

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ

ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Λίστες ταυτοχρόνως προσβάσιμες.

 Συγκριτική μελέτη της απόδοσης και υλοποίησης ταυτόχρονων δομών

δεδομένων χρησιμοποιώντας mutex και spinlock locks, lock-free και transactional

memory σε C++.

Concurrently accessed lists.

A comparative study between performance and implementation of concurrent

data structures, using mutex and spinlock locks, lock-free and transactional

memory in C++.

Διπλωματική Εργασία

Κωνσταντίνος Χ. Παλαιοδήμος

Επιβλέποντες Καθηγητές : Σταμούλης Γεώργιος Ευµορφόπουλος Νέστωρ

 Καθηγητής Π.Θ. Επίκουρος Καθηγητής Π.Θ.

 Βόλος, Μάρτιος 2018

 UNIVERSITY OF THESSALY

 DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Concurrently accessed lists.

A comparative study between performance and implementation of

concurrent data structures, using mutex and spinlock locks, lock-free

and transactional memory in C++.

Graduate Thesis for the degree of

Diploma of Science in Electrical & Computer Engineering

By Konstantinos X. Palaiodimos

 Head Supervisor Second Supervisor

 George Stamoulis Nestor Eumorfopoulos

This page is intentionally left blank.

To my family and friends

Στην οικογένεια µου και στους φίλους µου

This page is intentionally left blank.

Ευχαριστίες

Με την περάτωση της παρούσας διπλωματικής εργασίας ολοκληρώνεται ο

προπτυχιακός κύκλος σπουδών µου. Θα ήθελα λοιπόν, να ευχαριστήσω θερμά

τους επιβλέποντες µου κ. Γεώργιο Σταμούλη και κ. Νέστωρα Ευµορφόπουλο, για

την εμπιστοσύνη που επέδειξαν στο πρόσωπό µου µε την ανάθεση του

συγκεκριμένου θέματος, την άριστη συνεργασία και την συνεχή καθοδήγηση, η

οποία διευκόλυνε την εκπόνηση της διπλωματικής εργασίας µου.

Τέλος, οφείλω ένα μεγάλο ευχαριστώ στην οικογένειά µου και στους φίλους

µου για την αμέριστη υποστήριξη και την ανεκτίμητη βοήθεια που µου παρείχαν

κατά την διάρκεια των σπουδών µου.

