
UNIVERSITY OF THESSALY

MASTER THESIS

Inspecting and Analyzing
Blockchain Applications

Author:
Dimitrios Greasidis

Supervisor:
Dr. Manolis VAVALIS

A thesis submitted in fulfillment of the requirements
for the degree of Master

in the

Department of Electrical and Computer Engineering

June 20, 2018

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

http://www.uth.gr
http://dimitris.greasidis.com
http://mav.inf.uth.gr
http://www.e-ce.uth.gr

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

iii

Declaration of Authorship
I, Dimitrios Greasidis, declare that this thesis titled, “Inspecting and Analyzing
Blockchain Applications” and the work presented in it are my own. I, Dimitrios Greasidis,
confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

iv

The dissertation of Dimitrios Greasidis is approved by:

• Prof. Manolis Vavalis, University of Thessaly, Department of Electrical and Computer
Engineering

• Assistant Prof. Christos Antonopoulos, University of Thessaly, Department of Electrical
and Computer Engineering

• Assistant Prof. Dimitrios Katsaros, University of Thessaly, Department of Electrical and
Computer Engineering

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Πανεπιστήμιο Θεσσαλίας

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μεταπτυχιακό Δίπλωμα

΄Ελεγχος και ανάλυση blockchain εφαρμογών

Δημήτριος Γρεασίδης

Η σημερινή εποχή αδιαμφισβήτητα χαρακτηρίζεται από το μεγάλο πλήθος πληροφορίας, η οποία

είναι πλήρως κεντρικοποιημένη. Αυτό το γεγονός καθιστά αναγκαστική την τυφλή εμπιστοσύνη προς

τους οργανισμούς - αρχές που κατέχουν αυτές τις πληροφορίες, χωρίς την δυνατότητα ελέγχου

και αμφισβήτησης των ενεργειών τους στις προσωπικές μας πληροφορίες. Με βασικό ερέθισμα

το προηγούμενο πρόβλημα τα τελευταία χρόνια έχουν αναπτυχθεί συστήματα που προσπαθούν να

αποκεντροποιήσουν όλες τις διαδικασίες με σκοπό η εμπιστοσύνη του συστήματος να διασφαλίζεται

μέσω της ίδιας της αρχιτεκτονικής του. Η αρχιτεκτονική αυτών των συστημάτων είναι γνωστή

ως blockchain και ουσιαστικά αναπαριστά ένα δημόσιο κατάστιχο, όπου όλες οι κινήσεις είναι

φανερές. Αρχικά, αυτή η τεχνολογία χρησιμοποιήθηκε για την δημιουργία κρυπτονομισμάτων με

σκοπό την αποκεντροποίηση του χρήματος, αλλά με την πάροδο του χρόνου βλέπουμε ότι όλο και

περισσότερες ιδέες βασίζονται πάνω σε αυτή την αρχιτεκτονική. Σε κάποια από τα κρυπτονομίσματα

που δημιουργήθηκαν εισήχθη για πρώτη φορά η έννοια του smart contract , το οποίο ουσιαστικά

είναι ένα ¨συμβόλαιο¨, σε κάποια γλώσσα προγραμματισμού. ΄Οταν εκπληρωθούν οι συνθήκες του

εκτελούνται κάποιες ενέργειες, χωρίς την ανάγκη ύπαρξης κάποια κεντρικής αρχής. Το πιο γνωστό

κρυπτονόμισμα αλλά και το πρώτο που εισήγαγε αυτή την έννοια είναι το Ethereum. Εξαιτίας του

μεγάλου εύρους των προβλημάτων που μπορεί να λύσει η τεχνολογία των smart contracts, όλο και

περισσότεροι προγραμματιστές υλοποιούν συστήματα και εφαρμογές βασισμένες σε αυτά και κατ’

επέκταση στο blockchain. Αυτή η τεχνολογία είναι αρκετά πολύπλοκη ώστε να δουλεύει σωστά

και να λύνει τα περισσότερα προβλήματα που μπορούν να λυθούν αποκεντροποιημένα. Για αυτό το

λόγο ελλοχεύουν πολλοί κίνδυνοι κατά την διάρκεια υλοποίησης μιας εφαρμογής, οι οποίοι μπορεί

να οδηγήσουν κάποια στιγμή στην απώλεια χρημάτων και την κατάρρευση μιας εταιρείας. Στόχος

αυτής της διπλωματικής είναι η εύρεση και ταυτοποίηση αυτών των κινδύνων πρώτα θεωρητικά,

μέσω της μελέτης της αρχιτεκτονικής αυτού του συστήματος, και στην συνέχεια πρακτικά, μέσω

της δημιουργίας ενός εργαλείου για την ανίχνευση λαθών αλλά και την επίβλεψη τέτοιων εφαρμογών.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

vii

University of Thessaly

Abstract
Department of Electrical and Computer Engineering

Master

Inspecting and Analyzing
Blockchain Applications

Dimitrios Greasidis

Nowadays the amount of information is enormous and fully centralized. Agencies and
authorities that have that information are being trusted blindly and no one can question their
actions. The previous problem is the key stimulus that motivates people to design and develop
systems that are decentralized. In such a system the trust is guarded by its own architecture.
The technology behind those systems is known as blockchain which essentially represents
a public record where all “movements” are available. Initially, this technology was used to
create cryptocurrencies in order to decentralize money, but over time more and more ideas
are based on this architecture. In some cryptocurrencies, the concept of smart contracts was
introduced for the first time, which is essentially a "contract" in a programming language. In
that “contract”, when certain conditions are fulfilled, some actions are carried out without
the need of a central authority. The most well-known cryptocurrency, but also the first that
introduced this concept is Ethereum. Due to the wide range of problems that smart contracts
can solve, more and more developers are implementing systems and applications based on
them, and consequently on blockchain. This technology is quite complex in order to function
properly and solve most of the problems in a decentralized way. For this reason, there are
many risks during an implementation of a decentralized application (Dapp), which can lead
to a big loss of money and probably the collapse of a company. The target of this Master Thesis
is to locate and identify these risks theoretically, through the study of the architecture of this
system, and then practically through the creation of a tool to detect errors and inspect such
applications.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

http://www.uth.gr
http://www.e-ce.uth.gr

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

ix

Contents

Declaration of Authorship iii

Greek Abstract v

Abstract vii

Contents ix

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution of this Thesis . 2

2 Basic Concepts and Enabling Technologies 3
2.1 Architecture of usual systems . 3
2.2 Blockchain . 4
2.3 Networks . 8

2.3.1 Bitcoin . 8
2.3.2 Ethereum . 9
2.3.3 Stellar Lumens . 11

3 Ethereum 13
3.1 Basic Concept . 13
3.2 Background on Ethereum smart contracts . 13
3.3 Vulnerabilities in smart contracts . 17

4 Design and Implementation 25
4.1 Debug and Inspect . 25
4.2 Previous Work . 27
4.3 System Design (Inspector - Visualizer) . 32

4.3.1 Basic Concept . 32
4.3.2 Basic Functions . 33
4.3.3 Charts . 36
4.3.4 Get Specific Entities . 39
4.3.5 General Contracts . 41
4.3.6 Custom Contracts . 43
4.3.7 Comparison Table of Tools . 44
4.3.8 Development Issues . 45

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

x

4.3.9 Architecture . 46

5 Synopsis and Future Work 49
5.1 Synopsis . 49
5.2 Future Work . 50

Bibliography 52

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

xi

List of Figures

1.1 Knowledge - The next web . 2

2.1 Types of networks. 4
2.2 Blockchain. 6
2.3 Bitcoin. 9
2.4 Ethereum. 10
2.5 Stellar Lumens. 11

4.1 Ethstats. 27
4.2 Eth Explorer. 28
4.3 ETHExplorer V2. 29
4.4 Truffle Framework. 31
4.5 Basic Scenario . 34
4.6 Get Transactions . 36
4.7 Gas Spent of account . 37
4.8 Gas Limit . 37
4.9 Balance of account per block . 38
4.10 Transactions per block . 39
4.11 Block Info . 40
4.12 Transaction Info . 40
4.13 Account Info . 41
4.14 Get Contracts . 42
4.15 Get Contracts . 43
4.16 Architecture of Inspector . 46

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

xiii

Dedicated to my family

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

1

Chapter 1

Introduction

1.1 Motivation

Day after day decentralized applications are preferred from people around the world. The
basic advantage of those applications is the absence of a central authority that people must
trust even if they don’t want to.

That simple reason is establishing more and more over time the decentralized applications
in the software development sector. This architecture is adopted to solve many different prob-
lems that have the exact same disadvantage, a central authority that everyone must trust.

An example that suffers from that disadvantage is the energy market. Putting it simple, in
an energy market there are bids in an auction of energy where the actors are the consumers and
the generators of energy. After a specific time that has been defined by the central authority, a
clearing price is exported by using the bids that were submitted. The window time is usually
15 minutes. After that, the consumers will buy energy with the price that was exported for
the next 15 minutes. The basic questioning that occurs is if the central authority is trustworthy
enough and will export a clearing price by getting into consideration all the bidders. In that
scenario a decentralized market energy could solve this problem of trustworthiness. Probably
the best blockchain that is the best fit for this case is the Ethereum blockchain which is open-
source and supports smart contracts, which we will analyze later.

After participating in an experiment that ought to prove that an energy market can be sup-
ported by such a network, there was a pretty obvious problem. Before analyzing this problem
it should be noticed that a private Ethereum network was created for testing and to achieve
a lower cost for the experiment. The problem was that there wasn’t enough tools to monitor,
inspect and debug an experiment of this type. The basic libraries to create such tools were
provided by the company but a tool that was using fully the capabilities of that libraries didn’t
exist. Thus, it was compulsory to create our tool to debug and monitor the experiment and
check that everything was going as expected. This was the incentive to continue the develop-
ment of that tool further and provide more functions that could help developers to transit on
the era of decentralized applications.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

2 Chapter 1. Introduction

1.2 Contribution of this Thesis

During the development of the tool the importance of decentralized applications was notice-
able enough. To expand this knowledge and provide an easy start to create such applications
the need of concentrated knowledge is almost compulsory. This Thesis oughts to specify the
vulnerabilities of a system - application based on blockchain and Ethereum Smart Contracts
and create a prototype that detects them and makes easier the implementation and debugging
of such applications.

This is really important to create a world with much less control over our actions and data,
which is a dream that everyone tries to fulfill.

FIGURE 1.1: Knowledge - The next web

Source: https://thenextweb.com/contributors/2017/12/01/
recognized-appreciated-knowledge-economy-needs-blockchain/

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://thenextweb.com/contributors/2017/12/01/recognized-appreciated-knowledge-economy-needs-blockchain/
https://thenextweb.com/contributors/2017/12/01/recognized-appreciated-knowledge-economy-needs-blockchain/

3

Chapter 2

Basic Concepts and Enabling
Technologies

2.1 Architecture of usual systems

At the begging of the software development history, everything was centralized and in one
core-thread. Obviously, this was due to the low quality of technology then. Nevertheless, even
when the technology got much better the architecture didn’t change to much. The basic step
forward was to create all the previous software platforms in a distributed way. The purpose of
that was to solve the scaling problem because of the continues increasing data.

Distributed systems solved some basic problems and we are using them until today. The
basic concept was to create a lot of similar servers, so that the platform could serve more
requests in the same time which implies more users. Nevertheless, in such systems the user
must trust the platform with his data without having any way to check the validity of the
platform’s actions. This problem was emerging more and more over the years, the problem of
centralization alongside with the big power of data.

An indirect suggestion came up from Satoshi Nakamoto who was the creator of the first
decentralized platform [1]. The platform successfully implemented this logic, known also as
blockchain architecture, and since then is the state of the art technology to create a decentral-
ized platform. The picture below demonstrates the basic differences between the previous
architectures of systems.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

4 Chapter 2. Basic Concepts and Enabling Technologies

FIGURE 2.1: Types of networks.

Source: https://www.cgdev.org/publication/
blockchain-and-economic-development-hype-vs-reality

2.2 Blockchain

The blockchain is an undeniably ingenious invention – the brainchild of a person or group of
people known by the pseudonym, Satoshi Nakamoto [2]. But since then, it has evolved into
something greater, and the main question every single person is asking is: What is Blockchain?

By allowing digital information to be distributed but not copied, blockchain technology
created the backbone of a new type of internet. Originally devised for the digital currency,
Bitcoin, the tech community is now finding other potential uses for the technology. Bitcoin has
been called “digital gold,” and for a good reason. To date, the total value of the currency is
close to $136,806,493,619 USD [3] [4].

A distributed database. Thus, what blockchain really is? Picture a spreadsheet that is du-
plicated thousands of times across a network of computers. Then imagine that this network
is designed to regularly update this spreadsheet and you have a basic understanding of the
blockchain [1] [2].

Information held on a blockchain exists as a shared — and continually reconciled — database.
This is a way of using the network that has obvious benefits. The blockchain database isn’t
stored in any single location, meaning the records it keeps are truly public and easily veri-
fiable. No centralized version of this information exists for a hacker to corrupt. Hosted by
millions of computers simultaneously, its data is accessible to anyone on the internet [1] [2].

