

Oral Programming Interface
Using

Speech Recognition Technologies

By
TSAOUSIS APOSTOLOS

Department of Electrical & Computer Engineering
UNIVERSITY OF THESSALY

Supervised by,

 Lalis Spyros, Associate Professor
Antonopoulos Christos, Assistant Professor

OCTOBER 2017 

[This page was intentionally left blank]

DEDICATION

This thesis is dedicated to my family and especially to my mother, Annita.

She has always been there for me with her endless, unselfish, true and
unconditional love and support.

She always encouraged me to follow my dreams, believe in myself and not
let anything bring me down. Without her, I wouldn’t be able to accomplish
anything.

This dedication is a least token of gratitude and recognition of her self-
sacrifices.

— I am so proud to be called your son

[This page was intentionally left blank]

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my
supervisors, Professors Spyros Lalis and Christos Antonopoulos, for their
continuous support and guidance not only for the completion of my thesis,
but also throughout my entire academic studies. Subconsciously, they
acted as role models, by inspiring me with their passion for knowledge and
education and consequently helped me develop my personal and
programming skills. It has been an honour to be your student.

I would also like to thank all the department’s faculty and staff with whom I
had an excellent collaboration all of those years. Their contribution was
significant as well.

Finally, last but not least, I want to thank my fellow students and friends who
stood by my side in every way during the good and most importantly the
bad moments and shared with me this unforgettable and exciting journey.

ΠΕΡΙΛΗΨΗ

Ο σκοπός της εργασίας, η οποία παρουσιάζεται σε αυτή την διπλωματική
διατριβή, είναι η ανάπτυξη μιας προφορικής διεπαφής προγραμματισμού
με χρήση τεχνολογιών αναγνώρισης ομιλίας. Η μέθοδος αυτή αποτελεί μια
ελκυστική εναλλακτική προσέγγιση έναντι της κλασικής μεθόδου της
πληκτρολόγησης, ειδικά για προγραμματιστές με κάποια μορφή κινητικής
αναπηρίας, οι οποίοι αντιμετωπίζουν δυσκολίες στην χρήση του
πληκτρολογίου.

Ένα πρωτότυπο ενός λειτουργικού συστήματος συζητείται , το οποίο
περιλαμβάνει μια mobile εφαρμογή για το λειτουργικό σύστημα Android
και ένα plug-in για το ολοκληρωμένο περιβάλλον ανάπτυξης IntelliJ IDEA.
Η mobile εφαρμογή χρησιμεύει ως διεπαφή χρήστη για την εισαγωγή
εντολών με λεκτικό τρόπο . Μετατρέπει την καταγεγραμμένη ομιλία σε
κείμενο χρησιμοποιώντας το API αναγνώρισης ομιλίας της Google και
στέλνει το κείμενο στο plug-in. Με τη σειρά του , το plug-in αναλύει το
ληφθέν κείμενο , το αντιστοιχίζει σε μία από τις υποστηριζόμενες εντολές
και εφαρμόζει την εντολή στις εσωτερικές δομές δεδομένων του IntelliJ
για να εκτελέσει την επιθυμητή ενέργεια , όπως το άνοιγμα ενός project ή
ενός αρχείου προγράμματος και την προσθήκη ή την επεξεργασία του
πηγαίου κώδικα.

Αρχικές, απλές δοκιμές που πραγματοποιήθηκαν με το πρωτότυπο για
προσωπική χρήση , δείχνουν ότι η προτεινόμενη προσέγγιση έχει τη
δυνατότητα να μειώσει σημαντικά το χρόνο που χρειάζεται για άτομα με
κινητικές αναπηρίες να γράψουν κώδικα. 

ABSTRACT

The objective of the work presented in this thesis is to develop an oral
programming interface based on speech recognition technology. This
method is an attractive alternative to typing, especially for programmers
with physical disabilities, who have difficulty using a keyboard.

A working system prototype is discussed, which comprises a mobile
application for the Android operating system and a plug-in for the
integrated development environment of IntelliJ IDEA. The mobile
application serves as the user interface for inputting commands in a verbal
manner. It transforms the recorded speech to text, using the Google speech
recognition API, and sends the text to the plug-in. In turn, the plug-in parses
the text received, maps it to one of the supported commands, and applies
the command to the internal data structures of IntelliJ in order to perform
the desired action, such as opening a project or a program file and adding
or editing source code.