Contents
Περίληψη .. 1

Abstract .. 2

Introduction .. 3

Parallel Programming ... 7

Concurrent Programming... 10

Speedup .. 14

Amdahl’s Law .. 15

Parallel Slowdown ... 17

Super-Linear Speedup ... 18

Architectures .. 20

Flynn's taxonomy .. 20

Primitive levels of Parallelism .. 24

Bit-level Parallelism ... 24

Instruction-Level Parallelism ... 25

ILP: Implementation Techniques .. 26

Thread-Level Parallelism ... 27

Memory Models ... 29

Shared memory ... 29

Distributed memory .. 31

Memory Access ... 33

Uniform memory access (UMA) .. 33

Non-uniform memory access (NUMA).. 34

Threads ... 37

Threads vs. processes ... 38

Single threading .. 39

Multithreading .. 39

Challenges in Concurrent Programming .. 42

Race Conditions .. 42

Data Races ... 43

Deadlocks .. 43

Livelocks .. 46

Resource Starvation .. 47

Basic concepts and principles of concurrent programming .. 49

Atomicity - Linearizability ... 49

Primitive atomic instructions .. 51

High-level atomic operations .. 51

Sequential consistency .. 53

Data-race-free programming .. 54

Transactional memory ... 55

Concurrent Data Structures ... 59

Preface on the Implementation Techniques ... 61

Mutual Exclusion ... 61

Hardware solutions ... 63

Software solutions .. 64

Locks .. 65

Spinlocks ... 68

Lock-free ... 69

Read Copy Update (RCU) .. 71

Compare and Swap ... 73

Implementation Part .. 74

Experimentation Setup ... 74

Detailed description of the Data Structure and available functions in the API 76

Adaptation to the theory .. 78

Detailed description of the benchmarking structure ... 82

Debugging issues ... 83

Result figures .. 85

Performance evaluation ... 88

Overall Comparison... 90

Ease of implementation / Reasoning for performance issues .. 91

References .. 94

1

Περίληψη

Ο κύριος στόχος της παρούσας εργασίας ήταν η διερεύνηση των θεμάτων

του ταυτόχρονου προγραμματισμού. Καθώς η εποχή των πολυπύρηνων

επεξεργαστών έχει ήδη ανθίσει και οι αγορές τους κυριαρχούν, ο ταυτόχρονος

προγραμματισμός φαίνεται να είναι η μοναδική λύση τόσο για υψηλή απόδοση

όσο και για ενεργειακή απόδοση την ίδια στιγμή. Μετά την ανάλυση του

ιστορικού υποβάθρου που οδήγησε σε αυτήν την εφεύρεση, ακολουθεί κάποια

ξεχωριστή διαφοροποίηση μεταξύ των όρων ταυτόχρονου και παράλληλου

προγραμματισμού. Επιπλέον, το θεωρητικό μέρος περιγράφει συνοπτικά το

αρχιτεκτονικό υπόβαθρο και τους διαφορετικούς τύπους και επίπεδα

παραλληλισμού, καθώς και τα βασικά προβλήματα ταυτόχρονου

προγραμματισμού που πρέπει να αποφευχθούν. Τέλος, μια θεωρητική

προσέγγιση στις ταυτόχρονες δομές δεδομένων και τους τρόπους εφαρμογής

τους, συμπεριλαμβανομένων των locking, lock-free και transactional memory.

 Το επόμενο παράρτημα περιέχει τις λεπτομέρειες της ρεαλιστικής

υλοποίησης των ταυτόχρονων λιστών στο περιβάλλον της C ++. Πιο

συγκεκριμένα, διεξάγεται διεξοδική ανάλυση σχετικά με τους τρόπους

κατασκευής μιας ταυτόχρονης λίστας χρησιμοποιώντας locks, lock-free, την

εφαρμογή αποδοτικών spinlocks και τη χρήση τους αντί για mutex locks ή ακόμα

και με την αφαίρεση της transactional memory.

Ο απώτερος στόχος αυτής της βιβλιογραφικής ανασκόπησης είναι η

ταξινόμηση των τρόπων μετασχηματισμού των λιστών σε ταυτόχρονη πρόσβαση

βάσει της σύγκρισης και της αντίφασης όσον αφορά την απόδοση, την

καταλληλότητα και την ευκολία υλοποίησης του καθενός.

2

Abstract

 This thesis’s main target was the exploration of concurrency matters. As the

era of multicores has already risen and the markets are dominated by them,

concurrency seems as the only solution towards both high performance and energy

efficiency at the same time. After analyzing the history background that led to this

invention, some distinctive differentiation between the terms concurrency and

parallelism follows. Furthermore, the theoretical part contains briefly the

architectural background and different types and levels of parallelism, and the

basic concurrency problems that must be avoided. Finally, a theoretical approach

to concurrent data structures and ways of implementing them including locking,

lock-free and transactional memory.

 The next session contains the details of the pragmatic implementation of

concurrent lists in the environment of C++. More specifically, thorough analysis is

done on the ways of constructing a concurrent list using locks, lock-free,

implementing efficient spinlocks and using them instead of mutex locks or even

expressed by the abstraction of transactional memory.

 Ulterior aim of all this literature review, is the classification of ways to

transform lists into concurrently accessed based on the comparison and contrast

in terms of performance, suitability and ease of implementation of each one.

3

Introduction

Evolution of the technology alongside with the market.

The microprocessor industry continues to have great importance in the

course of technological advancements ever since their coming to existence in

1970s. The growing market and the demand for faster performance drove the

industry to manufacture faster and smarter chips. One of the most classic and

proven techniques to improve performance is to clock the chip at higher frequency

which enables the processor to execute the programs in a much quicker time and

the industry has been following this trend from 1983 – 2002. Additional techniques

have also been devised to improve performance including parallel processing, data

level parallelism and instruction level parallelism which have all proven to be very

effective.[20] One such technique which improves significant performance boost is

multi-core processors. Multi-core processors have been in existence since the past

decade, but however have gained more importance off late due to technology

limitations single-core processors are facing today such as high throughput and

long-lasting battery life with high energy efficiency.