Blockchain Durability and robustness. Blockchain technology is like the internet in that it
has a built-in robustness. By storing blocks of information that are identical across its network,
the blockchain cannot:

• Be controlled by any single entity.

• Has no single point of failure.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality

2.2. Blockchain 5

Bitcoin was invented in 2008. Since that time, the Bitcoin blockchain has operated without
significant disruption. To date, any of problems associated with Bitcoin have been due to
hacking or mismanagement. In other words, these problems come from bad intention and
human error, not flaws in the underlying concepts. The internet itself has proven to be durable
for almost 30 years. It’s a track record that bodes well for blockchain technology as it continues
to be developed [1] [2].

Transparent and incorruptible. The blockchain network lives in a state of consensus, one
that automatically checks in with itself every ten minutes. A kind of self-auditing ecosystem of
a digital value, the network reconciles every transaction that happens in ten-minute intervals.
Each group of these transactions is referred to as a “block”. Two important properties result
from this:

• Transparency data is embedded within the network as a whole, by definition it is public.

• It cannot be corrupted altering any unit of information on the blockchain would mean
using a huge amount of computing power to override the entire network.

In theory, this could be possible. In practice, it’s unlikely to happen. Taking control of the
system to capture Bitcoins, for instance, would also have the effect of destroying their value
[1] [2].

A network of nodes. A network of so-called computing “nodes” make up the blockchain.
Together they create a powerful second-level network, a wholly different vision for how the
internet can function.

Every node is an “administrator” of the blockchain, and joins the network voluntarily (in
this sense, the network is decentralized). However, each one has an incentive for participating
in the network: the chance of winning Bitcoins.

Nodes are said to be “mining” Bitcoin, but the term is something of a misnomer. In fact,
each one is competing to win Bitcoins by solving computational puzzles. Bitcoin was the
purpose of the blockchain as it was originally conceived. It’s now recognized to be only the
first of many potential applications of the technology.

The idea of decentralization. By design, the blockchain is a decentralized technology. Any-
thing that happens on it is a function of the network as a whole. Some important implica-
tions stem from this. By creating a new way to verify transactions aspects of traditional com-
merce could become unnecessary. Stock market trades become almost simultaneous on the
blockchain, for instance — or it could make types of record keeping, like a land registry, fully
public. And decentralization is already a reality [1] [2].

A global network of computers uses blockchain technology to jointly manage the database
that records Bitcoin transactions. That is, Bitcoin and other similar cryptocurrencies are man-
aged by its network, and not any one central authority. Decentralization means the network
operates on a user-to-user (or peer-to-peer) basis. The forms of mass collaboration this makes
possible are just beginning to be investigated.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

6 Chapter 2. Basic Concepts and Enabling Technologies

FIGURE 2.2: Blockchain.

Source: http://www.documentarytube.com/articles/
what-is-blockchain-the-technology-explained

Who will use the blockchain? As web infrastructure, you don’t need to know about the
blockchain for it to be useful in your life.

Currently, finance offers the strongest use cases for the technology. International remit-
tances, for instance. The World Bank estimates that over $430 billion US in money transfers
were sent in 2015. And at the moment there is a high demand for blockchain developers.

The blockchain potentially cuts out the middleman for these types of transactions. Personal
computing became accessible to the general public with the invention of the Graphical User
Interface (GUI), which took the form of a “desktop”. Similarly, the most common GUI devised
for the blockchain are the so-called “wallet” applications, which people use to buy things with
Bitcoin, and store it along with other cryptocurrencies.

Transactions online are closely connected to the processes of identity verification. It is easy
to imagine that wallet apps will transform in the coming years to include other types of identity
management.

The Blockchain & Enhanced security. By storing data across its network, the blockchain
eliminates the risks that come with data being held centrally.

Its network lacks centralized points of vulnerability that computer hackers can exploit.
Today’s internet has security problems that are familiar to everyone. We all rely on the “user-
name/password” system to protect our identity and assets online. Blockchain security meth-
ods use encryption technology [1] [2].

The basis for this are the so-called public and private “keys”. A “public key” (a long,
randomly-generated string of numbers) is a users’ address on the blockchain. Bitcoins sent
across the network gets recorded as belonging to that address. The “private key” is like a
password that gives its owner access to their Bitcoin or other digital assets. Store your data on
the blockchain and it is incorruptible. This is true, although protecting your digital assets will
also require safeguarding of your private key by printing it out, creating what’s referred to as
a paper wallet [1] [2].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

http://www.documentarytube.com/articles/what-is-blockchain-the-technology-explained
http://www.documentarytube.com/articles/what-is-blockchain-the-technology-explained

2.2. Blockchain 7

A second-level network With blockchain technology, the web gains a new layer of func-
tionality. Already, users can transact directly with one another — Bitcoin transactions in 2016
averaged over $200,000 US per day. With the added security brought by the blockchain new
internet business are on track to unbundle the traditional institutions of finance [3].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

8 Chapter 2. Basic Concepts and Enabling Technologies

2.3 Networks

As mentioned previously cryptocurrencies is the effort to decentralize the currency itself and
solve the problem of the manipulation through blockchain. Bitcoin was the first one and prob-
ably for that reason one of the main cryptocurrencies right now. Although Bitcoin introduced
a decentralized and robust currency system, which was fully accepted, a lot of restrictions and
problems came along with its architecture. A simple result of the Bitcoin architecture is the
huge amounts of energy that this system needs to function, due to the so-called mining pro-
cess. For that reason a lot of new cryptocurrencies were introduced, which solved efficiently
some problems of Bitcoin and added even more functionalities. Below we will analyze and
compare the architecture of some of the most well known and innovative cryptocurrencies.

2.3.1 Bitcoin

As mentioned previously Bitcoin was the first of the networks built on blockchain architecture.
This network enabled transactions, transfers of money, between people across the world. The
first problem that Bitcoin solved was the slow transfer of money over continents with the
usual bank systems that required several days to complete a transfer [1]. Bitcoin also provided
transactions with low cost of money instead of the several dollars that were needed to transfer
money between different countries [2].

Obviously, the decentralization of money was the main target of Bitcoin, based on the
blockchain technology. This was achievable because of the nature of the network, which means
that no government or no rich person can shut down or ban Bitcoin. The network itself is pow-
erful and stable because of the nodes that participate in the mining process. We can visualize
it as a really big network of computers, that communicate and sync with each other.

The mining process represents a problem that each node has to solve to generate the next
block on the chain. The first to solve this problem is rewarded with a static price from the net-
work (it is changing over the years) and with the transaction fees from the transactions. The
transactions fees is the price that every user has to pay if he wants to make a transaction. The
problem is random, pointless (from the aspect of a useful solution) and with a very high power
and computational cost. This meaningless process ensures the safety and decentralization of
the network because the miner that will be selected for the next block is completely random.
The mining process also includes the validation of the transactions that will be inserted in the
block. After that the block is published to the network and when the other nodes sync with
it, they try to validate the block and then add it to their local chain. If the block is not valid
it is rejected. This whole process is also known as the Consensus algorithm that ensures the
stability of the network, solves the double spending problem and protects the network from
malicious attacks. The consensus algorithm of Bitcoin is "proof of work", which we analyzed
briefly. The main concept is that the validity of a node is ensured through the proof of work
to solve a certain problem, which is "mining". However, the generation of a new block is hap-
pening every 10 minutes and each block contains in average 2020 transactions, which number
in a global scale is very small. Thus, to support a global cryptocurrency a lot of solutions were
proposed to increase the number of transactions per block, such as doubling the size of each
block or implement a new Consensus algorithm which could ensure the safety of the network
but also make it a lot faster.

With that in mind, we can visualize a chain of blocks that each one is generated from a
random node and contains a number of transactions which are transfers of money between

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

2.3. Networks 9

accounts. This chain is copied on every node and it doesn’t exist on a certain server. This
ensures that even if the power went out it in America the rest world could keep this network
alive. Thus, a blockchain network is protected from such attacks.

FIGURE 2.3: Bitcoin.

Source: https://wccftech.com/

Nevertheless, the consensus algorithm of Bitcoin has a very high cost, at a point where a
year of mining in Bitcoin consumes as much power as a big European country such as Den-
mark.

2.3.2 Ethereum

Launched in 2015, Ethereum is the largest and most well-established, open-ended decentral-
ized software platform that enables Smart Contracts and Distributed Applications (ÐApps)
to be built and run without any downtime, fraud, control or interference from a third party.
Ethereum is not just a platform but also a programming language (Turing complete) running
on a blockchain, helping developers to build and publish distributed applications [5].

Ethereum is a peer-to-peer network of virtual machines that any developer can use to run
distributed applications (Dapps). These computer programs could be anything, but the net-
work is optimized to carry out rules that mechanically execute when certain conditions are
met, like a contract. Ethereum uses its own decentralized public blockchain to cryptographi-
cally store, execute, and protect these contracts.

Each computer on their network downloads a small virtual machine to sync with the
Ethereum blockchain and remains available to execute contracts. This distributed network of
computers conveniently provides the security, reliability, and computing power necessary for
carrying out designed arrangements. Of course, this consensus network isn’t free or private,
so developers only use it for consensus on outcomes and when their data can be public.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://wccftech.com/

10 Chapter 2. Basic Concepts and Enabling Technologies

FIGURE 2.4: Ethereum.

Source: https://blockgeeks.com/guides/ethereum/

While most examples of these contracts depict various human interactions, the technology
is currently preferred for industrial use-cases like strict business logic between organizations
or machine-to-machine communication. For instance, some energy companies are researching
ways to create a smarter grid, where houses can automatically buy and sell power. Another
example is the International Business Machines Corp. (IBM)/Samsung Group “Internet of
Things” collaboration. However, they used a fork of the Ethereum’s code – for the sake of
privacy – to run how these “things” communicate with each other.

The financial industry loves the promise of controllable blockchain, but not the lack of
privacy. So, consulting companies like Eris have forked Ethereum to sell it, bundled with their
consulting services, to help banks construct their own private networks.

Ethereum is certainly a novel implementation of virtual machines with amazing possibil-
ities. However, we don’t yet know how large the unforked Ethereum network will grow nor
how scalable this network could be.

Bitcoin Vs Ethereum. While both Bitcoin and Ethereum are powered by the principle of
distributed ledgers and cryptography, the two differ in many technical ways. For example,
the programming language used by Ethereum is Turing complete whereas Bitcoin is in a stack
based language. Other differences include block time (Ethereum transaction is confirmed in
seconds compared to minutes for Bitcoin) and their basic builds (Ethereum uses ethash while
Bitcoin uses secure hash algorithm, SHA-256).

However, from a general point of view, Bitcoin and Ethereum differ in purpose. While
Bitcoin is created as an alternative to regular money and is thus a medium of payment trans-
action and store of value, Ethereum is developed as a platform which facilitates peer-to-peer
contracts and applications via its own currency vehicle. While Bitcoin and Ether are both dig-
ital currencies, the primary purpose of Ether is not to establish itself as a payment alternative

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://blockgeeks.com/guides/ethereum/

2.3. Networks 11

(unlike Bitcoin) but to facilitate and monetize the working of Ethereum to enable developers
to build and run distributed applications (ÐApps).

2.3.3 Stellar Lumens

Stellar Lumens advertises itself as an open-sourced, distributed payments infrastructure, built
on the premise that the international community needs “a worldwide financial network open
to anyone.” Stellar Lumens will fill this need, connecting individuals, institutions, and pay-
ment systems through its platform [6].

In doing so, the Stellar Lumen’s team wants to make monetary transactions cheaper, quicker,
and more reliable than they are under current systems. In addition, their protocol would con-
nect people from all over the world by allowing for more efficient cross-border payments.

Like (most) all other cryptocurrencies, Stellar Lumens bears that beautiful buzzword that
has become the hallmark of blockchain technology: decentralization. The Stellar network runs
on a web of decentralized servers supported by an international consortium of individuals
and entities. These servers support the distributed ledger that keeps track of the network’s
data and transactions.

In practice, the Stellar protocol will function like a more inclusive, more flexible PayPal. To
start using Stellar, you would need to upload funds to an anchor on the network. Much like a
bank or PayPal, this anchor then holds your money and issues credit to your virtual wallet in
its stead [7].

FIGURE 2.5: Stellar Lumens.

Source: https://www.mycryptopedia.com/
stellar-lumens-xlm-explained/

The Stellar Consensus Protocol white paper [6] can seem complex because it’s not blockchain.
The protocol is more like an evolution of blockchain and that’s a good thing. The paper high-
lights key features: decentralized control, low latency, flexible trust and asymptotic security.
Of these four features, proof of work blockchains are only capable of decentralized control and
even that can be compromised as we have seen in Bitcoin.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://www.mycryptopedia.com/stellar-lumens-xlm-explained/
https://www.mycryptopedia.com/stellar-lumens-xlm-explained/

12 Chapter 2. Basic Concepts and Enabling Technologies

The protocol works through the use of quorums, which are a set of nodes used to reach
an agreement. The Stellar network is able to process a large number of transactions quickly
and for fractions of a penny because there is no mining involved. The quorums securely reach
consensus by exchanging signatures. The result is a platform that solves blockchain’s shortfalls
right now.