First, simple tests that have been performed with the prototype for personal
usage, show that the proposed approach has the potential of significantly
reducing the time it takes for people with physical disabilities to write code.

TABLE OF CONTENTS

 Page

DEDICATION i

ACKNOWLEDGEMENTS ii

ΠΕΡΙΛΗΨΗ iii

ABSTRACT iv

TABLE OF CONTENTS v

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Objectives 2

1.3 Structure 2

2. SYSTEM OVERVIEW 4

3. ANDROID APP 6

3.1 Overview 6

3.2 Why Android? 6

3.3 System requirements 6

3.4 Codability’s UI 7

3.5 Google Speech API 8

3.6 Discovering IntelliJ 9

4. INTELLIJ PLATFORM 11

4.1 Why IntelliJ? 11

4.2 Architecture 11

4.3 PSI 14

5. CODABILITY PLUG-IN 17

5.1 Overview 17

5.2 Web server 17

5.3 Command hierarchy & syntax 18

5.4 Command decoding 20

5.5 Command execution 22

5.6 How to extend the plug-in 24

 Table of contents | �vi

6. EVALUATION 26

7. CONCLUSION 28

BIBLIOGRAPHY 29

APPENDIX A 30

A.1 Setting up the development environment 30

A.2 Codability’s source code 32

[This page was intentionally left blank]

1. INTRODUCTION

1.1 Motivation

Nowadays, in the era where technology thrives, the demand for
programmers and coding has grown beyond any expectation.
Programmers spend most of their time coding in their computers. It is
completely usual to write hundreds lines of code per day, which
corresponds to thousands of keystrokes per day.

It has been recently discovered, that as a consequence of typing for long
hours, a significant number of programmers suffer at some point in their
career from repetitive strain injuries (RSI) [1]. RSI is a general term, used to
describe the pain felt in muscles, nerves and tendons caused by repetitive
movement and overuse.

Moreover, there are cases where a programmer faces a type of physical
disability. For example, I myself am a quadriplegic, meaning that I have very
limited control of my upper limbs.

Throughout my academic studies, I have worked on several projects and
one of the main problems, that I have encountered was that my typing
speed wasn’t in the same level compared to that of my colleagues.

Therefore, I was thinking what could be done in order to make this
everyday process easier, faster and less painful. The solution I came up with,
was no other than voice.

[1] https://en.wikipedia.org/wiki/Repetitive_strain_injury , Repetitive strain
injury definition by Wikipedia 

https://en.wikipedia.org/wiki/Repetitive_strain_injury

Motivation | �2

Voice-based interaction is not a new concept. It is already used for the
hands-free user interaction with mobile phones. It requires almost no effort
and it is typically much faster than using a physical keyboard or a virtual
keyboard via a touchscreen. So, why not start programming using speech,
instead of using our hands?

1.2 Objectives

The purpose of this thesis is to demonstrate the concept of an oral
programming interface using speech recognition technology. The final goal
is to show that coding by speech can be achieved through a structured,
well-defined interface and that this approach can provide a significant
speedup in typing performance, especially for programmers with a form of
a physical disability.

This is accomplished by developing a plug-in for the IntelliJ IDEA platform,
referred to as Codability. Codability uses an Android App as an interface.
The user talks directly to his smartphone, the speech is then being
converted to text using the powerful Google Speech API, and the result is
sent to the IntelliJ’s plug-in which, in turn, parses the text according to a
given syntax and generates the actual commands that are issued by IntelliJ.

Further details regarding the implementation, architecture and functionality
of this plug-in will be analysed in the next chapters.

1.3 Structure

This thesis is divided into six main parts, followed by a conclusion.

Chapter 2 acts as an introductory for the rest of the chapters. It provides a
high level overview of the system and briefly discusses the main steps of

Structure | �3

the system’s lifecycle to give an insight of what follows.

Chapter 3 discusses the implementation of the Android App. Initially it
shows the UI of the App and provides a brief explanation of each
component’s functionality. Following, a more in-depth analysis of the
speech technology used in this project, the Google’s Speech API, takes
place. Finally, the procedure used to discover the IntelliJ platform is shown.

Chapter 4 presents the IntelliJ IDEA platform. It provides the reader with
the basic concepts of the system’s architecture, how plug-ins are developed
as components, specific thread invocation and multi-threading rules,
information about the file system, and how IntelliJ parses files and creates
the syntactic and semantic code model.

