: https://firebase.google.com/docs

31

https://insanelab.com/blog/mobile-development/mobile-app-development-trends-2018/
https://insanelab.com/blog/mobile-development/mobile-app-development-trends-2018/
http://www.businessofapps.com/data/app-statistics/
http://www.businessofapps.com/data/app-statistics/
https://expertise.jetruby.com/brief-history-of-mobile-apps-286fbbf766a9
https://www.statista.com/topics/876/android/
https://developer.android.com/guide/platform/
https://www.tutorialspoint.com/android/android_application_components.htm
http://www.w3school.in/w3schools/android-tutorial/android-application-components
http://www.w3school.in/w3schools/android-tutorial/android-application-components
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/components/services
https://www.tutorialspoint.com/webservices/index.htm
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://hackernoon.com/introduction-to-firebase-218a23186cd7
https://hackernoon.com/introduction-to-firebase-218a23186cd7
https://firebase.google.com/docs

32

APPENDICES

33

APPENDIX A:
GLOSSARY OF ACRONYMS

API - Application Programming Interface
SDK - Software Development Kit

APK - Android Application Package

APP - Application

GUI - Graphical User Interface

JSON - JavaScript Object Notation

XML - eXtensible Markup Language
ART — Android Runtime

PNG — Portable Network Graphics

34

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

APPENDIX B:
TABLE OF FIGURES

Average daily mobile usageinthe US.............cccooiiiiiiiiiiiiiicc e 1
Mobile Usage Share compared to other platforms................cccvviiieeniiinnnnnnnnn. 1
Worldwide app revenues in 2015, 2016 and 2020cccccceeeeiiiiieeerenreseeeennns 2
Android Version HiStOryccccoiiiiiiiiiiiiiiccc s 2
Why ANAroid?......ooeeiiiiieece e e e e e e e et e e e e e e e eeessaa e as 3
The Android software stack ..o 4
ACHIVILY LIfECYCIE ...oeeee e e e e e e e 9
Fragment LIfE@CYCIE..........ovuuiiiiiiiiieeicce e e e eaeeees 11
SEIVICE LIfECYCIE......ee e e 13

Firebase Basic FEAtures..............cccoviiiiiiiiiiiiiiee e 14
Firebase SErviCescoooiiiiiiiiiiiiiie e 15
Target APl and compatibilitycccooooiiiiiiiiiiiiiii e 17
ANdroid Project STrUCtUIEovveiiiiiiie et eeae e 18
Firebase Project CoNSOole.cccooiiiiiiiiiiiiiiiiiie e 19

Realtime Database RUIE STcovvvuiiiiiiiieiiiee ettt e e eean 20

Figure 16: Authentication Methods ... 21

Figure 17:

Firebase Default LOgIiN SCreen.................uuvviiiiiiiiiiiiiiiiiiieiiiieeeeeseeeeeeeereeeesnnean. 23

Figure 18: Updated LOgin DeSiSNccoiiiiiiiiiiiiiiiie e e e e s 24

Figure 19:

NEWS SECLION = POSES LIStoivniiiiiiiiiiiiiie ettt et et e e ees 25

Figure 20: Chat iNSEaNCecooiiiiiie e e e e e e e s 28

35

APPENDIX C:

TABLE OF CODE SNIPPETS
Code Snippet 1: Firebase Dependencies..............ccooevvviriiiiiiiiieeeeiiiiieee et eeeeens 22
Code Snippet 2: Custom Login Theme.............cooiiiiiiiiiiiiiiiee e 24
Code Snippet 3: Handling Missing IMageoovviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeenenne 26
Code Snippet 4: Picasso Library EXampleooovviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeseeeeeeeseenne 26
Code Snippet 5: Image Sharing RUI@ Set...........ccooeiiiiiiiiiiiiiiie e 27

36