The struggle to keep up with Moore’s law

Driven by a performance hungry market, microprocessors have always been

designed keeping performance and cost in mind. Gordon Moore, founder of Intel

Corporation predicted that the number of transistors on a chip will double once in

every 18 months to meet this ever-growing demand which is popularly known as

Moore’s Law in the semiconductor industry. Advanced chip fabrication technology

alongside with integrated circuit processing technology offers increasing

integration density which has made it possible to integrate one billion transistors

on a chip to improve performance. However, the performance increase by micro-

architecture governed by Pollack’s rule is roughly proportional to square root of

increase in complexity. This would mean that doubling the logic on a processor core

would only improve the performance by 40%. As advanced chip fabrication

techniques come along another major bottleneck is discovered: power dissipation

issue. Studies have shown that transistor leakage current increases as the chip size

shrinks further and further which increases static power dissipation to large values.

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

4

One alternate means of improving performance is to increase the frequency

of operation which enables faster execution of programs. However, the frequency

is again limited to 4GHz currently as any increase beyond this frequency increases

power dissipation again. “Battery life and system cost constraints drive the design

team to consider power over performance in such a scenario”. Power consumption

has increased to such high levels that traditional air-cooled microprocessor server

boxes may require budgets for liquid-cooling or refrigeration hardware. Designers

eventually hit what is referred to as the power wall, the limit on the amount of

power a microprocessor could dissipate. Semiconductor industry once driven by

performance being the major design objective, is today being driven by other

important considerations such chip fabrication costs, fault tolerance, power

efficiency and heat dissipation. This led to the development of multi-core

processors which have been effective in addressing these challenges.

Moore's law describes the empirical regularity that the number of transistors on integrated circuits double approximately every two

years. This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products -

are strongly linked to Moore’s Law.

5

The rise of the solution called multi-core

“A Multi-core processor is typically a single processor which contains several

cores on a chip”. The cores are functional units made up of computation units and

caches. These multiple cores on a single chip combine to replicate the performance

of a single faster processor. The individual cores on a multi-core processor don’t

necessarily run as fast as the highest performing single-core processors, but they

improve overall performance by handling more tasks in parallel.

The performance boost can be seen by understanding the manner in which

single core and multi-core processors execute programs. Single core processors

running multiple programs would assign time slice to work on one program and

then assign different time slices for the remaining programs. If one of the processes

is taking longer time to complete then all the rest of the processes start lagging

behind. However, In the case of multi-core processors if you have multiple tasks

that can be run in parallel at the same time, each of them will be executed by a

separate core in parallel thus boosting the performance. The multiple cores inside

the chip are not clocked at a higher frequency, but instead their capability to

execute programs in parallel is what ultimately contributes to the overall

performance making them more energy efficient and low power cores as shown.

Multi-core processors are generally designed partitioned so that the unused

cores can be powered down or powered up as and when needed by the application

contributing to overall power dissipation savings.

Evolution of micro-processor performance over time. From 2000-2005 we see the end of “Dennard’s scaling”, leading to stagnation

of the frequency of the cores and the rise of multi then many-core era.

6

Challenges in the multi-core era

Despite the many advantages that multi-core processors come with, there

are a few major challenges the technology is facing. One main issue seen is with

regard to software programs which run slower on multicore processors when

compared to single core processors. It has been correctly pointed out that

“Applications on multi-core systems don’t get faster automatically as cores are

increased”. Programmers must write applications that exploit the increasing

number of processors in a multi-core environment without stretching the time

needed to develop software. Majority of applications used today were written to

run on only a single processor, failing to use the capability of multi-core processors.

Secondly, on-chip interconnects are becoming a critical bottle-neck in

meeting performance of multi-core chips. With increasing number of cores comes

along the huge interconnect delays (wire delays) when data has to be moved across

the multi-core chip from memories in particular. The performance of the processor

truly depends on how fast a CPU can fetch data rather than how fast it can operate

on it to avoid data starvation scenario. Buffering and smarter integration of

memory and processors are a few classic techniques which have attempted to

address this issue.