Chapter 5 discusses the implementation of the Codability plug-in. It
presents how the plug-in receives the data sent by the mobile application,
how this data is mapped into structured commands, and how these
commands lead to the actual modification of the internal syntax tree of
IntelliJ.

Chapter 6 provides a first evaluation of our prototype.

Finally, chapter 7 concludes this thesis and discusses possible
improvements and extensions of the plug-in. 

2. SYSTEM OVERVIEW

This chapter presents a high level abstraction of the system in order to
provide a quick overview of the main components of the system that was
developed in this thesis. 

System Overview | �5

As shown in Figure 2.1, the system consists of a mobile application and a
plug-in for the IntelliJ platform. The interaction between those components
is briefly discussed below.

As long as the plug-in is running, it periodically broadcasts to a pre-defined
multicast address the connection details for IntelliJ’s built-in web server,
such as IP and port number. In turn, the mobile application listens to this
multicast address to discover the contact information of the web server.

The user dictates commands orally to the mobile application. The voice
data are sent to Google’s server for speech recognition and conversion to
text. The returned text is then sent to the plug-in.

When the plug-in receives the text, it performs an analysis based on well-
defined syntax rules in order to parse and then decode the user command.

Finally, the decoded command is sent to the command execution unit,
where a function that corresponds to the command is selected and
executed. 

3. ANDROID APP

3.1 Overview

The purpose of the mobile application is to act as an interface between the
user and the IntelliJ IDE. The user dictates commands, then the application
collects the speech input and sends this data via the Google’s Speech API
for conversion to text. To simplify the procedure and in order not to
consume a lot of energy, no further processing is done by the mobile
device. The mobile application receives the data from Google’s servers and
directly sends them to the plug-in for further processing.

3.2 Why Android?

Android was preferred over other OS solutions, primarily because of its
open source nature, in conjunction with the fact that it is based on the
familiar Java language. In addition, Android comes with a built-in API
support for Google’s speech recognition service, which is quite accurate,
free, has no severe usage limitations and can also work in an offline mode
on certain Android devices.

3.3 System requirements

The mobile application was developed for a Meizu M2 device, running on
Android 5.1 Lollipop and is optimised for this particular setup. Some of the
UI elements may not render properly on other devices due to different
screen resolutions. Also, some features may not work on different versions
of Android.

The table below summarizes the technical specifications of the Meizu M2.

System Requirements | �7

TABLE 3.1 MEIZU M2 TECHNICAL SPECS

An Internet connection is recommended, but not required in case the
device supports offline speech recognition. Finally, in order to establish the
communication channel between the mobile device and the PC running
the IntelliJ, the mobile device must have WiFi capability and must be
connected to the same WiFi network with the PC.

3.4 Codability’s UI

As the main concept of this project is to have to as little hands-on
interaction as possible with the system, user input is supported via a simple
and user-friendly UI. It features two buttons and a text view.

 SPEECH INITIALIZER

 SETTINGS

 CONVERTED TEXT

Meizu M2

OS Android 5.1 Lollipop

CPU Quad-Core 1.3 GHz Cortex-A53

RAM 2 GB

Resolution 720 x 1280 pixels

Codability’s UI | �8

The main button (microphone icon) in the center of the screen is
responsible for triggering the speech recognition process. The upper right
button (gear icon) invokes the settings menu, from which the user can
choose either the connect or the help option. Finally, the text view, above
the microphone button inside the blue section, is used to display the
commands that were recorded and converted to text by the Google
Speech API.

3.5 Google Speech API

The speech recognition technology used in this project is Google Speech.
Google Speech provides an API that enables developers to convert audio
to text. It applies advanced deep learning neural network algorithms to the
user's audio for speech recognition with increased accuracy.

Android doesn’t provide continuous speech recognition by default.
However, the target was for the user to be able to issue commands in a
fluent non-disruptive way. To achieve this, the functionality of the
SpeechRecognizer class was extended by implementing a new
RecognitionListener. The SpeechRecognizer class provides access to the
speech recognition service, whereas the RecognitionListener interface is
used for implementing functions that are responsible for receiving
notifications from the SpeechRecognizer, when recognition related events
occur. Such events include onResults(), onReadyForSpeech(), etc .

This way, the user isn’t prompted every time to press a button in order to
initiate the speech recognition process for the next command. Instead, the
installed RecognitionListener automatically re-activates voice recognition
when the results of the previous speech recognition attempt return.