The main feature that Stellar is unique, along with Ripple which may be called his brother
from another mother, is that it enables intermediate transactions through other cryptocurren-
cies. Thus, anyone can buy other cryptocurrencies with Stellar or Ripple with ease.

It is worth mentioning that Stellar was based on Ripple. Those two cryptocurrencies are
very similar but Stellar is fully decentralized instead of Ripple, which is centralized. Ripple
was adopted initially from banks. For that reason it has a much bigger market capitalization
from Stellar, but it is the opposite of what it should be (decentralized) and what blockchain
champions.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

13

Chapter 3

Ethereum

3.1 Basic Concept

As mentioned previously Ethereum is one of the top cryptocurrencies with a market capital-
ization of $41,093,186,257 USD. The basic feature that makes Ethereum very important, useful
and innovative is the introduction of Smart Contracts. In a more abstract view a smart con-
tract provides the possibility to add complex logic on a transaction system. It can replace a
conveyancer in an easy and effective way.

Because of blockchain technology Smart Contracts cannot be corrupted and cannot be used
with any other way than the one that were designed. The basic requirement is a correct ar-
chitecture for your smart contract and the other requirements are fulfilled by the Ethereum
network. This innovation enables the implementation of many different problems in a decen-
tralized way, which many times is the key to the solution.

3.2 Background on Ethereum smart contracts

Ethereum [8] is a decentralized virtual machine, which runs programs — called contracts —
upon request of users. Contracts are written in a Turing-complete bytecode language, called
EVM bytecode [9]. Roughly, a contract is a set of functions, each one defined by a sequence
of bytecode instructions. A remarkable feature of contracts is that they can transfer ether (a
cryptocurrency similar to Bitcoin [10]) to/from users and to other contracts.

Users send transactions to the Ethereum network in order to:

• create new contracts;

• invoke functions of a contract;

• transfer ether to contracts or to other users.

All the transactions are recorded on a public, append-only data structure, called blockchain.
The sequence of transactions on the blockchain determines the state of each contract, and the
balance of each user.

Since contracts have an economic value, it is crucial to guarantee that their execution is
performed correctly. To this purpose, Ethereum does not rely on a trusted central authority:
rather, each transaction is processed by a large network of mutually untrusted peers — called
miners. Potential conflicts in the execution of contracts (due e.g., to failures or attacks) are re-
solved through a consensus protocol based on “proof-of-work” puzzles. Ideally, the execution

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

14 Chapter 3. Ethereum

of contracts is correct whenever the adversary does not control the majority of the computa-
tional power of the network [11].

The security of the consensus protocol relies on the assumption that honest miners are
rational, i.e. that it is more convenient for a miner to follow the protocol than to try to attack
it. To make this assumption hold, miners receive some economic incentives for performing the
(time-consuming) computations required by the protocol. Part of these incentives is given by
the execution fees paid by users upon each transaction. These fees bound the execution steps
of a transaction, so preventing from denial-of-service attacks where users try to overwhelm
the network with time-consuming computations [11].

Programming smart contracts. We illustrate contracts through a small example (AWallet, in
3.1), which implements a personal wallet associated to an owner. Rather than programming
it directly as EVM bytecode, we use Solidity, a JavaScript-like programming language which
compiles into EVM byte-code. Intuitively, the contract can receive ether from other users, and
its owner can send (part of) that ether to other users via the function pay. The hashtable outflow
records all the addresses to which it sends money, and associates to each of them the total
transferred amount. All the ether received is held by the contract. Its amount is automatically
recorded in balance: this is a special variable, which cannot be altered by the programmer [11].

1 c o n t r a c t AWallet {
2 address owner ;
3

4 mapping (address => uint) publ ic outflow ;
5

6 func t ion AWallet () { owner = msg . sender ; }
7

8 func t ion pay (uint amount , address r e c i p i e n t) re turns (bool) {
9 i f (msg . sender != owner || msg . value != 0) throw ;

10 i f (amount > t h i s . balance) re turn f a l s e ;
11 outflow [r e c i p i e n t] += amount ;
12 i f (! r e c i p i e n t . send (amount)) throw ;
13 re turn true ;
14 }
15 }

LISTING 3.1: Wallet Contract

Contracts are composed by fields and functions. A user can invoke a function by sending
a suitable transaction to the Ethereum nodes. The transaction must include the execution fee
(for the miners), and may include a transfer of ether from the caller to the contract. Solidity
also features exceptions, but with a peculiar behavior. When an exception is thrown, it cannot
be caught: the execution stops, the fee is lost, and all the side effects — including transfers of
ether — are reverted.

The function AWallet at line 6 is a constructor, run only once when the contract is created.
The function pay sends amount wei (1wei = 10−18 ether) from the contract to recipient. At
line 9 the contract throws an exception if the caller (msg.sender) is not the owner, or if some
ether (msg.value) is attached to the invocation and transferred to the contract. Since exceptions
revert side effects, this ether is returned to the caller (who however loses the fee). At line 10,
the call terminates if the required amount of ether is unavailable; in this case, there is no need
to revert the state with an exception. At line 11, the contract updates the outflow registry,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

3.2. Background on Ethereum smart contracts 15

before transferring the ether to the recipient. The function send used at line 12 to this purpose
presents some quirks, e.g. it may fail if the recipient is a contract (see Section 3.3).

Execution fees. Each function invocation is ideally executed by all miners in the Ethereum
network. Miners are incentivized to do such work by the execution fees paid by the users
which invoke functions. Besides being used as incentives, execution fees also protect against
denial-of-service attacks, where an adversary tries to slow down the network by requesting
time-consuming computations.

Execution fees are defined in terms of gas and gas price, and their product represents the
cost paid by the user to execute code. More specifically, the transaction which triggers the
invocation specifies the gas limit up to which the user is willing to pay, and the price per unit
of gas. Roughly, the higher is the price per unit, the higher is the chance that miners will choose
to execute the transaction. Each EVM operation consumes a certain amount of gas [9], and the
overall fee depends on the whole sequence of operations executed by miners.

Miners execute a transaction until its normal termination, unless an exception is thrown. If
the transaction terminates successfully, the remaining gas is returned to the caller, otherwise
all the gas allocates for the transaction is lost. If a computation consumes all the allocated
gas, it terminates with an “out-of-gas” exception — hence the caller loses all the gas. An
adversary wishing to attempt a denial-of-service attack (e.g. by invoking a time-consuming
function) should allocate a large amount of gas, and pay the corresponding ether. If the adver-
sary chooses a gas price consistently with the market, miners will execute the transaction, but
the attack will be too expensive; otherwise, if the price is too low, miners will not execute the
transaction.

The mining process. Miners group the transactions sent by users into blocks, and try to
append them to the blockchain in order to collect the associated fees. Only those blocks which
satisfy a given set of conditions, which altogether are called validity, can be appended to the
blockchain. In particular, one of these conditions requires to solve a moderately hard “proof-
of-work” puzzle, which depends on the previous block and on the transactions in the new
block. The difficulty of the puzzle is dynamically updated so that the average mining rate is 1
block every 12 seconds.

When a miner solves the puzzle and broadcasts a new valid block to the network, the other
miners discard their attempts, update their local copy of the blockchain by appending the new
block, and start “mining” on top of it. The miner who solves the puzzle is rewarded with the
fees of the transactions in the new block (and also with some fresh ether).

It may happen that two (or more) miners solve the puzzle almost simultaneously. In this
case, the blockchain forks in two (or more) branches, with the new blocks pointing to the
same parent block. The consensus protocol prescribes miners to extend the longest branch.
Hence, even though both branches can transiently continue to exist, eventually the fork will
be resolved for the longest branch. Only the transactions therein will be part of the blockchain,
while those in the shortest branch will be discarded. The reward mechanism, inspired to the
GHOST protocol in [12], assigns the full fees to the miners of the blocks in the longest branch,
and a portion of the fees to those who mined the roots of the discarded branch. E.g., assume
that blocks A and B have the same parent, and that a miner appends a new block on top of A.
The miner can donate part of its reward to the miner of the “uncle block” B, in order to increase
the weight of its branch in the fork resolution process.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

16 Chapter 3. Ethereum

Level Cause of vulnerability

Solidity

Call to the unknown
Gasless send

Exception disorders
Type casts
Reentrancy

Keeping secrets

EVM
Immutable bugs

Ether lost in trasfer
Stack size limit

Blockchain
Unpredictable state

Generating randomness
Time constraints

TABLE 3.1: Taxonomy of vulnerabilities in Ethereum smart contracts.

Compiling Solidity into EVM bytecode. Although contracts are rendered as sets of func-
tions in Solidity, the EVM bytecode has no support for functions. Therefore, the Solidity com-
piler translates contracts so that their first part implements a function dispatching mechanism.
More specifically, each function is uniquely identified by a signature, based on its name and
type parameters. Upon function invocation, this signature is passed as input to the called con-
tract: if it matches some function, the execution jumps to the corresponding code, otherwise
it jumps to the fallback function. This is a special function with no name and no arguments,
which can be arbitrarily programmed. The fallback function is executed also when the contract
is passed an empty signature: this happens e.g. when sending ether to the contract.

Solidity features three different constructs to invoke a contract from another contract, which
also allow to send ether. All these constructs are compiled using the same bytecode instruc-
tion. The result is that the same behavior can be implemented in several ways, with some
subtle differences detailed in Section 3.3.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

3.3. Vulnerabilities in smart contracts 17

3.3 Vulnerabilities in smart contracts

In this section we systematize the security vulnerabilities of Ethereum smart contracts [11].
We group the vulnerabilities in three classes, according to the level where they are introduced
(Solidity, EVM bytecode, or blockchain). Further, we illustrate each vulnerability at the Solidity
level through a small piece of code. All these vulnerabilities can be (actually, most of them
have been) exploited to carry on attacks which e.g. steal money from contracts. Table 3.1
summarizes our taxonomy of vulnerabilities.

Call to the unknown. Some of the primitives used in Solidity to invoke functions and to
transfer ether may have the side effect of invoking the fallback function of the callee/recipient.
We illustrate them below.

• call invokes a function (of another contract, or of itself), and transfers ether to the callee.
E.g., one can invoke the function ping of contract c as follows:

1 c . c a l l . value (amount) (bytes4 (sha3 (" ping (uint256) ")) ,n)

LISTING 3.2: Invoke function

where the called function is identified by the first 4 bytes of its hashed signature, amount
determines how many wei have to be transferred to c, and n is the actual parameter of
ping. Remarkably, if a function with the given signature does not exist at address c, then
the fallback function of c is executed, instead.

• send is used to transfer ether from the running contract to some recipient r, as in r.send(amount).
After the ether has been transferred, send executes the recipient’s fallback. Others vul-
nerabilities related to send are detailed in “exception disorders” and “gasless send”.

• delegatecall is quite similar to call, with the difference that the invocation of the called
function is run in the caller environment. For instance, executing

1 c . d e l e g a t e c a l l (bytes4 (sha3 (" ping (uint256) ")) ,n)

LISTING 3.3: DelegateCall

if ping contains the variable this, it refers to the caller’s address and not to c, and in case
of ether transfer to some recipient d — via d.send(amount) — the ether is taken from the
caller balance.

• besides the primitives above, one can also use a direct call as follows:

1 c o n t r a c t Al ice { funct ion ping (uint) re turns (u int) }
2 c o n t r a c t Bob {
3 func t ion pong (Al ice c) { c . ping (4 2) ; } }

LISTING 3.4: Multiple Cotracts

The first line declares the interface of Alice’s contract, and the last two lines contain Bob’s
contract: therein, pong invokes Alice’s ping via a direct call. Now, if the programmer
mistypes the interface of contract Alice (e.g., by declaring the type of the parameter as
int, instead of uint), and Alice has no function with that signature, then the call to ping
actually results in a call to Alice’s fallback function.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

18 Chapter 3. Ethereum

The fallback function is not the only piece of code that can be unexpectedly executed: other
cases are reported in the vulnerabilities “type cast” at 3.3 and “unpredictable state” at 3.3.

Exception disorder. In Solidity there are several situations where an exception may be raised,
e.g. if

• the execution runs out of gas

• the call stack reaches its limit

• the command throw is executed

However, Solidity is not uniform in the way it handles exceptions: there are two different
behaviors, which depend on how contracts call each others. For instance, consider:

1 c o n t r a c t Al ice { funct ion ping (uint) re turns (u int) }
2 c o n t r a c t Bob {
3 uint x =0;
4 func t ion pong (Al ice c) {
5 x =1; c . ping (4 2) ; x =2;
6 }
7 }

LISTING 3.5: Calling other Contract

Now, assume that some user invokes Bob’s pong, and that Alice’s ping throws an excep-
tion. Then, the execution stops, and the side effects of the whole transaction are reverted.
Therefore, the field x contains 0 after the transaction. Now, assume instead that Bob invokes
ping via a call. In this case, only the side effects of that invocation are reverted, the call returns
false, and the execution continues. Therefore, x contains 2 after the transaction.