Furthermore, increased design complexity due to possible race conditions as

the number of cores increase in a multi-core environment. “Multiple threads

accessing shared data simultaneously may lead to a timing dependent error known

as data race condition”. [54] In a multi-core environment data structure is open to

access to all other cores when one core is updating it. In the event of a secondary

core accessing data even before the first core finishes updating the memory, the

secondary core faults in some manner. Race conditions are especially difficult to

debug and cannot be detected by inspecting the code, because they occur

randomly. Special hardware requirement implementing mutually exclusion

techniques have to be implemented for avoiding race conditions.

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

7

Parallel Programming

Traditionally, computer software has been written for serial computation. To
solve a problem, an algorithm is constructed and implemented as a serial stream
of instructions. These instructions are executed on a central processing unit on one
computer. Only one instruction may execute at a time—after that instruction is
finished, the next one is executed. [1]

Parallel computing, on the other hand, uses multiple processing elements
simultaneously to solve a problem. This is accomplished by breaking the problem
into independent parts so that each processing element can execute its part of the
algorithm simultaneously with the others. The processing elements can be diverse
and include resources such as a single computer with multiple processors, several
networked computers, specialized hardware, or any combination of the above. [1]

Frequency scaling was the dominant reason for improvements in computer
performance from the mid-1980s until 2004. The runtime of a program is equal to
the number of instructions multiplied by the average time per instruction.
Maintaining everything else constant, increasing the clock frequency decreases the
average time it takes to execute an instruction. An increase in frequency thus
decreases runtime for all compute-bound programs. [2]

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Serial_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Frequency_scaling
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/CPU_bound
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

8

Representation of the logic of parallel programming, where the problem is broken down into sub
problems and assigned to many “workers”.

Parallel computing is a type of computation in which many calculations or
the execution of processes are carried out simultaneously.[3] Large problems can
often be divided into smaller ones, which can then be solved at the same time.
There are several different forms of parallel computing: bit-level, instruction-
level, data, and task parallelism. Parallelism has long been employed in high-
performance computing, but it's gaining broader interest due to the physical
constraints preventing frequency scaling.[4]

 As power consumption (and
consequently heat generation) by computers has become a concern in recent
years,[5] parallel computing has become the dominant paradigm in computer
architecture, mainly in the form of multi-core processors. [6]

Parallel computing is closely related to concurrent computing—they are
frequently used together, and often conflated, though the two are distinct: it is
possible to have parallelism without concurrency (such as bit-level parallelism), and
concurrency without parallelism (such as multitasking by time-sharing on a single-
core CPU).[7]

 In parallel computing, a computational task is typically broken down
in several, often many, very similar subtasks that can be processed independently
and whose results are combined afterwards, upon completion. In contrast, in
concurrent computing, the various processes often do not address related tasks;
when they do, as is typical in distributed computing, the separate tasks may have a

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Frequency_scaling
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Distributed_computing

9

varied nature and often require some inter-process communication during
execution.

Parallel computers can be roughly classified according to the level at which
the hardware supports parallelism, with multi-core and multi-processor computers
having multiple processing elements within a single machine, while clusters, MPPs,
and grids use multiple computers to work on the same task. Specialized parallel
computer architectures are sometimes used alongside traditional processors, for
accelerating specific tasks.

In some cases parallelism is transparent to the programmer, such as in bit-
level or instruction-level parallelism, but explicitly parallel algorithms, particularly
those that use concurrency, are more difficult to write than sequential ones,[8]

because concurrency introduces several new classes of potential software bugs, of
which race conditions are the most
common. Communication and synchronization between the different subtasks are
typically some of the greatest obstacles to getting good parallel program
performance.

A theoretical upper bound on the speed-up of a single program as a result of
parallelization is given by Amdahl's law.

https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Processing_element
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Massively_parallel_(computing)
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Parallel_algorithm
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Amdahl%27s_law

10

Concurrent Programming
Concurrent computing is a form of computing in which

several computations are executed during overlapping time periods—
concurrently—instead of sequentially (one completing before the next starts). This
is a property of a system—this may be an individual program, a computer, or
a network—and there is a execution point or "thread of control" for each
computation ("process"). A concurrent system is one where a computation can
advance without waiting for all other computations to complete. [9]

As a programming paradigm, concurrent computing is a form of modular
programming, namely factoring an overall computation into sub computations that
may be executed concurrently. Pioneers in the field of concurrent computing
include Edsger Dijkstra, Per Brinch Hansen, and C.A.R. Hoare.