Figure 3.2, illustrates a flow diagram of this process. Initially, the speech
recogniser listens for voice input. If no voice input is detected within a pre-
defined time limit, then the speech recogniser is launched again.
Otherwise, if the user’s speech is recorded by the speech recognizer, then  

Google Speech API | �9

the data are sent to Google. The recording process lasts until the user
pauses for a few seconds. Everything being recorded in that session are
being processed for conversion. On the retrieval of the results, an
onResults() event is being triggered. In case the converted text corresponds
to a stop command, the continuous speech recognition process is being
terminated, else the control will return to the initial state.

3.6 Discovering IntelliJ

The mobile application needs to establish a connection with the IntelliJ
plug-in, so that the plug-in can receive the text produced as a result of the
speech recognition process. For this process the plug-in beacons the
necessary contact information (IP address and port number).

On the mobile phone the user has to tap the Settings icon and then press
the Connect option from the menu. By doing so, the mobile application
joins and starts listening on the multicast address where the plug-in  

Discovering IntelliJ | �10

broadcasts its beacon. Eventually, a beacon with the contact details of the
IntelliJ’s plug-in will be received, and the mobile application will be able to
open a connection with it. The user is notified by a pop-up window that the
mobile application successfully connected with the plug-in and his is
prompted to tap on the microphone icon to start dictating. Figure 3.3
shows this process.

 

4. INTELLIJ PLATFORM

4.1 Why IntelliJ?

IntelliJ IDEA is a Java integrated development environment (IDE) for
developing computer software. It is one of the most popular IDEs used
amongst programmers. One of the main reasons for that, is that it offers an
open-source IDE, the IntelliJ IDEA Community Edition, which is free to
download and customise or extend according to the user’s needs.

For the purpose of this work, IntelliJ was a particularly suitable platform
because of its inherent extensibility support through plug-ins. For the
development of those plug-ins IntelliJ provides a powerful SDK [1].
Furthermore, very important and helpful is the community supporting the
IntelliJ IDEA Open API and Plugin Development forum.

4.2 Architecture

Component Model

IntelliJ is very modular in its nature, essentially being a collection of plug-ins
(components) that are connected together to provide the desired
functionality. Everything inside the IntelliJ platform, for example the menu,
the editor or the project manager, is a component.

There are three levels of components, depending on the activity and scope
of each plug-in. Application-level components have a global scope and are
initialised when the IDE starts. Project-level components, on the other hand,

[1] Unfortunately, the API is rather weakly documented, despite ongoing
efforts to fix this issue. 

Architecture | �12

are instantiated by the IDE for every project instance. Accordingly, module-
level components are instantiated for every project's module loaded.

Filesystem

The IntelliJ platform introduces several concepts to handle file-related
operations.

- Virtual files: IntelliJ offers a VFS (Virtual File System) for representing files
on a file system. A virtual file corresponds to an actual file in the local file
system. The VFS level deals only with binary content. The contents of
a virtual file are accessed as a stream of bytes, while higher-level
semantics like encodings and line separators are handled by higher
system layers. The plug-in SDK doesn’t provide support for implicitly
creating virtual files programmatically.

- Documents: Documents represent the contents of virtual files. A
document is an editable sequence of Unicode characters. Documents
are volatile objects, that are dynamically created when the contents of a
virtual file are accessed, but as opposed to virtual files which are
persistent, they are automatically garbage-collected if not referenced.
Unlike virtual files, new documents can be explicitly created
programmatically.

- Program Structure Interface (PSI) files: A PSI file is the root of a structure
that represents the contents of a file in the form of a hierarchical tree
structure of PSI elements in a particular programming language. There
are PSI implementations for various programming languages, such as
PsiJavaFile (Java), XmlFile (XML), PyFile (Python) and more. Unlike virtual
files and documents, which are application scoped, PSI files are project
scoped. This way, each project can work on its own PSI instance for a file,
which may be shared among projects. 

Architecture | �13

Threading Rules

User interaction in IntelliJ is performed from within a specific, so-called UI
thread. This runs from within the window manager in order to collect input
from the user and to present output to the user. As a general rule, to keep
an application responsive, the UI thread shouldn’t be blocked by
performing time-consuming operations.

Ideally, anything that’s not directly related to user interaction shouldn’t be
performed in the UI thread. To this end, one may create additional threads
that run concurrently to the UI thread and can perform tasks in the
background. However, proper synchronization is needed when threads
access shared state and data structures.