More in general, assume that there is a chain of nested calls, when an exception is thrown.
Then, the exception is handled as follows:

• if every element of the chain is a direct call, then the execution stops, and every side effect
(including transfers of ether) is reverted. Further, all the gas allocated by the originating
transaction is consumed;

• if at least one element of the chain is a call (the cases delegatecall and send are similar),
then the exception is propagated along the chain, reverting all the side effects in the called
contracts, until it reaches a call. From that point the execution is resumed, with the call
returning false. Further, all the gas allocated by the call is consumed.

To set an upper bound to the use of gas in a call, one can write:
1 c . c a l l . gas (g) (bytes4 (sha3 (" ping (uint256) ")) ,n)

LISTING 3.6: Set upper bound for gas use

In case of exceptions, if no bound is specified then all the available gas is lost; otherwise,
only g gas is lost.

The irregularity in how exceptions are handled may affect the security of contracts. For
instance, believing that a transfer of ether was successful just because there were no exceptions
may lead to attacks. The quantitative analysis in [13] shows that not control the return value
of call/send invocations (note however that the absence of these checks does not necessarily
imply a vulnerability).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

3.3. Vulnerabilities in smart contracts 19

Gasless send. When using the function send to transfer ether to a contract, it is possible to
incur in an out-of-gas exception. This may be quite unexpected by programmers, because
transferring ether is not generally associated to executing code. The reason behind this excep-
tion is subtle. First, note that c.send(amount) is compiled in the same way of a call with empty
signature, but the actual number of gas units available to the callee is always bound by 2300.
Now, since the call has no signature, it will invoke the callee’s fallback function. However,
2300 units of gas only allow to execute a limited set of bytecode instructions, e.g. those which
do not alter the state of the contract. In any other case, the call will end up in an out-of-gas
exception.

We illustrate the behavior of send through a small example, involving a contract C who
sends ether through function pay, and two recipients D1, D2.

1 c o n t r a c t C {
2 func t ion pay (uint n , address d) {
3 d . send (n) ;
4 }
5 }
6

7 c o n t r a c t D1 {
8 uint publ ic count = 0 ;
9 func t ion () { count ++; }

10 }
11 c o n t r a c t D2 { funct ion () { } }

LISTING 3.7: Simple Example

There are three possible cases to execute pay:

• n 6= 0 and d = D1. The send in C fails with an out-of-gas exception, because 2300 units
of gas are not enough to execute the state-updating D1’s fallback.

• n 6= 0 and d = D2. The send in C succeeds, because 2300 units of gas are enough to
execute the empty fallback of D2.

• n = 0 and d ∈ {D1, D2}. For compiler versions < 0.4.0, the send in C fails with an out-
of-gas exception, since the gas is not enough to execute any fallback, not even an empty
one. For compiler versions ≥ 0.4.0, the behavior is the same as in one of the previous
two cases, according whether d = D1 or d = D2.

Summing up, sending ether via send succeeds in two cases: when the recipient is a contract
with an unexpensive fallback, or when the recipient is a user.

Type casts. The Solidity compiler can detect some type errors (e.g., assigning an integer value
to a variable of type string). Types are also used in direct calls: the caller must declare the
callee’s interface, and cast to it the callee’s address when performing the call. For instance,
consider again the direct call to ping:

1 c o n t r a c t Al ice { funct ion ping (uint) re turns (u int) }
2 c o n t r a c t Bob { funct ion pong (Al ice c) { c . ping (4 2) ; } }

LISTING 3.8: Type casts example

The signature of pong informs the compiler that c adheres to interface Alice. However, the
compiler only checks whether the interface declares the function ping, while it does not check
that:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

20 Chapter 3. Ethereum

1. c is the address of contract Alice;

2. the interface declared by Bob matches Alice’s actual interface.

A similar situation happens with explicit type casts, e.g. Alice(c).ping(), where c is an address.
The fact that a contract can type-check may deceive programmers, making them believe

that any error in checks (1) and (2) is detected. Furthermore, even in the presence of such
errors, the contract will not throw exceptions at run-time. Indeed, direct calls are compiled
in the same EVM bytecode instruction used to compile call (except for the management of
exceptions). Hence, in case of type mismatch, three different things may happen at run-time:

• if c is not a contract address, the call returns without executing any code 12;

• if c is the address of any contract having a function with the same signature as Alice’s
ping, then that function is executed;

• if c is a contract with no function matching the signature of Alice’s ping, then c’s fallback
is executed.

In all cases, no exception is thrown, and the caller is unaware of the error.

Reentrancy. The atomicity and sequentiality of transactions may induce programmers to be-
lieve that, when a non-recursive function is invoked, it cannot be reentered before its termi-
nation. However, this is not always the case, because the fallback mechanism may allow an
attacker to re-enter the caller function. This may result in unexpected behaviors, and possibly
also in loops of invocations which eventually consume all the gas. For instance, assume that
contract Bob is already on the blockchain, when the attacker publishes Mallory contract:

1 c o n t r a c t Bob {
2 bool sent = f a l s e ;
3 func t ion ping (address c) {
4 i f (! sent) {
5 c . c a l l . value (2) () ;
6 sent = true ;
7 } } }
8 c o n t r a c t Bob { funct ion ping () ; }
9

10 c o n t r a c t Mallory {
11 func t ion () {
12 Bob (msg . sender) . ping (t h i s) ;
13 }
14 }

LISTING 3.9: Reentrancy example

The function ping in Bob is meant to send exactly 2wei to some address c, using a call with
empty signature and no gas limits. Now, assume that ping has been invoked with Mallory’s
address. As mentioned before, the call has the side effect of invoking Mallory’s fallback, which
in turn invokes again ping. Since variable sent has not already been set to true, Bob sends again
2wei to Mallory, and invokes again her fallback, thus starting a loop. This loop ends when the
execution eventually goes out-of gas, or when the stack limit is reached (see the “stack size
limit” vulnerability at 3.3), or when Bob has been drained off all his ether. In all cases an

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

3.3. Vulnerabilities in smart contracts 21

exception is thrown: however, since call does not propagate the exception, only the effects of
the last call are reverted, leaving all the previous transfers of ether valid.

This vulnerability resides in the fact that function ping is not reentrant, i.e. it may misbe-
have if invoked before its termination. Remarkably, the "DAO Attack" [14], which caused a
huge ether loss in June 2016, exploited this vulnerability.

Keeping secrets. Fields in contracts can be public, i.e. directly readable by everyone, or pri-
vate, i.e. not directly readable by other users/contracts. Still, declaring a field as private does
not guarantee its secrecy. This is because, to set the value of a field, users must send a suit-
able transaction to miners, who will then publish it on the blockchain. Since the blockchain
is public, everyone can inspect the contents of the transaction, and infer the new value of the
field.

Many contracts, e.g. those implementing multi-player games, require that some fields are
kept secret for a while: for instance, if a field stores the next move of a player, revealing it
to the other players may advantage them in choosing their next move. In such cases, to en-
sure that a field remains secret until a certain event occurs, the contract has to exploit suitable
cryptographic techniques, like e.g. timed commitments [15] [16].

Immutable bugs. Once a contract is published on the blockchain, it can no longer be altered.
Hence, users can trust that if the contract implements their intended functionality, then its run-
time behavior will be the expected one as well, since this is ensured by the consensus protocol.
The drawback is that if a contract contains a bug, there is no direct way to patch it. So, pro-
grammers have to anticipate ways to alter or terminate a contract in its implementation [17] —
although it is debatable the coherency of this with the principles of Ethereum.

The immutability of bugs has been exploited in various attacks, e.g. to steal ether, or to
make it unredeemable by any user. In all these attacks, there was no possibility of recovery. The
only exception was the recovery from the "DAO attack". The countermeasure was an hard-
fork of the blockchain, which basically nullified the effects of the transactions involved in the
attack [18]. This solution was not agreed by the whole Ethereum community, as it contrasted
with the “code is law” principle claimed so far. As a consequence, part of the miners refused
to fork, and created an alternative blockchain [19].

Ether lost in transfer. When sending ether, one has to specify the recipient address, which
takes the form of a sequence of 160 bits. However, many of these addresses are orphan, i.e.
they are not associated to any user or contract. If some ether is sent to an orphan address, it is
lost forever (note that there is no way to detect whether an address is orphan). Since lost ether
cannot be recovered, programmers have to manually ensure the correctness of the recipient
addresses.

Stack size limit. Each time a contract invokes another contract (or even itself via this.f()) the
call stack associated with the transaction grows by one frame. The call stack is bounded to
1024 frames: when this limit is reached, a further invocation throws an exception.

Until October 18th 2016, it was possible to exploit this fact to carry on an attack as follows.
An adversary starts by generating an almost-full call stack (via a sequence of nested calls),
and then he invokes the victim’s function, which will fail upon a further invocation. If the
exception is not properly handled by the victim’s contract, the adversary could manage to

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

22 Chapter 3. Ethereum

succeed in his attack. This vulnerability could be exploited together with others: e.g., the
"exception disorder" and "stack size limit" vulnerabilities.

This cause of vulnerability has been addressed by an hard-fork of the Ethereum blockchain
[20]. The fork changed the cost of several EVM instructions, and redefined the way to compute
the gas consumption of call and delegatecall. After the fork, a caller can allocate at most 63/64
of its gas: since, currently, the gas limit per block is 4,7M units, this implies that the maximum
reachable depth of the call stack is always less than 1024 [21].

Unpredictable state. The state of a contract is determined by the value of its fields and bal-
ance. In general, when a user sends a transaction to the network in order to invoke some
contract, he cannot be sure that the transaction will be run in the same state the contract was
at the time of sending that transaction. This may happen because, in the meanwhile, other
transactions have changed the contract state. Even if the user was fast enough to be the first to
send a transaction, it is not guaranteed that such transaction will be the first to be run. Indeed,
when miners group transactions into blocks, they are not required to preserve any order; they
could also choose not to include some transactions.

There is another circumstance where a user may not know the actual state wherein his
transaction will be run. This happens in case the blockchain forks (see Section 3.2). Recall
that, when two miners discover a new valid block at the same time, the blockchain forks in
two branches. Some miners will try to append new blocks on one of the branches, while some
others will work on the other one. After some time, though, only the longest branch will be
considered part of the blockchain, while the shortest one will be abandoned. Transactions in
the shortest branch will then be ignored, because no longer part of the blockchain. Therefore,
believing that a contract is in a certain state, could be determinant for a user in order to publish
new transactions (e.g., for sending ether to other users). However, later on such state could be
reverted, because the transactions that led to it could happen to be in the shortest branch of a
fork.

In some cases, not knowing the state where a transaction will be run could give rise to
vulnerabilities. E.g., this is the case when invoking contracts that can be dynamically updated.
Note indeed that, although the code of a contract cannot be altered once published on the
blockchain, with some forethinking it is possible to craft a contract whose components can be
updated at his owner’s request. At a later time, the owner can link such contract to a malicious
component, which e.g. steals the caller’s ether.

Generating randomness. The execution of EVM bytecode is deterministic: in the absence of
misbehavior, all miners executing a transaction will have the same results. Hence, to simulate
non-deterministic choices, many contracts (e.g. lotteries, games, etc.) generate pseudo-random
numbers, where the initialization seed is chosen uniquely for all miners.

A common choice is to take for this seed (or for the random number itself) the hash or the
timestamp of some block that will appear in the blockchain at a given time in the future. Since
all the miners have the same view of the blockchain, at run-time this value will be the same
for everyone. Apparently, this is a secure way to generate random numbers, as the content of
future blocks is unpredictable. However, since miners control which transactions are put in a
block and in which order, a malicious miner could attempt to craft his block so to bias the out-
come of the pseudo-random generator. The analysis in [22] on the randomness of the Bitcoin
blockchain shows that an attacker, controlling a minority of the mining power of the network,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

3.3. Vulnerabilities in smart contracts 23

could invest 50 bitcoins to significantly bias the probability distribution of the outcome; more
recent research [23] proves that this is also possible with more limited resources.

Alternative solutions to this problem are based on timed commitment protocols [16] [15].
In these protocols, each participant chooses a secret, and then communicates to the others a
digest of it, paying a deposit as a guarantee. Later on, participants must either reveal their
secrets, or lose their deposits. The pseudo-random number is then computed by combining
the secrets of all participants [24] [25]. Also in this case an adversary could bias the outcome
by not revealing her secret: however, doing so would result in losing her deposit. The protocol
can then set the amount of the deposit so that not revealing the secret is an irrational strategy.

Time constraints. A wide range of applications use time constraints in order to determine
which actions are permitted (or mandatory) in the current state. Typically, time constraints are
implemented by using block timestamps, which are agreed upon by all the miners.

Contracts can retrieve the timestamp in which the block was mined; all the transactions
within a block share the same timestamp. This guarantees the coherence with the state of
the contract after the execution, but it may also expose a contract to attacks, since the miner
who creates the new block can choose the timestamp with a certain degree of arbitrariness. If a
miner holds a stake on a contract, he could gain an advantage by choosing a suitable timestamp
for a block he is mining.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

25

Chapter 4

Design and Implementation

4.1 Debug and Inspect

Debug In usual systems the debug procedure is well known and very similar between dif-
ferent languages. In a more abstract view, Debugging is the routine process of locating and
removing computer program bugs, errors or abnormalities, which is methodically handled by
software programmers via debugging tools.