The concept of concurrent computing is frequently confused with the related
separate but distinct concept of parallel computing,[7]

 although both can be
described as "multiple processes executing during the same period of time". In
parallel computing, execution occurs at the same physical instant: for example, on
separate processors of a multi-processor machine, with the goal of speeding up
computations—parallel computing is impossible on a (one-core) single processor,
as only one computation can occur at any instant (during any single clock cycle). By
contrast, concurrent computing consists of process lifetimes overlapping, but
execution need not happen at the same instant. The goal here is to model
processes in the outside world that happen concurrently, such as multiple clients
accessing a server at the same time. Structuring software systems as composed of
multiple concurrent, communicating parts can be useful for tackling complexity,
regardless of whether the parts can be executed in parallel.[10]

For example, concurrent processes can be executed on one core by
interleaving the execution steps of each process via time-sharing slices: only one
process runs at a time, and if it does not complete during its time slice, it is paused,
another process begins or resumes, and then later the original process is resumed.
In this way, multiple processes are part-way through execution at a single instant,
but only one process is being executed at that instant.

Concurrent computations may be executed in parallel, for example, by
assigning each process to a separate processor or processor core, or distributing a
computation across a network. In general, however, the languages, tools, and

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Decomposition_(computer_science)
https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://en.wikipedia.org/wiki/Per_Brinch_Hansen
https://en.wikipedia.org/wiki/C.A.R._Hoare
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multi-processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Distributed_computing

11

techniques for parallel programming might not be suitable for concurrent
programming, and vice versa.

The exact timing of when tasks in a concurrent system are executed depend on
the scheduling, and tasks need not always be executed concurrently. For example,
given two tasks, T1 and T2:

 T1 may be executed and finished before T2 or vice versa (serial and sequential)

 T1 and T2 may be executed alternately (serial and concurrent)

 T1 and T2 may be executed simultaneously at the same instant of time
(parallel and concurrent)

Advantages of concurrent computing:

 Increased program throughput—parallel execution of a concurrent program
allows the number of tasks completed in a given time to increase.

 High responsiveness for input/output—input/output-intensive programs
mostly wait for input or output operations to complete. Concurrent
programming allows the time that would be spent waiting to be used for
another task.

 More appropriate program structure—some problems and problem domains
are well-suited to representation as concurrent tasks or processes.

There are several reasons for a programmer to be interested in concurrency: [11]

 To better understand computer architecture (it has a great deal of concurrency
with pipelining (multiple steps) and super-scalar (multiple instructions)) and

1. compiler design,
2. Some problems are most naturally solved by using a set of co-operating

processes,
3. A sequential solution constitutes over specification, and
4. to reduce the execution time.

https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

12

At the machine level, operations are sequential, if they occur one after the

other, ordered in time. Operations are concurrent, if they overlap in time. In Figure

1, sequential operations are connected by a single thread of control while

concurrent operations have multiple threads of control.

Operations in the source text of a program are concurrent if they could be,

but need not be, executed in parallel. Thus concurrency occurs in a programming

language when two or more operations could be but need not be executed in

parallel. In Figure 2a the second assignment depends on the outcome of the first

assignment while in Figure 2b neither assignment depends on the other and may

be executed concurrently.

13

14

Speedup

In computer architecture, speedup is a process for increasing the

performance between two systems processing the same problem. More

technically, it is the improvement in speed of execution of a task executed on two

similar architectures with different resources. The notion of speedup was

established by Amdahl's law, which was particularly focused on parallel processing.

However, speedup can be used more generally to show the effect on performance

after any resource enhancement. [14]

Speedup can be defined for two different types of quantities: latency and

throughput.

Latency of an architecture is the reciprocal of the execution speed of a task:

where

υ is the execution speed of the task;

T is the execution time of the task;

W is the execution workload of the task.

Throughput of an architecture is the execution rate of a task:

where

ρ is the execution density (e.g., The number of stages in an instruction pipeline for

a pipelined architecture);

A is the execution capacity (e.g., the number of processors for a parallel

architecture).

Latency is often measured in seconds per unit of execution workload.

Throughput is often measured in units of execution workload per second. Another

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

15

unit of throughput is instructions per cycle (IPC) and its reciprocal, cycles per

instruction (CPI) is another of unit of latency.