For this purpose, IntelliJ employs a single reader/writer lock for all code-
related data structures, such as the PSI and the VFS. This lock is implicitly
accessed through corresponding methods of the ApplicationManager
service. ApplicationManager grants access to IntelliJ’s core application-
wide functionality and methods. It supports two main types of actions which
can access the PSI and other IDEA data structures: read actions (which do
not modify the data) and write actions (which modify some data). Reading is
allowed from any thread, but threads other than the UI thread must
explicitly synchronize by wrapping such operations using the
runReadAction() method of the ApplicationManager. Writing is only
allowed from the UI thread, and write operations always need to be
wrapped in a write action, using the ApplicationManager’s runWriteAction()
method.

Figure 4.1 illustrates how this synchronization works internally. More
specifically, if a background thread attempts to explicitly access IntelliJ’s
data structures, then an exception will be thrown. The proper way to access
those structures is to issue a read request. A corresponding entry is added
in an event queue, which is processed through a central event loop. The
thread is blocked until its request is handled to completion. In contrast, the
UI thread can read directly, without going through the event loop. 

Architecture | �14

4.3 PSI

The Program Structure Index, commonly referred to as PSI, is the layer in
the IntelliJ Platform that is responsible for parsing files and creating the
syntactic and semantic code model that enables many of the platform’s
features.

A PSI file represents a hierarchy of PSI elements (so-called PSI trees). A
single PSI file may include several PSI trees in a particular programming
language. A PSI element, in its turn, can have child PSI elements. 

PSI | �15

PSI elements and operations on the level of individual PSI elements are
used to explore the internal structure of source code as it is interpreted by
the IntelliJ platform. Thanks to the hierarchical structure, it is easy to
navigate between PSI elements and perform modification on elements
instead of trying to modify the contents of a file at a low-level using byte-
streams.

Figure 4.2 shows a PSI tree created after parsing the contents of a Java file.
Every Java statement is actually transformed into a PSI element. For
example, as highlighted in the figure above, class RequestHandler is
recognised as a PsiClass, with several attributes as its children.

PSI | �16

When it comes to the modification of the PSI tree, the procedure is rather
trivial. For instance, a method can be added inside a specific class merely
by traversing the PSI tree from its root, until the relevant PsiClass is found.
Then the method can be appended as a PsiMethod child of the PsiClass
node.  

5. CODABILITY PLUG-IN

5.1 Overview

This chapter introduces the core functionality of the Codability plug-in.
Listing 5.1 provides a high level overview of how the plug-in works. Next,
the most important elements of the implementation are discussed in more
detail.

Simplified flow of Codability’s functionality

1. receive data
2. parse data
3. extract/match command type and parameters
4. call function that modifies the PSI tree

LISTING 5.1 - CODABILITY’S FUNCTIONALITY

5.2 Web server

The first step is to receive the data sent by the mobile device. The initial
plan was to implement a custom server that would listen to a TCP/IP socket
and handle the requests carrying user commands in textual form, sent by
the mobile application. This approach was quickly abandoned, as the
IntelliJ platform has a built-in web server, mostly for debugging purposes.

In order to take advantage of this feature, an extension for this web server
has been developed. The corresponding request handler listens for HTTP
requests received by the web server and then redirects them to the plug-in
for further processing.

Command hierarchy & syntax | �18

5.3 Command hierarchy & syntax

Codability organizes user commands in a hierarchy, displayed in Figure
5.1. This approach facilitates the parsing of commands and their
parameters. It also makes it easy to extend Codability by introducing new
commands that provide additional functionality.

At the top level, commands are classified into three different categories,
depending on their context/mode:

- Insert: As the name suggests, such commands serve the purpose of
writing code by adding or modifying elements on the PSI tree.
Commands that belong to these category, are “Create Class”, “Create
Function”, etc. 

Command hierarchy & syntax | �19

- Operational: These commands are related to the control the IDE. Such
commands are “Create Project”, “Open file”, “Execute”, etc.

- Hybrid: This mode refers to commands that can run on both of the above
mentioned contexts. Commands in this category include “Go to line”,
“Search for”, “Mode change”, etc.

This classification has been made to separate commands that have totally
different context. In addition to this, by adopting this approach, less
keywords are reserved for each mode, thus enabling more flexibility in case
of additional extensions that need to be introduced in the future.

In terms of syntax, the first word of a command consists of a reserved
keyword, which identifies a particular function from one of the three top-
level categories. The words that follow are usually key-value pairs,
corresponding to the parameters of that particular function.