Debugging checks, detects and corrects errors or bugs to allow proper program operation
according to set specifications. Debugging ranges in complexity from fixing simple errors to
performing lengthy and tiresome tasks of data collection, analysis, and scheduling updates.
The debugging skill of the programmer can be a major factor in the ability to debug a problem,
but the difficulty of software debugging varies greatly with the complexity of the system, and
also depends, to some extent, on the programming language(s) used and the available tools,
such as debuggers.

Usual and well known debuggers are gdb [26] for C and pdb [27] for python. Such Debug-
gers are software tools which enable the programmer to monitor the execution of a program,
stop it, restart it, set breakpoints, run the program line by line, and change values in memory.
In that process a developer can easily detect the problem at the code and fix it. The debug-
ging process hasn’t been changed dramatically over the years because the architecture of the
systems and programming languages is more or less the same.

Inspect In blockchain the debugging process is very different and probably more difficult.
The program developed in a blochchain application is basically the smart contract which is
written in solidity. The first step to debug and check if the smart contract works as expected
is to use the remix webpage [28] which is the official site to compile and run step by step your
smart contract before deploying it to the blockchain. After some manual tests you can deploy it
but the difficult part is after the deployment. When a smart contract is deployed and you start
to use it for your system, you cannot change it. It is immutable. Thus, if a bug comes up you
may need to deploy a new smart contract and pause your system for a while. Nevertheless,
such problems are usually solved but the main problem is understanding how the blockchain
system works [29] [30].

Lets say that we have a UI that enables the users of our system to make actions on our sys-
tem and essentially interact with the smart contract, which is the basic logic behind the system.
To submit a transaction and interact with the smart contract, there are some requirements to
be fulfilled. We will state those requirements briefly below.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

26 Chapter 4. Design and Implementation

• An account should exist which will be the sender of the transaction. If an account doesn’t
exist the transaction will fail and the desired action will not be accomplished.

• The address of the recipient, in our case the address of the smart contract, must be valid.
If not the gas from the transaction will be lost and the action obviously will not be exe-
cuted.

• The input value, which refers to the money an account wants to send to another, must be
lower or equal to the remaining amount.

• The gas parameter, should have higher value from the expected cost of the transaction,
which is the most times unknown. A lower gas value will roll back the execution of the
code and the gas will be spent, even though the code didn’t execute.

• The gasPrice argument should be empty or higher than the current value of the blockchain.
If it is lower the transaction will be rejected.

• The input data, which refers to the address of the function and the arguments for that
function must be valid.

Those are the basic requirements so that a transaction is valid. As mentioned previously
there are pretty much a lot vulnerabilities in smart contracts and also in system that is based on
the blockchain. The basic reason of that, is the plethora of the different subsystems you need
to use to create your blockchain application.

The basic subsystems that must function correctly are listed below.

• The smart contract.

• The transactions sent from user interface of the application.

• The fine tuning of the transactions to the current values of the blockchain and to the
expected cost of each action.

To accomplish all the previous a more general tool than a debugger is needed, which will
help to monitor and detect such abnormalities in a system based on blockchain. The hardware
requirements to accomplish this task are a few. The basic component obviously is a mid range
computer with a satisfying amount of ram, (about 8GB) and the proper tool. Probably the best
words to describe such tools are, Inspector - Visualizer.

Nevertheless, anyone who wants to create an application/system that is based on the
blockchain must test his system locally by creating a private Ethereum network. The setup
of such a system is not very difficult but it is time consuming. The basic requirements are
personal computers which will act as the miners - nodes of the network and provide the func-
tionality of the public Ethereum network. The basic reason that we need to create a private
network instead of testing our system in the public one is the money. If you want to run your
application in the public network you must pay Ethers, which can be bought with real money.
Thus, a private network is needed to create a simulation of the application with no cost. The
number of tools that can inspect the public network is really big, but the ones that can be used
to monitor a private network are really a few [29] [30].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

4.2. Previous Work 27

4.2 Previous Work

To inspect a system based on blockchain, we need a tool that can firstly connect easily to any
network, private or public, and explore the blockchain. This means, that a user can get a
desired block and check all the informations inside that block, like the size of the block, from
which account it was mined, the total gas that this block can contain, the difficulty of the
block, the number of the transactions and many more. Each information may or may not be
important depending on the nature of the system that was implemented. Another important
feature is to check the transactions that were mined in a specified block and their arguments.
This basic functionality is important if you suspect where the possible error occurred but it
doesn’t help if you are trying to find the error.

There are several Blockchain - Ethereum explorers that provide this basic functionality and
we will analyze some of them briefly below.

Ethereum Network Stats [31] The ethstats tool is one of the most well known tools to monitor
the activity of the public Ethereum blockchain network. It provides several metrics and charts
to represent the state of the network.

FIGURE 4.1: Ethstats.

Source: http://ethstats.net

The basic charts are live for a window of 20 instances and can be seen on the previous
image. We enumerate and analyze some of them below.

• Block Time chart, which represents the time that was needed to generate each block.

• The difficulty of each block.

• The Uncle Count, which represents the number of the side chains (uncles) for each block.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

http://ethstats.net

28 Chapter 4. Design and Implementation

• The number of transactions per block, which is a good metric to watch the load of the
network

• The gas spend for each block.

More metrics are provided such as the gas price, which determines the ether that each
transaction costs, the average time that a block is generated and many more.

In that tool a user cannot explore the blocks or the transactions of the blockchain but can
only watch a representation of the network. Also, there is no support for a smart contract or
a UI to interact and search specific information that exists in blockchain. This tool is open
source and uploaded at GitHub [32]. Nevertheless, there is not an easy way to contribute to
this project because the documentation is insufficient.

As stated from the creators this tool can be used for a private network but the setup is
really hard and repulsive. Firstly, you must create a public IP for your local node, which the
most times cannot be done or you don’t have the time to do so and secondly you must make
a skype call with the company to provide you a token so that you can use their tool for your
application.

Thus, this tool cannot be easily used for a private network and probably a developer will
not add it to his possible options.

EthExplorer [33] This Eth explorer is one of the first explorers for the Ethereum network and
functions really good. It has a simple UI and you can get any block you want and inspect its
informations and transactions.

FIGURE 4.2: Eth Explorer.

Source: https://github.com/etherparty/explorer

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/etherparty/explorer

4.2. Previous Work 29

The basic advantage of this tool is that it is really simple and easy to use but there are also
some disadvantages. At first, the tool syncs with the last forty blocks which is a really small
number if we consider the size of blockchain. Secondly and most importantly, this tool doesn’t
provide any scenarios to compare or get a picture of the state of the network. Also, there is
no contract support. Lastly, this project is outdated and the last update was nine months ago.
Provided that the project is open source it should have a very detailed documentation so that
anyone who wants to contribute could start coding easier. Nevertheless, it provides an easy
setup and connection with a private network. Thus, the possibility to be used from a developer
is high.

Ethereum Block Explorer V2 [34] This project is a fork - replication of the previous explorer
with a refreshed UI and some extra features.

FIGURE 4.3: ETHExplorer V2.

Source: https://github.com/etherparty/explorer

This explorer adopts better the sense of an open source project, by providing better doc-
umentation, and this is obvious by the usual and relatively large activity of the developers.
Even though this explorer is a fork of the previous one, it has a much bigger impact on the
open source community, which is obvious from the much bigger number of stars it has. Lastly,
the difficulty of the setup and connection to a private network is really low like its fork.

Etherchain Light [35] Etherchain Light is an Ethereum blockchain explorer built with NodeJS,
Express and Parity. It does not require an external database and retrieves all information on
the fly from a backend Ethereum node.

While there are several excellent Ethereum blockchain explorers available (etherscan, ether.camp
and etherchain) they operate on a fixed subset of Ethereum networks, usually the mainnet and
testnet. Currently there are no network agnostic blockchain explorers available. If you want
to develop Dapps on a private testnet or would like to launch a private / consortium network,
Etherchain Light will allow you to quickly explore such chains.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/etherparty/explorer

30 Chapter 4. Design and Implementation

This tool is the probably the best through the rest but it is using the parity Ethereum Node
which has less development from the Geth Ethereum Node. It is also not so easy to setup but
it uses docker which is a very good advantage.

ethereum-blockchain-explorer [36] Another much simpler tool is the ethereum blockchain
explorer. It has no documentation or instructions and we present it here just for reference. It is
very similar with the previous explorers but probably at the bottom of the list.

Tools that work only with the public network There are a lot of really good tools that work
with the public Ethereum network. These tools are usually whole companies that invest on
their products for different reasons. The most famous of them is Etherscan [37]. It is a tool that
has the whole Ethereum network saved on a database and provides different useful functions,
such as the previous tools, but in a more enterprise way. The basic use of Etherscan is to
find all the transactions that are related with an account, through the blockchain and possibly
tokens of smart contracts acquired by that account. Very similar with that tool is Etherchain
[38] which we will not analyze further. Summarizing, it would be really helpful if there was a
tool so much delicate as the ones that exist and work with the Ethereum public network.

QuickBlocks [39] Expect from tools, there also a lot of libraries and one of the most well
known is QuickBlocks.

A software system, QuickBlocks, is described that provides user focused, speed optimized,
customizable per smart contract data from any blockchain, including public, consortia,and
private chains. Through a collection of software libraries, applications, and automatically gen-
erated source code, the system improves the quality and accessibility of blockchain data to pro-
grammers and end users. Given this improved accessibility, many previously unanticipated
functionalities, such as fast delivery of smart contract specific JSON data from RPC, detailed
gas usage analysis, live debugging and stress testing from previously recorded blockchain in-
teractions, smart contract control panels, and user local, data rich, fully decentralized desktop
and mobile applications become possible.

This library is implemented in C++ and has a lot of useful functions which can be used in
different simulations on an Ethereum private network. The implementation in C++ may be a
drawback for some developers but it also may be really useful in other cases.

smart-contract-watch [40] Smart contract watch is a tool - library created to monitor a smart
contract. It can monitor smart contracts activity and interactions based on generated transac-
tions and events. For example, it can be used on a local blockchain explorer that runs locally
on your server or machine ,or as an investigation tool that scrapes the blockchain in search for
a specific query. This is done by sending requests to an Ethereum node via JSON RPC calls.
The fastest way to use this tool is by the CLI after installing it from the official repository. In
the documentation there are no instructions on how to use this tool as a library but it should
not be difficult because it is basically implemented in JavaScript [41].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

4.2. Previous Work 31

Truffle [42] [43] Among the previous tools-libraries there is a bigger project Truffle. This
project is much different than the previous listed and we should address it as a framework
because of the extensive functionality it provides.

Truffle is a development environment, testing framework and asset pipeline for Ethereum,
aiming to make life as an Ethereum developer easier. With Truffle, you get:

• Built-in smart contract compilation, linking, deployment and binary management.

• Automated contract testing with Mocha and Chai.

• Configurable build pipeline with support for custom build processes.

• Scriptable deployment & migrations framework.

• Network management for deploying to many public & private networks.

• Interactive console for direct contract communication.

• Instant rebuilding of assets during development

• External script runner that executes scripts within a Truffle environment.

FIGURE 4.4: Truffle Framework.

Source: http://truffleframework.com/

The basic target group of Truffle is anyone who wants to dive into Ethereum development
and needs a framework so they can better organize their DApp development assets and not
have to worry about manually setting up a test environment.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

http://truffleframework.com/

32 Chapter 4. Design and Implementation

4.3 System Design (Inspector - Visualizer)

4.3.1 Basic Concept

This tool was created because there were obvious scenarios, that a developer of a Dapp could
use to debug his application and were not implemented by none so far. Initially, the basic
concept of the tool was based on the already existed tools-explorers, which were mentioned
previously. A simple way to explore the blocks and their info is obviously necessary to debug
a Dapp.

Before diving in the implementation a basic requirement must be met, which is a way to
connect and get data from an Ethereum node efficiently. The library web3js [44] implemented
by the Ethereum organization is the key component that enables the communication with an
Ethereum node via http requests. This library provides a lot of functions and really good
documentation on how to use them. The library itself is really good but an Ethereum node is
not built to answer in a lot requests. By experimenting with this library it was found out that
if multiple requests were made at the Ethereum node some of them would return empty. This
was an indication that the node hadn’t a built-in queue to serve external requests. As a result,
if a user wanted to get a big range of blocks and save them locally, he couldn’t retrieve some
of them. A simple way to solve this problem is to request small amounts of data each time and
sync them. Obviously, this is possible "by hand" but an efficient way was implemented to get
the blocks and the transactions receipts of the blockchain without any loss of data. As always,
the basic component on syncing http requests, is chaining "promises" [45].

Provided that the first two requirements were met, we could continue with the architec-
ture and the implementation. While looking at the already existed tools about exploring and
debugging a Dapp, it was obvious enough that none of them could be installed really easy,
fast and straight-forward. Also, most of them could not sync with a range of data and then
extract any available info out of them. And lastly there wasn’t a good enough and simple
implementation so that, any developer could contribute on that tool.