Speedup is dimensionless and defined differently for each type of quantity

so that it is a consistent metric.

Speedup in latency is defined by the following formula:

Speedup in throughput is defined by the following formula:

Simplified, given the old execution time Told and the new execution time Tnew for

a program, the speedup is

Sp =T old/T new

Amdahl’s Law
In computer architecture, Amdahl's law (or Amdahl's argument) is a formula

which gives the theoretical speedup in latency of the execution of a task at fixed

workload that can be expected of a system whose resources are improved. It is

named after computer scientist Gene Amdahl, and was presented at the AFIPS

Spring Joint Computer Conference in 1967.

Amdahl's law is often used in parallel computing to predict the theoretical

speedup when using multiple processors. For example, if a program needs 20 hours

using a single processor core, and a particular part of the program which takes one

hour to execute cannot be parallelized, while the remaining 19 hours (p = 0.95) of

execution time can be parallelized, then regardless of how many processors are

devoted to a parallelized execution of this program, the minimum execution time

cannot be less than that critical one hour. Hence, the theoretical speedup is limited

to at most 20 times (1/ (1 − p) = 20). For this reason, parallel computing with many

processors is useful only for highly parallelizable programs. [14]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

16

For over a decade prophets have voiced the contention that the organization

of a single computer has reached its limits and that truly significant

advances can be made only by interconnection of a multiplicity of computers

in such a manner as to permit co-operative solution...The nature of this

overhead (in parallelism) appears to be sequential so that it is unlikely to be

amenable to parallel processing techniques. Overhead alone would then

place an upper limit on throughput of five to seven times the sequential

processing rate, even if the housekeeping were done in a separate

processor...At any point in time it is difficult to foresee how the previous

bottlenecks in a sequential computer will be effectively overcome.
 Gene Amdahl 1967

Given

B E [0, 1], the fraction of an algorithm that is strictly serial,

n E N, the number of threads of execution,

the time that it takes the algorithm to finish when executed on n threads is

Consequently, the corresponding speedup is

17

Parallel Slowdown
Parallel slowdown is a phenomenon in parallel computing where

parallelization of a parallel algorithm beyond a certain point causes the program to

run slower (take more time to run to completion) [15]

Parallel slowdown is typically the result of a communications bottleneck. As

more processor nodes are added, each processing node spends progressively more

time doing communication than useful processing. At some point, the

communications overhead created by adding another processing node surpasses

the increased processing power that node provides, and parallel slowdown occurs.

Parallel slowdown occurs when the algorithm requires significant

communication, particularly of intermediate results. Some problems, known as

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

18

embarrassingly parallel problems, do not require such communication, and thus

are not affected by slowdown. [14]

Super-Linear Speedup
Superlinear speedup comes from exceeding naively calculated speedup even

after taking into account the communication process (which is fading, but still this

is the bottleneck).

For example we have a serial algorithm that takes 1t to execute. We have

1024 cores, so naive speedup is 1024x, or it takes t/1024, but it should be calculated

from Amdahl’s equation taking into account memory transfer, slight modifications

to algorithm, parallelization time.

So speedup should be lower than 1024x, but sometimes it happens that

speedup is bigger, then we call it superlinear.

This comes from vast amount of places: cache usage (what fit into registers,

main memory or mass storage, where very often more processing units gives

overall more registers per subtask), memory hit patterns, simply better (or a slight

different) algorithm, flaws in the serial code.

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

19

For example random process that searches space for result is now divided

into 1024 searchers covering more space at once so finding solution faster is more

probable. There are byproducts (if we swap elements like in bubble sort and switch

into GPU it swaps all pairs at once, while serial only up to point).

On the distributed system communication is even more costly, so programs

are changed to make memory usage local (which also changes memory access,

divides problem differently than in sequential application). And the most

important, the sequential program is not ideally the same as parallel version -

different technology, environment, algorithm etc. so it is hard to compare them.
[16]

Theoretically speedup can never exceed the number of processing elements

pp. If the best sequential algorithm takes Ts units of time to solve a given problem

on a single processing element, then a speedup of p can be obtained on p

processing elements if none of them spends more than time Ts/p. A speedup

greater than p is possible only if each processing element spends less than time

Ts/p solving the problem. In this case, a single processing element could emulate

the p processing elements and solve the problem in fewer than Ts units of time.