The reserved keywords are divided into two tiers. Tier 1 is for the first
dictated word, whereas Tier 2 refers to words used as keys for commands
that need extra parameters. Table 5.2 lists all reserved keywords.

 TABLE 5.1 RESERVED KEYWORDS

 

Tier 1 Tier 2

Create / Add Class

Delete / Remove Constructor

Open File

Print Function

Run Name

Type

Variable

Command decoding | �20

5.4 Command decoding

After performing a simple syntax analysis and tokenising the command into
separate words, the syntax rules are applied initially to check whether the
command is in a valid format. If it this check is successful, the type of the
command is determined by comparing the first two words of the command
with some pre-defined templates to decide whether they match a defined
command type. If so, the parameters of the command are extracted and
checked for validity. Finally, based on the command type, the command’s
parameters and the format of the command, the so-called execution unit is
invoked in order to call the proper function that will modify the PSI tree
accordingly.

Command decoding | �21

Figure 5.2 shows this process for the case where the user dictates the
command “Open file with name Sample”.

At the beginning the command is being tokenised into individual words.
This allows the decoder to perform a validity check by comparing the
words to test if they match one of the pre-defined templates. In this
example the correspondent template would be “Open file […] name
fileName”. Therefore, the command is being approved and then the
command type is being decided.

In this stage the first two tokens of the command define the command type.
In this case “Open file” belongs to the “OP” mode, which refers to actions
that are relative to the control of the IDE. Following this, any other words
that match the optional “[..]” category are being discarded and any other
words that match the command format, form key-value pairs to be used as
the commands parameters. For instance, the “with” token is being
discarded and the “name” and “Sample” tokens form a key-value pair,
“name: Sample”.

Having extracted the command type and the command parameters, an
instance of the Command class is created and those variables are assigned
to the command.

The final stage is to determine the function name of the command in order
to be recognised by the execution unit. This is accomplished by checking
the contents of the Command variable. A command with identifier “Open
file”, command type “Op” and a parameter key “name” maps to the
function name “openFile”. Once the function name is being assigned, the
command variable is ready to be passed to the execution unit for
execution. 

Command execution | �22

5.5 Command execution

After the decoding process has been completed, the command is passed
to the execution unit. The execution unit matches the command’s function
name with the actual implementation of that function and starts executing
the command
 

Command execution | �23

The execution process most of the times involves modifying the PSI tree.
For this to happen, given that the Codability plug-in runs as a background
thread (not within the UI thread), every command function needs to be
wrapped in a Runnable instance and passed as an argument to
ApplicationManager’s invokeLater() method, which causes the Runnable to
be executed asynchronously on the event dispatching thread. The
execution will happen after all pending events have been processed.

When the function is eventually invoked, as a first step, it gets an instance of
the currently opened project and also an instance of the IDEA text editor
which holds informations about the opened files.

Afterwards, the PSI file needs to get retrieved, so that modifications on the
PSI tree can be made:

From this point onwards, the actions to be performed depend on the PSI
elements that need to be added or modified, according to the type of
command and function invoked. Generally, PSI elements are created by via
the PsiElementFactory class, which features several methods to add variable
elements to the PSI file.

Finally, each action that modifies the contents of the PSI tree needs to be
run under write-safe context, by wrapping it within a WriteCommandAction
action.

ApplicationManager.getApplication().invokeLater() { new Runnable … }

Project project = ProjectManager.getOpenProjects()[0];
Editor editor = FileEditorManager.getSelectedTextEditor();

JComponent component = editor.getComponent();
DataContext data = DataManager.getDataContext(component);
PsiFile psiFile = DataKeys.PSI_FILE.getData(dataContext);

PsiElementFactory factory = JavaPsiFacade.getElementFactory(project);
PsiMethod method = elementFactory.createMethodFromText(…);

new WriteCommandAction.Simple(project) {
 @Override
 protected void run() throws Throwable { … }
}.execute();

How to extend the plug-in | �24

5.6 How to extend the plug-in

The Codability plug-in is structured so that a developer can extend its
functionality with little extra work. In order to add an extra command, the
developer must follow the guidelines mentioned in Figure 5.4.

Step 1: The developer has to define the format of the command. He has to
decide the purpose of the command, its content and structure and in which
context it should be run. Suppose, for example’s sake, that a developer
wants to create a command that automatically creates a getter function for a
variable. He chooses the following format for this command “Create getter
function for variable varName”. As this command indicates an addition to
the PSI tree, the proper context in which this command should run is the
insert mode.