Thus, to achieve and create a useful tool those faults of the previous implementations
should be corrected and more features must be added. The first to do, is to create an open
source tool in a famous framework, based on web to take advantage of its features and im-
plement the project with a straight forward and easy to understand way. The framework that
was selected is NodeJs, which probably is the most well known-used server-backend for web.
This framework is implemented in Javascript which is one of the most used programming lan-
guage and thus it could be easy to start coding. Also, the contribution of any developer could
be much easier because Javascript is so widespread. Pure Javascript was used and nothing
more such as typescript, to keep the implementation simple and easy to extend from anyone.

The requirements to use this tool are minimal. After cloning the project from GitHub,
with a command all the libraries that are needed will be installed. The basic requirement to
function this tool, is an Ethereum node. The tool can connect to any address which can be
changed in a global var inside the basic configuration. Obviously, a local node is always better
for faster responses and easier configuration. Thus, this tool connects on the Ethereum node
and uses the web3js library to get any information from the blockchain. Currently there is
not a database setup and all the data are being saved at RAM. This is obviously not efficient
for big experiments but it enables a fast startup without spending time on installing the right
database.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

4.3. System Design (Inspector - Visualizer) 33

The basic functions to implement are allowing the user to get a block and explore it. He
can get many information such as the miner, the transactions that contains, the total gas that
was used and many more. From that point he can dig in the transactions and check their
details. The basic information of a transaction is the sender, the receiver and the input data.
The receiver could be an account or a smart contract and the data can contain the address of a
function and the arguments that will be the input.

Thus, after solving those concerns we were ready to implement a lot of scenarios to provide
an inspector-visualizer-debugger for the developer.

4.3.2 Basic Functions

Real Time Information Inspecting a network such as blockchain is really difficult and con-
fusing. For that reason the tool gets some basic information from the blockchain and represents
it in real time. The real time variables that can be shown in the home screen are:

• Difficulty. The difficulty of the last block generated

• Gas Limit. The maximum gas a block can contain.

• Gas Used. The gas that is contained at the last block.

• Gas Price. The price of the gas that represents a function to the value of ether.

• The last block number.

Except from that useful metrics, which can give to the developer a picture at the state
of the network, there are 4 real time charts, which show the difficulty, gas limit, number of
transactions, gas spend for each block in a range of 10 blocks.

Basic Scenario The first scenario that was implemented was based on a simple logic to in-
spect the transactions in the network. The basic info that is needed to inspect the correctness of
an experiment firstly is the transactions. At first, the user must specify the range of the blocks,
start - end, to get the results. If not specified the Inspector will return the results for the last
1000 blocks.

It is useful enough in a blockchain application to get feedback for a small range of blocks
in a few seconds. In that manner you can find a bug quickly in an experiment and monitor
small parts of it. For that reason it is recommended to specify a small fractions of blocks.
Nevertheless, the "Inspector" was implemented to get results for a big range of blocks. The
restrictions of the web3.js library and of the Ethereum node architecture made this task really
hard and it will be analyzed in a section below.

So, after getting the transactions and obviously the blocks that contain the transactions
we have all the needed information to create a simple and straightforward table. The table
will contain rows of the following object: (account hash, gas spent on transactions, number
of transactions) and the first column will enumerate this objects for better monitoring. It is a
really simple table but it contains really valuable information. With that table is easy enough to
understand if an experiment is working correctly and that all the sent transactions are mined
into blocks. When designing your experiment you will obviously know the number of transac-
tions that each account will sent. With this basic scenario you will know if the transactions are

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

34 Chapter 4. Design and Implementation

actually sent or not and it will be easy enough to find that something is going wrong. Further-
more, you can see the total number of the transactions through the specified range of blocks
which is also a good metric to understand the state of the experiment.

A simple example of an experiment that was one of the incentives to create this tool, con-
sisted from 100 accounts that each one was sending one transaction per 10 blocks. Thus, in
a range of 1000 blocks we should expect 10000 transactions. If this number is different then
something is wrong and usually it is really hard to find, but it is better to know that something
is not working as expected than not.

FIGURE 4.5: Basic Scenario

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

As shown in the picture above, each account is a hyperlink that when pressed will redirect
to another scenario, which shows the transactions of a specified account through a range of
blocks. This scenario will be analyzed later more exhaustively.

Another usual problem that is really disturbing exists when interacting with smart con-
tracts. To interact and change the state, the values of variables, of smart contracts the only
way is to send transactions to their addresses and call a function by passing the hash and the
input of the function. This seems really straightforward and it probably is but only if there was
no blockchain. The blockchain architecture comes with some requirements to ensure stability,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

4.3. System Design (Inspector - Visualizer) 35

security and other important things, but those requirements are a lot. It is really obvious that
at the begging of an experiment and if the developer has no previous experience, a lot of the
requirements will not be fulfilled. This will result unwanted and unexpected errors. The most
common and disturbing problem that can occur is from sending a "gas-less" transaction. As
previously mentioned a transaction must have gas as argument when sent to be mined. A
transaction that will execute some code in a smart contract will need more or less gas from the
default value, which is 90000, depending on the complexity and length of the code. Thus, if
you don’t specify the gas you will send with the transaction the default value will be used.
When you send the transaction it will be mined, but after that it will try to execute the code
in the smart contract and there will probably occur something that cannot be easily detected.
If the gas send was less than the required of the function that was called, which cannot be
calculated if there are for-loops, then the code will execute until it spends all the available gas
that was sent and then will roll back the execution of the code because of the lack of gas. This
will have as a result a transaction that was mined but didn’t change the state of a variable as
expected. At first by only looking the transactions you will be surprised to see that the state of
the contract wasn’t changed even if the needed transactions exist.

To solve this problem, some of the solutions was to search in the documentation which
wasn’t any help and the obvious one was testing. All this to understand how we can identify
a roll-back transaction [11]. By checking the information of a mined transaction it was odd
in some of the transactions that the sent gas was the same as the spend gas. And this was
the key to identify such problematic transactions. Thus, when getting all the transactions in
this basic scenario if there are any rolled-back transaction a new table with red font will be
displayed with the needed information and hyperlinks to identify those transactions. This
scenario identifies the following vulnerabilities 17 18 19 21.

This really simple to solve problem, will take a lot of time to find by hand and the basic
cause of that is a wrong argument value. Ideally we should know the exact cost of a function
in a smart contract but this is not achievable with the current architecture of smart contracts
and Solidity. A simple solution to that problem is to send a much higher value of gas from
which the remaining gas will be returned to the user.

This basic scenario solves some relatively easy problems, but hard for the human eye to
detect, and its simplicity helps to solve problems much faster and more efficiently.

Get Transactions A much simpler and obvious function that any tool of this type should
have is a transactions explorer. This function generates a table that contains in each row, a
hyperlink of the transaction hash, the block in which the transaction was mined, the receiver
address and the input variable, which may contain a function address of a contract and its
arguments. A demonstration of this function can be seen in the following figure 4.6.

Sync with Blocks A user can specify a range of blocks to sync, so that he can use that infor-
mation on the different provided scenarios. When a provided function is called, the system
checks if the range of blocks is already synced or not and adapts appropriately.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

36 Chapter 4. Design and Implementation

FIGURE 4.6: Get Transactions

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

4.3.3 Charts

Get Blocks Info A blockchain block has a lot of metrics which vary from block to block and a
developer can extract precious information just by inspecting them and compare them through
time. The best way to do that is a chart with multiple traces which can provide the values of
the various metrics through a specified range of blocks. The metrics that were chosen, after
taking into consideration the value of the information that each one has, are:

• Gas limit

• Gas sent

• Gas spent

• Block size

All the previous metrics are related each other and sometimes it is essential to compare
them. From the gas spent we can understand the cost of an experiment which is compulsory
during the development of a blockchain system.

Get Gas Spent of Account Another useful chart demonstrates the gas that an account spent
through a range of blocks. With that chart the developer can easily monitor and inspect the
activity of any account and check if it is the expected that he designed. Picture 4.7 demonstrates
the previous description.

This chart has another line that shows the gas limit through the specified range of blocks.
As stated previously the gas limit, is the upper limit of gas that can be contained in a block.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

4.3. System Design (Inspector - Visualizer) 37

FIGURE 4.7: Gas Spent of account

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

Thus, if we want all the transactions to be valid and pass to the blockchain we need to set this
argument high enough for our needs. In the chart, if the gas spent from the account is near the
gas limit then it is possible that some of the transactions were aborted. In that scenario, if a call
to function costs more than the gas limit then this transaction will never be mined. Thus, this
chart will demonstrate the course of the gas limit which will help the developer to adjust his
experiment and set the gas limit according. Picture 4.8 demonstrates the previous description.

FIGURE 4.8: Gas Limit

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

38 Chapter 4. Design and Implementation

Get Balance of Account Per Block An easy way to show the profit of a miner is to get his
balance over a number of blocks. This functionality is implemented and represented in a chart
that shows the balance of the specified through a number of blocks. Easy enough anyone can
understand from the chart if the miner benefits from the network if we consider that he spends
gas to send his transactions, and what is the coefficient of his benefit. Picture 4.9 demonstrates
the previous description.

FIGURE 4.9: Balance of account per block

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

Get Transactions Per Blocks A simple chart to monitor the traffic of a blockchain network
contains the number of transactions per block. This chart will be generated with input the start-
end block number. With that oversimplified chart a developer can understand if everything
works on the experiment-application he is implementing. It may seem unneeded but it can
reveal important bugs on a simulation. Picture 4.10 demonstrates the previous description.

Get Time to Mine Block One of the most known restrictions that blockchain has is the time
restriction. This is due to the time needed to mine a block, which contains the transactions.
Thus, any system must wait for the next block to be mined and after that its transactions will
be executed. This constrain demands a more specific architecture for each use case system.
To do so the developer must easily observe the time between the mined blocks and design
his system accordingly. Thus, a very useful chart is provided, which contains the previously
mentioned information.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

4.3. System Design (Inspector - Visualizer) 39

FIGURE 4.10: Transactions per block

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

4.3.4 Get Specific Entities

Get Block This function doesn’t need a lot of explanation. The user can specify a block and
then the basic information of that block will be returned. It is really simple but it is a lot faster
from doing it manually from a the console of an Ethereum node. Some of the info that is
returned, is the timestamp of the block that indicates the exact time the block was mined, the
number of transactions that this block contains, the gas used in that block, the global gas limit,
the miner and many more. This function also displays the hyperlinks of the transactions that
are contained in the specified block. This function is embedded in other scenarios to achieve a
higher usability. Picture 4.11 below demonstrates the previous description.

Get Transaction This function is also embedded in previous scenarios but it may be useful
from time to time to get a specific transaction and its information. Some of the basic informa-
tion are the block number that this transaction was mined, which is a hyperlink to the block,
the transaction index inside that block, the sender and the receiver of the transaction and the
gas cost of the transaction. Picture 4.12 below demonstrates that function.

Get Account Info As mentioned in the first scenario-function, it is really useful to get the
transactions and some other basic information about an account through a specified range of
blocks. This function does exactly that, it has as input the range of blocks and the hash of the
account. It returns a table of the transactions sent from that account, which are hyperlinks to
get further information about each transaction. This function also returns the current balance
of the account and the total number of transactions from that account for the whole blockchain.
Picture 4.13 below demonstrates that function.

Get Number of Peers The web3.js library which is being used to get all the information from
blockchain and represent it on a web UI. It has a lot of functions about the transactions and the
accounts but there are minimal functions to get information about the state of the network. The
only function that returns information related to the network is the "getPeerCount()", which

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

40 Chapter 4. Design and Implementation

FIGURE 4.11: Block Info

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

FIGURE 4.12: Transaction Info

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

returns the number of Ethereum nodes that are connected to the node you are using to get the
data. It would be really helpful to implement more functions about the network state, such as
one that would return the hash of the neighbor nodes and theirs too. This would make possible
to represent the blockchain network on a chart with connected nodes, which could help a lot
in debugging a network that depends so much at the neighbors of each node, like blockchain.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

4.3. System Design (Inspector - Visualizer) 41

FIGURE 4.13: Account Info

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

4.3.5 General Contracts

Get Contracts When creating a smart contract the first step, after debugging, is to compile it
and then deploy it at blockchain. After that anyone can make use of that smart contract and
its logic. Nevertheless, in a private network there would be a lot of versions of smart contracts
for the cause of testing and debugging. Thus, to get the appropriate data from blockchain the
developer should know when each experiment started. The only way to distinguish between
the transactions of the different experiments without getting all the data of blockchain, is to
find the different pieces of blocks that contain that transactions. A flag of that pieces is the
block that the smart contract of each test was mined. Thus, by finding that block we know
when the transactions of that test started and we can save time by getting only the needed
blocks. This function takes as input the start-end number of blocks and searches for contracts
mined in that range. If there are any contracts, they will be returned with some information
that describes them. Figure 4.14 demonstrates the previous description.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

42 Chapter 4. Design and Implementation

FIGURE 4.14: Get Contracts

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

Interact with Smart Contracts The functionality of a Dapp exists in the smart contract. To
interact with it you need the ABI, which is the description of the smart contract and the only
way to communicate with it. The ABI is the result of the compilation of the smart contract.
For example it contains the inputs and their types, and it is compulsory to encode and decode
the information to and from the blockchain. Thus, through the UI the user can submit the
code of a smart contract which will be compiled and generate the ABI. This ABI can be used
through the UI to call functions that don’t cost gas. A simple example, is to call a function that
returns a global variable, so that the developer can monitor any smart contract after providing
the address of the corresponding mined contract. Nevertheless, when monitoring a system
you need a real time interface. Therefore, it was implemented a real time chart that each dot
contains the return value of the aforementioned function. This enables an easy monitoring of
any smart contract.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

4.3. System Design (Inspector - Visualizer) 43

4.3.6 Custom Contracts

Get state of Contract (Now - Through Blocks) Through an implementation of a blockchain
application it is utmost importance for a developer, the ability to obtain the values of a smart
contract for past blocks. In that way, it is easier to monitor and debug a smart contract. All the
explorers available now for the Ethereum network, don’t support such an important function.
The web3.js library provides such a function and we used that to create a scenario to return a
much bigger range of values.