This is a contradiction because speedup, by definition is computed with respect to

the best sequential algorithm. [17]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

20

Architectures

The last decades of the 20th century it was urgent that new architectures of

hardware would be designed so that they could handle parallel computing. The

oldest and most popular attempt to classify the parallel architectures was Flynn’s

taxonomy. More recently, and trying to redress the inadequacy of Flynn’s scheme,

Handler’s (Erlangen) classification came up.

Flynn's taxonomy
Flynn's taxonomy is a classification of computer architectures, proposed by

Michael J. Flynn in 1966. The classification system has stuck, and has been used as

a tool in design of modern processors and their functionalities. Since the rise of

multiprocessing central processing units (CPUs), a multiprogramming context has

evolved as an extension of the classification system. [14]

Any system is based upon two important elements:

1. Instructions and

2. Data.

The data elements are manipulated according to the instructions. Depending

upon the number of instructions executed and data elements manipulated

simultaneously, Flynn makes the following classification. [18]

Single instruction stream single data stream (SISD)

A sequential computer which exploits no parallelism in either the instruction

or data streams. Single control unit (CU) fetches single instruction stream (IS) from

memory. The CU then generates appropriate control signals to direct single

processing element (PE) to operate on single data stream (DS) i.e., one operation

at a time.

Examples of SISD architecture are the traditional uniprocessor machines like

older personal computers (PCs; by 2010, many PCs had multiple cores) and

mainframe computers. [14]

A single-instruction single-data machine is also commonly called a classical

von Neumann Machine. These systems are separated into two divisions which are

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

21

the memory and the CPU (central processing unit). The memory portion holds both

the program instructions and the data while the CPU interprets and executes the

commands in the program. In the SISD model, the CPU is further divided into two

more sections called the control unit and the arithmetic-logic unit (ALU). The

control unit is in charge of executing the programs and the ALU does the actual

computations called for by the program. Instructions on SISD machines are done in

a sequential manner. [19]

Single instruction stream, multiple data streams (SIMD)

A computer which exploits multiple data streams against a single stream to

perform operations which may be naturally parallelized. For example, an array

processor or graphics processing unit (GPU). [14]
 This system has only one CPU acting

as the control unit and a number of ALUs which execute the given commands, with

a limited amount of personal memory. The CPU will broadcast the same command

to all the ALUs, which will either respond by computing or remain idle. [19]
 In the

SIMD model there are two types of architectures:

1. Shared-memory model; and

2. Direct-connection networks.

In the shared-memory model there is a common memory, which is share by all

processors. Communication between the two processors takes place only through

the shared memory. In the direct-connection network, independent processors are

connected using wires, to any desired topologies such as rings, hyper cubes, and so

on. [18]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

22

Multiple instruction streams, single data stream (MISD)

Multiple instructions operate on one data stream. This is an uncommon

architecture which is generally used for fault tolerance. No computers have been

designed so far to fit in this model. Heterogeneous systems operate on the same

data stream and must agree on the result. Examples include the Space Shuttle flight

control computer. [14]
 An example of an MISD architecture would be a system

where each machine would perform different operations on the same data set. [19]

Multiple instruction streams, multiple data streams (MIMD)

Multiple autonomous processors (each have a control unit and an ALU)

simultaneously executing different instructions on different data. MIMD

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

23

architectures include multi-core superscalar processors, and distributed systems,

using either one shared memory space or a distributed memory space. [14]
 This kind

of system is considered asynchronous and only operates synchronously if

specifically programed to operate that way. Since this design has separate

instruction and data stream, it is well suited for a wide variety of applications. [19]

Single instruction, multiple threads (SIMT)

Single instruction, multiple threads (SIMT) is an execution model used in

parallel computing where single instruction, multiple data (SIMD) is combined with

multithreading. This is not originally part of Flynn's taxonomy but a proposed

addition. [14]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

24

Primitive levels of Parallelism

Advances in technology determine what is possible; architecture translates

the potential of the technology into performance and capability. There are

fundamentally two ways in which a larger volume of resources, more transistors,

improves performance: parallelism and locality. Moreover, these two

fundamentally compete for the same resources. Whenever multiple operations are

performed in parallel the number of cycles required to execute the program is

reduced.