Step 2: A syntax rule should be determined for the new command. The
developer has to choose which words will be needed as Tier 1 and Tier 2
keywords. Obviously, “create” should be set as a Tier 1 keyword, “variable”
and “getterFunction” as Tier 2 keywords. 

How to extend the plug-in | �25

Step 3: The developer has to add the name that corresponds to the
function inside the CommandName class of the gr.inf.codability.command
package. In this example, the name to be added is “CREATE_GETTER”.

Step 4: The Command class of the gr.inf.codability.command package has
to be modified as well. More specifically, the developer should edit an else-
if statement in the setCommandParams() method to comply with the syntax
rules and assign a CommandType, a CommandName and a setParams()
method with the proper Tier 2 keyword as an argument.

Step 5: The developer should go to gr.inf.codability.function package,
create either a new class or edit an existing one in order to add the
implementation for this function.

Step 6: A corresponding wrapper function has to be added in the
CommandImpl class of gr.inf.codability.command package:

Step 7: Inside the same package but in the Command class, under the
execute() method the following snippet must be added:

else if (command(“create getter function")) {
 name = CREATE_GETTER;
 type = INSERT;
 setParams("variable");
}

static void createGetter(HashMap<String, String> nameOfVar) {
 if (nameOfVar.get("variable") == null)
 return;

 String name = getVariableNameFormat(nameOfVar, “variable");
 createGetterFunction(name); // refers to the function package
}

else if (name == CREATE_GETTER)
 createGetter(params);

6. EVALUATION

To get a feeling about how useful the system actually is in practice, a few
simple experiments were performed to test its accuracy and the end-user’s
performance. The measurements were conducted in a silent environment in
order not to obstruct the speech recognition process. The lack of strong
ambient noise is a rather reasonable assumption for most software
developers, especially ones that work at home.

Accuracy

 DIAGRAM 6.1 - COMMAND ACCURACY

Diagram 6.1 shows the number of commands that were accurately
converted by the speech recognition service, as a function of the number of
commands that were issued. The accuracy of Google’s Speech API after 15
commands capped at a maximum of 88%. The diagram also shows that as
the number of commands increases, the accuracy of the service improves.
This is presumably due to the application of Google’s internal deep
learning algorithms, which adapt the speech recognition to the context of
the previous converted commands within a speech recognition session. 

A
cc

ur
ac

y
pe

rc
en

ta
ge

0%

25%

50%

75%

100%

Number of commands

5 15 27

88,8%86,6%
80,0%

Success Rate

Evaluation | �27

Although 88% may not be very satisfactory for open-ended speech, it
proved to work quite well for the purposes of our oral programming
interface where the vocabulary is much more restricted. It is expected that
as technology advances, the accuracy percentage will reach even higher
numbers.

 Performance

 DIAGRAM 6.2 - CODING PERFORMANCE

A measurement of the time required to write a simple Java application
consisting of 799 characters (~700 keystrokes using auto-completion) had
been taken. As a reference, the same application was written by hand using
auto-completion by the author, who has a physical disability, resulting in
slower than usual typing speeds. Coding by speech via the Codability plug-
in was faster, roughly by a factor of 1.6x compared to coding using a
keyboard. This is a significant improvement. Moreover, the author found the
oral interface less stressful compared to a more conventional input method
involving hand movement.

Ty
pi

ng
 m

et
ho

d

Time elapsed in seconds

0s 75s 150s 225s 300s

By hand By speech

7. CONCLUSION

Our work provides a proof of concept, showing that coding by speech
using an oral programming interface is feasible and can result in a speedup
of typing performance, especially for programmers with a form of a
physical disability. We believe that oral programming has the potential to
become, if not the main coding method, a very attractive alternative
method for programmers.

The Java language is a language with literally thousands of methods,
classes and libraries. While it was clearly impossible to cover all of them,
our work demonstrates that this can be done incrementally and in a
structured way. At this stage, Codability supports only some basic features
of the Java language, and an obvious next step would be to add and
implement more aspects of the Java Language, or target other popular
languages such as C and Python.

From an algorithmic point of view, the current syntax could be modified to
support a more free form speech. Allowing the developer to dictate tasks in
a more natural way would most certainly increase productivity. Ideally
machine learning methods could be applied to better predict the user’s
intentions.