The first simple function implemented is returning the current value of the specified vari-
able of the smart contract.

To implement that functions the information of the compiled smart contract was compul-
sory. After compiling the smart contract either at an on-line tool like remix, or locally with the
web3.js library, the first value to use is the hash of the mined smart contract. After that, we
need to keep the generated hashes for each function. If the developer has implemented "get"
functions this will return the variables he want. After that, it is very simple to obtain that val-
ues just by calling that functions from the web3.js function. Nevertheless, if we want to obtain
the values of the variables at previous blocks, then we need to get the so called "state of the
contract" in each block.

This part is quite difficult at first and different for each implementation. To get the state
of the contract the arguments needed are the contract hash, the block number and the index
position of the storage. The last one cannot be specified with a deterministic way because the
index of the variable is based on the declaration series of the variables. Thus, by testing after
reading the official documentation anyone can find what is the index of the wanted variables
[46].

Such data are very useful in a chart but also in a table of data to better monitor and inspect
the function of the developed smart contract. An example chart is following at 4.15.

FIGURE 4.15: Get Contracts

Source: https://github.com/Temeteron/Ethereum_analytics_
debugger

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger

44 Chapter 4. Design and Implementation

At 4.15 chart two values of a smart contract are presented. The bottom xx’ axis contains
the number of block and the top axis contains the time of day. Thus, by inspecting that chart a
developer can very easily detect bugs and wrong values at his implementation.

Currently, this function is hard coded and not general enough to use right away. Neverthe-
less, there are specific instructions in the repository of the inspector [47], so that any developer
can change the arguments for his needs and test the contract. Obviously, this is not the logic
way to implement that function and we have already begun the implementation of a more
general and user friendly function to get the state of the contract through blocks.

Get Chart from transactions Most of the transactions in an Ethereum network contain argu-
ments for the called function of a contract. Those arguments have different meaning for each
system, depending on the logic that was implemented on the contract. Nevertheless, these val-
ues have some meaning and it could be helpful to inspect those arguments in a chart. For that
reason we created a chart, which decodes each transaction’s arguments and represents them
graphically.

4.3.7 Comparison Table of Tools

The following table presents the features of the Inspector and of the previous presented tools
in short. This table can be used as a reference to evaluate and compare such tools.

Features Inspector Other Tools

1 Get Block X 2 3 4 5 6
2 Get Transaction X 2 3 4 5 6
3 Explore 1,2 X 2 3 4 5
4 Get specified range of blocks X
5 Sync with a big number of blocks X
6 Table (accounts, # ts, gas spent) X
7 Get Ts through Blocks X
8 Chart Block Information X 1
9 Chart Gas Spent of Account X

10 Chart Balance of Account X
11 Chart Transactions Per Block X 1
12 Chart Time to Mine Block X 1
13 Get Account Detailed Info X
14 Get # Peers of Node X
15 Live Monitoring X 1
16 Find Mined Contracts X
17 Compile Contract - Get ABI X 8
18 Call get Functions of Contract X
19 Support Private Networks X 2 3 5 6 7
20 Support Public Networks X 1 2 3 5 6 7
21 Fast Setup X
22 Good Documentation X

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

4.3. System Design (Inspector - Visualizer) 45

4.3.8 Development Issues

Always, while developing a tool or a platform a lot of issues may come up and make things
much harder and slower. In case that other tools and libraries are involved, at which a devel-
oper has no access and edit permissions, the issues that will come up may be a huge time loss.
At a tool of this nature, which purpose is to monitor another really big platform - architecture,
many issues may be unveiled that occur from different parts of this platform.

During the development of this tool, the issues emerged from the Ethereum Geth Node
and the web3.js library. Obviously those two components were compulsory to use, and there
weren’t any other choices, to connect to an Ethereum network and monitor it in a web page.
The issues that emerged will be enumerated below.

Library web3.js

• It is unoptimized. When making requests to the Ethereum node it opens and closes a
new socket every time instead of using a previous one. This is obviously a step that
increases the response time. This implies that the limit of opened files will be exceeded
with a medium number of requests (1000). The default limit in linux distribution is 1024
opened files.

• By making synced requests the web3.js is even slower, but the syncing is needed for a lot
of important reasons.

Ethereum Node

• The node cannot answer multiple requests. If a lot of requests are submitted, then it
returns null because there is no queue implemented in the node. This is probably a way
to keep the implementation of an Ethereum Node minimal.

• The node responds on requests really slowly, as a results all the requests are delayed.

• The node sometimes returns ’Null’ values without any reason. If we remake the requests
the return values are valid.

As mentioned previously the solutions on these issues weren’t obvious enough. Never-
theless, some of them were as simple as changing the limit of open files in our distribution to
solve the problem of the unneeded created sockets. All of the rest issues could not be solved
totally because we could not and didn’t want to change the core code of the Ethereum Node.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

46 Chapter 4. Design and Implementation

4.3.9 Architecture

By implementing this tool an interesting architecture decanted, which is demonstrated in the
following picture.

FIGURE 4.16: Architecture of Inspector

The basic use case of the above architecture is the following. After initiating the Ethereum
Node and the Inspector, the NodeJs server will try to connect with the Ethereum Node via
the web3.js library and will start getting the live information that were previously mentioned.
All the information will be represented in the frontend of the tool which was implemented
with bootstrap and Handlebars. To demonstrate beautiful and easy to understand charts the
Plotly.js library was used, which can redirect the user from the chart in our page to the official
page of Plotly, where a lot of functions are ready for use on the previous chart. The actor uses
the tool through the frontend and requests any information he needs. This information most
of the times needs pre-sync with the blocks and the transactions of the requested range. Those
data are stored in the RAM. The reason that a database wasn’t implemented, was to give a
developer a quick start without a lot of libraries to install. Thus, because of the previously
mentioned problems, we try to minimize the number of requests by storing data in the RAM
to decrease the response time. The NodeJs server will create a queue with a bottleneck for the
requests after splitting them into chunks of smaller requests. As mentioned this was obligatory
to get valid responses from the Ethereum Node. All these requests are made through the
web3.js library which is the official Ethereum library to communicate with an Ethereum Node.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

4.3. System Design (Inspector - Visualizer) 47

Target of the tool and prospects In conclusion, i believe it is really significant to point out
the purpose of the tool that was created.

• Create an open source, easily expandable, lightweight web tool to debug and visualize
an Ethereum private network.

• Provide a lot of functions by using the web3.js API, about the transactions, blocks, ac-
counts, cost, and extra useful scenarios.

• Alongside with the functions of the block explorer, the user can access and interact with
his smart contract, so it can easily debug it.

• Create useful scenarios to debug an experiment that doesn’t only depend on a smart
contract but also on the network itself.

• Use Plotly.js for Visualization with charts (No previous tool has charts)

• Solve common problems that previous tools didn’t. An example is the creation of a queue
to get a lot of blocks and transactions. Ethereum nodes doesn’t support it.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

49

Chapter 5

Synopsis and Future Work

5.1 Synopsis

The aim of this thesis was the development, the implementation and the analysis of the blockchain
technology. This research on blockchain technology in theoretical but also practical level was
really helpful to understand the capabilities of this new system, which are really big and can
be applied almost everywhere.

Initially, some of the most well known blockchain architecture were analyzed to create
a theoretical background. After that a more detailed analysis of the Ethereum network was
presented. Alongside the capabilities and advantages of this network, a brief introduction in
the smart contracts took place, which is one of the most important features of Ethereum.

Furthermore, the basic vulnerabilities of an Ethereum blockchain network were presented
and analyzed. This chapter was important, so that the reader could understand the problem
that the Inspector ought to solve. As mentioned there many problems, pitfalls that cannot be
detected without the needed knowledge and understanding of a blockchain network. For that
reason a tool such as the Inspector, which was the result of that research, could help a lot of
developers that may not have the required knowledge to debug a decentralized application.

All the previous projects-tools that already exist were stated. An empirical comparison
took place by contradicting the basic features of each tool. All the pros and cons of each tool
were marked up, so that the design and implementation of the Inspector could be efficient and
with plenty of functions.

After that, the implemented tool was analyzed in depth by showing all the possible use
cases and useful functions. Inspector oughts to be the fastest way to monitor and debug de-
centralized applications with minimal requirements and installs in your system.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

50 Chapter 5. Synopsis and Future Work

5.2 Future Work

Tools that help developers at their implementations must always be updated and refreshed.
When a new technology such as blockchain rises, there is a lot of space to create new tools or
enrich the existed ones, so that a transition or simple tests could be more easy.

The plethora of blockchain variants are really interesting and i ought to explore them in
depth and find the best for each case. This is obviously a difficult task thinking the vast
technology-knowledge that is produced every day, and even more time consuming. There
are a lot of different architectures, each designed for different problems with the same basic
concept, decentralization.

As far as the tool that was created, the first feature that should be noted about the In-
spector is that it will always be an open-source project with the previously mentioned targets-
purposes. A lot of additions could be implemented in the aspect of the functions and about
the scaling of the tool. Probably one of the first to implement should be a database, for the
already synced data. Currently, all the data are being saved on the ram of the computer which
obviously is not the best if you want to monitor a big range of blocks. For that reason a ver-
sion that will use a proper database will be implemented. The version that depends on the
ram will continue to exist so that anyone could use it for a faster installation with much less
requirements.

After that, some of the functions of the Inspector will be materialized again to be more
general and efficient. A simple example is the functions that interact with the smart contracts.
As mentioned, currently the basic function about a smart contract is to get the values of the
specified variables over time. This function will generate a chart which shows in a more user
friendly way the variables values variations. To get the needed variables the developer must
change some lines of code so that the function point to his inner smart contract functions. To
get over this process a function will be implemented that will have as input the smart contract’s
code and will generate all the hashes (addresses) of the functions. Those functions could be
called from the user interface and the tool could be instantly more generic and easy to use.

There are also a lot of functions that could be implemented by using the web3.js library but
didn’t. An example is the compilation and deployment of a smart contract through the tool. It
is obvious enough that this function doesn’t belong in this tool, which was created to monitor
and inspect, but nevertheless could be a useful addition. The functions that could be added
are a lot and for that reason this project is open-source, so that anyone could easily customize
it for his needs.

Other really important longterm future prospects concern compatibility and support of
other blockchain architectures. Currently the Inspector fully supports the Ethereum and the
previous was chosen because of the functionality it provides and the high acceptance by the
community. Another emerging and promising blockchain architecture is the Hyperledger [48]
[49] [50] [51], which is the enterprise blockchain solution provided by IBM with much more
security and privacy features implemented, compared to other blockchain architectures. Thus,
supporting that technology could increase the importance and usefulness of the Inspector. To
support Hyperledger a few additions are needed. Because of the Inspector’s architecture it is
achievable to support two different blockchain architectures by using the intermediate API.
The basic addition at the server side is to add an intermediate node which will identify the
type of the blockchain and use the proper library to interact and monitor the network. After

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

5.2. Future Work 51

that the monitoring and visualization process has meaning for both architectures because both
are blockchain, which means that a lot of features are same.

The last thing that should be noted on this Thesis, is that decentralized applications be-
come more and more usual but the required knowledge to begin with that technology is not so
widespread. Tools that make easier and more efficient the development in such new technolo-
gies will always be in great need. Thus, such tools help the world to develop faster and transit
to new technologies more easily.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

53

Bibliography

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System | Satoshi Nakamoto Insti-
tute, 2008. [Online]. Available: http://nakamotoinstitute.org/bitcoin/.

[2] S Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, 2008. [Online]. Available:
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_
cash_system.pdf.

[3] What is Blockchain Technology? [Online]. Available: https://blockgeeks.com/guides/
what-is-blockchain-technology/.

[4] CoinMarketCap. [Online]. Available: https://coinmarketcap.com/currencies/
bitcoin/.

[5] “ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER”,
1824. [Online]. Available: http://www.cryptopapers.net/papers/ethereum-
yellowpaper.pdf.

[6] Stellar Lumens (XLM) – Whitepaper. [Online]. Available: https://whitepaperdatabase.
com/stellar-lumens-xlm-whitepaper/.

[7] D. Maz Eres, “The Stellar Consensus Protocol: A Federated Model for Internet-level Con-
sensus”, [Online]. Available: https://www.stellar.org/papers/stellar-
consensus-protocol.pdf.

[8] V. Buterin, “A next-generation smart contract and decentralized application platform”,
White paper, 2014.

[9] “ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER”,
[Online]. Available: https://bravenewcoin.com/assets/Whitepapers/Ethereum-
A- Secure- Decentralised- Generalised- Transaction- Ledger- Yellow-
Paper.pdf.

[10] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, [Online]. Available: www.
bitcoin.org.

[11] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum Smart Contracts
(SoK)”, in Proceedings of the 6th International Conference on Principles of Security and Trust -
Volume 10204, Springer-Verlag New York, Inc., 2017, pp. 164–186, ISBN: 978-3-662-54454-
9. DOI: 10.1007/978-3-662-54455-6{_}8. [Online]. Available: http://link.
springer.com/10.1007/978-3-662-54455-6_8.

[12] Y. Sompolinsky and A. Zohar, “Secure High-Rate Transaction Processing in Bitcoin”,
[Online]. Available: https://fc15.ifca.ai/preproceedings/paper_30.pdf.

[13] Scanning Live Ethereum Contracts for the "Unchecked-Send" Bug. [Online]. Avail-
able: http : / / hackingdistributed . com / 2016 / 06 / 16 / scanning - live -
ethereum-contracts-for-bugs/.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

http://nakamotoinstitute.org/bitcoin/
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf
https://blockgeeks.com/guides/what-is-blockchain-technology/
https://blockgeeks.com/guides/what-is-blockchain-technology/
https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/currencies/bitcoin/
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf
https://whitepaperdatabase.com/stellar-lumens-xlm-whitepaper/
https://whitepaperdatabase.com/stellar-lumens-xlm-whitepaper/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://bravenewcoin.com/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
https://bravenewcoin.com/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
https://bravenewcoin.com/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
www.bitcoin.org
www.bitcoin.org
http://dx.doi.org/10.1007/978-3-662-54455-6{_}8
http://link.springer.com/10.1007/978-3-662-54455-6_8
http://link.springer.com/10.1007/978-3-662-54455-6_8
https://fc15.ifca.ai/preproceedings/paper_30.pdf
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/

54 BIBLIOGRAPHY

[14] Understanding The DAO Attack - CoinDesk. [Online]. Available: https://www.coindesk.
com/understanding-dao-hack-journalists/.

[15] D. Boneh and M. Naor, “Timed Commitmen ts”, [Online]. Available: https://pdfs.
semanticscholar.org/764b/41d1cf0c2c64bec722f0afd4b0a2ce0bee27.pdf.

[16] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure Multiparty
Computations on Bitcoin”, in 2014 IEEE Symposium on Security and Privacy, IEEE, May
2014, pp. 443–458, ISBN: 978-1-4799-4686-0. DOI: 10.1109/SP.2014.35. [Online].
Available: http://ieeexplore.ieee.org/document/6956580/.

[17] B. Marino and A. Juels, “Setting Standards for Altering and Undoing Smart Contracts”,
in, 2016, pp. 151–166. DOI: 10.1007/978-3-319-42019-6{_}10. [Online]. Avail-
able: http://link.springer.com/10.1007/978-3-319-42019-6_10.

[18] Hard Fork Completed - Ethereum Blog. [Online]. Available: https://blog.ethereum.
org/2016/07/20/hard-fork-completed/.

[19] Ethereum Classic. [Online]. Available: https://ethereumclassic.github.io/.

[20] Announcement of imminent hard fork for EIP150 gas cost changes - Ethereum Blog. [Online].
Available: https://blog.ethereum.org/2016/10/13/announcement-imminent-
hard-fork-eip150-gas-cost-changes/.

[21] Explaining EIP 150 : ethereum. [Online]. Available: https://www.reddit.com/r/
ethereum/comments/56f6we/explaining_eip_150/.

[22] J Bonneau, J Clark, S. G.I. C. ePrint, and u. 2015, “On Bitcoin as a public randomness
source.”, Pdfs.semanticscholar.org, [Online]. Available: https://pdfs.semanticscholar.
org/ebae/9c7d91ea8b6a987642040a2142cc5ea67f7d.pdf.

[23] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s entropy”, Jul. 2016. [On-
line]. Available: https://hal.archives-ouvertes.fr/hal-01364045.

[24] makerdao/maker-darts: A random number generating game for Ethereum. [Online]. Available:
https://github.com/makerdao/maker-darts.

[25] randao/randao: RANDAO: A DAO working as RNG of Ethereum. [Online]. Available: https:
//github.com/randao/randao.

[26] I. Free Software Foundation, GDB: The GNU Project Debugger, 2009. [Online]. Available:
https://www.gnu.org/software/gdb/.

[27] 27.3. pdb — The Python Debugger — Python 3.6.5 documentation. [Online]. Available: https:
//docs.python.org/3/library/pdb.html.

[28] Remix - Solidity IDE. [Online]. Available: http://remix.ethereum.org/#optimize=
false&version=soljson-v0.4.21+commit.dfe3193c.js.

[29] M. Bartoletti, A. Bracciali, S. Lande, and L. Pompianu, “A general framework for blockchain
analytics”, Jul. 2017. [Online]. Available: http://arxiv.org/abs/1707.01021.

[30] M. Bartoletti and L. Pompianu, “An empirical analysis of smart contracts: platforms,
applications, and design patterns”, Mar. 2017. [Online]. Available: http://arxiv.
org/abs/1703.06322.

[31] Ethereum Network Status. [Online]. Available: https://ethstats.net/.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://pdfs.semanticscholar.org/764b/41d1cf0c2c64bec722f0afd4b0a2ce0bee27.pdf
https://pdfs.semanticscholar.org/764b/41d1cf0c2c64bec722f0afd4b0a2ce0bee27.pdf
http://dx.doi.org/10.1109/SP.2014.35
http://ieeexplore.ieee.org/document/6956580/
http://dx.doi.org/10.1007/978-3-319-42019-6{_}10
http://link.springer.com/10.1007/978-3-319-42019-6_10
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://ethereumclassic.github.io/
https://blog.ethereum.org/2016/10/13/announcement-imminent-hard-fork-eip150-gas-cost-changes/
https://blog.ethereum.org/2016/10/13/announcement-imminent-hard-fork-eip150-gas-cost-changes/
https://www.reddit.com/r/ethereum/comments/56f6we/explaining_eip_150/
https://www.reddit.com/r/ethereum/comments/56f6we/explaining_eip_150/
https://pdfs.semanticscholar.org/ebae/9c7d91ea8b6a987642040a2142cc5ea67f7d.pdf
https://pdfs.semanticscholar.org/ebae/9c7d91ea8b6a987642040a2142cc5ea67f7d.pdf
https://hal.archives-ouvertes.fr/hal-01364045
https://github.com/makerdao/maker-darts
https://github.com/randao/randao
https://github.com/randao/randao
https://www.gnu.org/software/gdb/
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
http://remix.ethereum.org/#optimize=false&version=soljson-v0.4.21+commit.dfe3193c.js
http://remix.ethereum.org/#optimize=false&version=soljson-v0.4.21+commit.dfe3193c.js
http://arxiv.org/abs/1707.01021
http://arxiv.org/abs/1703.06322
http://arxiv.org/abs/1703.06322
https://ethstats.net/

BIBLIOGRAPHY 55

[32] Ethereum Network Stats. [Online]. Available: https://github.com/cubedro/eth-
netstats.

[33] A lightweight ethereum block explorer. [Online]. Available: https : / / github . com /
etherparty/explorer.

[34] Ethereum Block Explorer (ETHExplorer V2) - Realtime Price Ticker, Shapeshift.io Integration,
etc. [Online]. Available: https://github.com/carsenk/explorer.

[35] Lightweight Ethereum blockchain explorer. [Online]. Available: https://github.com/
gobitfly/etherchain-light.

[36] Ethereum Blockchain Explorer. [Online]. Available: https://github.com/maran/
ethereum-blockchain-explorer.

[37] Ether Scan. [Online]. Available: https://etherscan.io/.

[38] etherchain.org - The Ethereum Blockchain Explorer. [Online]. Available: https://www.
etherchain.org/.

[39] Homepage - QuickBlocks. [Online]. Available: https://quickblocks.io/.

[40] A tool to monitor a number of smart contracts and transactions. [Online]. Available: https:
//github.com/Neufund/smart-contract-watch.

[41] Keep Your Private Keys Close and Keep Your Smart Contracts Closer — Introducing The Smart
Contract. . . [Online]. Available: https://blog.neufund.org/keep-your-private-
keys-close-and-keep-your-smart-contracts-closer- introducing-
the-smart-contract-e3bd1fcad204.

[42] Ethereum Overview | Truffle Suite. [Online]. Available: http://truffleframework.
com/tutorials/ethereum-overview.

[43] Truffle Suite - Your Ethereum Swiss Army Knife. [Online]. Available: http://truffleframework.
com/.

[44] web3.js - Ethereum JavaScript API — web3.js 1.0.0 documentation. [Online]. Available: https:
//web3js.readthedocs.io/en/1.0/.

[45] Promise - JavaScript | MDN. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise.

[46] Layout of State Variables in Storage. [Online]. Available: https://solidity.readthedocs.
io/en/latest/miscellaneous.html#layout-of-state-variables-in-
storage.

[47] Temeteron/Ethereum_analytics_debugger: A NodeJs project to get various analytics and debug
a private ethereum network. [Online]. Available: https://github.com/Temeteron/
Ethereum_analytics_debugger.

[48] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi,
G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yel-
lick, “Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains”,
Jan. 2018. DOI: 10.1145/3190508.3190538. [Online]. Available: http://arxiv.
org/abs/1801.10228http://dx.doi.org/10.1145/3190508.3190538.

[49] Home - Hyperledger. [Online]. Available: https://www.hyperledger.org/.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://github.com/cubedro/eth-netstats
https://github.com/cubedro/eth-netstats
https://github.com/etherparty/explorer
https://github.com/etherparty/explorer
https://github.com/carsenk/explorer
https://github.com/gobitfly/etherchain-light
https://github.com/gobitfly/etherchain-light
https://github.com/maran/ethereum-blockchain-explorer
https://github.com/maran/ethereum-blockchain-explorer
https://etherscan.io/
https://www.etherchain.org/
https://www.etherchain.org/
https://quickblocks.io/
https://github.com/Neufund/smart-contract-watch
https://github.com/Neufund/smart-contract-watch
https://blog.neufund.org/keep-your-private-keys-close-and-keep-your-smart-contracts-closer-introducing-the-smart-contract-e3bd1fcad204
https://blog.neufund.org/keep-your-private-keys-close-and-keep-your-smart-contracts-closer-introducing-the-smart-contract-e3bd1fcad204
https://blog.neufund.org/keep-your-private-keys-close-and-keep-your-smart-contracts-closer-introducing-the-smart-contract-e3bd1fcad204
http://truffleframework.com/tutorials/ethereum-overview
http://truffleframework.com/tutorials/ethereum-overview
http://truffleframework.com/
http://truffleframework.com/
https://web3js.readthedocs.io/en/1.0/
https://web3js.readthedocs.io/en/1.0/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
https://github.com/Temeteron/Ethereum_analytics_debugger
https://github.com/Temeteron/Ethereum_analytics_debugger
http://dx.doi.org/10.1145/3190508.3190538
http://arxiv.org/abs/1801.10228 http://dx.doi.org/10.1145/3190508.3190538
http://arxiv.org/abs/1801.10228 http://dx.doi.org/10.1145/3190508.3190538
https://www.hyperledger.org/

56 BIBLIOGRAPHY

[50] Hyperledger - Open source blockchain for business – IBM Blockchain. [Online]. Available:
https://www.ibm.com/blockchain/hyperledger.html.

[51] J. Sousa, A. Bessani, and M. Vukolić, “A Byzantine Fault-Tolerant Ordering Service for
the Hyperledger Fabric Blockchain Platform”, Sep. 2017. [Online]. Available: http://
arxiv.org/abs/1709.06921.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 02:13:44 EEST - 18.223.159.57

https://www.ibm.com/blockchain/hyperledger.html
http://arxiv.org/abs/1709.06921
http://arxiv.org/abs/1709.06921

	Declaration of Authorship
	Greek Abstract
	Abstract
	Contents
	List of Figures
	Introduction
	Motivation
	Contribution of this Thesis

	Basic Concepts and Enabling Technologies
	Architecture of usual systems
	Blockchain
	Networks
	Bitcoin
	Ethereum
	Stellar Lumens

	Ethereum
	Basic Concept
	Background on Ethereum smart contracts
	Vulnerabilities in smart contracts

	Design and Implementation
	Debug and Inspect
	Previous Work
	System Design (Inspector - Visualizer)
	Basic Concept
	Basic Functions
	Charts
	Get Specific Entities
	General Contracts
	Custom Contracts
	Comparison Table of Tools
	Development Issues
	Architecture

	Synopsis and Future Work
	Synopsis
	Future Work

	Bibliography