Finally, a more generic version of the mobile application could be
developed in order to be compatible with a wider range of mobile devices
and smartphone operating systems.

BIBLIOGRAPHY

[1] https://www.jetbrains.org/intellij/sdk/docs/welcome.html , JetBrains
IntelliJ Platform SDK.

[2] https://upsource.jetbrains.com/ , IntelliJ’s source code

[3] https://intellij-support.jetbrains.com/hc/en-us/community/topics/
200366979-IntelliJ-IDEA-Open-API-and-Plugin-Development , IntelliJ
IDEA Open API and Plugin Development Forum

[4] Krochmalski, J. (2014). IntelliJ IDEA essentials. 1st ed. , IntelliJ IDEA tips
& tricks

[5] Marsicano, B. (2017). Android Programming. 3rd ed.: Big Nerd Ranch
Guides , Android Programming

[6] https://developer.android.com/index.html , Android SDK

[7] Yener, M. and Dundar, O. (2016). Expert Android Studio. 1st ed. , Plugin
tutorial 

https://upsource.jetbrains.com/
https://intellij-support.jetbrains.com/hc/en-us/community/topics/200366979-IntelliJ-IDEA-Open-API-and-Plugin-Development
https://intellij-support.jetbrains.com/hc/en-us/community/topics/200366979-IntelliJ-IDEA-Open-API-and-Plugin-Development
https://intellij-support.jetbrains.com/hc/en-us/community/topics/200366979-IntelliJ-IDEA-Open-API-and-Plugin-Development
https://developer.android.com/index.html

APPENDIX A

A.1 Setting up the development environment

This section is addressed to developers who are willing to develop and
extend more the functionality of the plug-in. It features a mini-guide to
setup the development environment.

The first step is to download and install the latest Java SDK from http://
www.oracle.com/technetwork/java/javase/downloads/

 FIGURE A.1 - DOWNLOAD JAVA SDK

The next step is to visit https://www.jetbrains.com/idea/download/ and
download and install the Community version of IntelliJ IDEA. 

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.jetbrains.com/idea/download/

Setting up the development environment | �31

 FIGURE A.2 - DOWNLOAD INTELLIJ

After the installation of IntelliJ IDEA has been completed, following
procedure needs to be applied. From the startup screen, “Checkout from
Version Control” needs to be selected and the link below should be added
git://git.jetbrains.org/idea/community.git

 FIGURE A.3 - CHECKING OUT INTELLIJ’S SOURCE CODE FROM GIT

When the cloning of the repository has finished, the project should be
opened and the command “./getPlugins.sh” should be entered.

git://git.jetbrains.org/idea/community.git

Setting up the development environment | �32

 FIGURE A.4 - CHECK-OUT COMPLETE FIGURE A.5 - RUN ./GETPLUGINS.SH

Finally, a JSDK named “IDEA jdk” (case sensitive) needs to be configured,
pointing to an installation of JDK 1.8. This can be done by going to the
menu under File → Project Structure

 FIGURE A.6 - ADD NEW SDK FIGURE A.7 - SAVE NEW SDK

A.2 Codability’s source code

The source code of the Android App can be found at https://github.com/
aptsaous/CodabilityApp , whereas the source code of the plugin can be
found at https://github.com/aptsaous/Codability

https://github.com/aptsaous/CodabilityApp
https://github.com/aptsaous/CodabilityApp
https://github.com/aptsaous/Codability

	DEDICATION
	ACKNOWLEDGEMENTS
	ΠΕΡΙΛΗΨΗ
	ABSTRACT
	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 Motivation
	1.2 Objectives
	1.3 Structure
	2. SYSTEM OVERVIEW
	3. ANDROID APP
	3.1 Overview
	3.2 Why Android?
	3.3 System requirements
	3.4 Codability’s UI
	3.5 Google Speech API
	3.6 Discovering IntelliJ
	4. INTELLIJ PLATFORM
	4.1 Why IntelliJ?
	4.2 Architecture
	4.3 PSI
	5. CODABILITY PLUG-IN
	5.1 Overview
	5.2 Web server
	5.3 Command hierarchy & syntax
	5.4 Command decoding
	5.5 Command execution
	5.6 How to extend the plug-in
	6. EVALUATION
	7. CONCLUSION
	BIBLIOGRAPHY
	APPENDIX A
	A.1 Setting up the development environment
	A.2 Codability’s source code