Examining the trends in microprocessor architecture will help build intuition

towards the issues we will be dealing with in parallel machines. It will also illustrate

how fundamental parallelism is to conventional computer architecture and how

current architectural trends are leading toward multiprocessor designs. [21]

Bit-level Parallelism
The history of computer architecture has traditionally been divided into four

generations identified by the basic logic technology: tubes, transistors, integrated

circuits, and VLSI. Into the fourth or VLSI generation there has been tremendous

architectural advance. The strongest delineation is the kind of parallelism that is

exploited. The period up to about 1985 is dominated by advancements in bit-level

parallelism, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on.

Doubling the width of the datapath reduces the number of cycles required to

perform a full 32-bit operation. This trend slows once a 32-bit word size is reached

in the mid-80s, with only partial adoption of 64-bit operation obtained a decade

later. Further increases in word-width will be driven by demands for improved

floating-point representation and a larger address space, rather than performance.

With address space requirements growing by less than one bit per year, the

demand for 128-bit operation appears to be well in the future. The early

microprocessor period was able to reap the benefits of the easiest form of

parallelism: bit-level parallelism in every operation.

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

25

Instruction-Level Parallelism
The period from the mid-80s to mid-90s is dominated by advancements in

instruction-level parallelism. Full word operation meant that the basic steps in

instruction processing (instruction decode, integer arithmetic, and address

calculation) could be performed in a single cycle; with caches the instruction fetch

and data access could also be performed in a single cycle, most of the time. The

RISC approach demonstrated that, with care in the instruction set design, it was

straightforward to pipeline the stages of instruction processing so that an

instruction is executed almost every cycle, on average. Thus the parallelism

inherent in the steps of instruction processing could be exploited across a small

number of instructions. While pipelined instruction processing was not new, it had

never before been so well suited to the underlying technology. In addition,

advances in compiler technology made instruction pipelines more effective.

However, increasing the amount of instruction level parallelism that the

processor can exploit is only worthwhile if the processor can be supplied with

instructions and data fast enough to keep it busy. In order to satisfy the increasing

instruction and data bandwidth requirement, larger and larger caches were placed

on-chip with the processor, further consuming the ever increasing number of

transistors. With the processor and cache on the same chip, the path between the

two could be made very wide to satisfy the bandwidth requirement of multiple

instruction and data accesses per cycle. However, as more instructions are issued

each cycle, the performance impact of each control transfer and each cache miss

becomes more significant.

26

ILP: Implementation Techniques

How much ILP exists in programs is very application specific. In certain fields,

such as graphics and scientific computing the amount can be very large. However,

workloads such as cryptography may exhibit much less parallelism.

Micro-architectural techniques that are used to exploit ILP include:

 Instruction pipelining where the execution of multiple instructions can be

partially overlapped.

 Superscalar execution, VLIW, and the closely related explicitly parallel

instruction computing concepts, in which multiple execution units are used

to execute multiple instructions in parallel.

 Out-of-order execution where instructions execute in any order that does

not violate data dependencies.

 Register renaming which refers to a technique used to avoid unnecessary

serialization of program operations imposed by the reuse of registers by

those operations, used to enable out-of-order execution.

 Speculative execution which allow the execution of complete instructions or

parts of instructions before being certain whether this execution should take

place. A commonly used form of speculative execution is control flow

speculation.

 Branch prediction which is used to avoid stalling for control dependencies to

be resolved. Branch prediction is used with speculative execution.

 Dataflow architectures

It is known that the ILP is exploited by both the compiler and hardware support

but the compiler also provides inherit and implicit ILP in programs to hardware by

compilation optimization. Some optimization techniques for extracting available

ILP in programs would include scheduling, register allocation/renaming, and

memory access optimization. [14]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

27

Thread-Level Parallelism
Task parallelism (also known as function parallelism and control parallelism)

is a form of parallelization of computer code across multiple processors in parallel

computing environments. Task parallelism focuses on distributing tasks—

concurrently performed by processes or threads—across different processors. In

contrast to data parallelism which involves running the same task on different

components of data, task parallelism is distinguished by running many different

tasks at the same time on the same data. [50]
 A common type of task parallelism

is pipelining which consists of moving a single set of data through a series of

separate tasks where each task can execute independently of the others.

In a multiprocessor system, task parallelism is achieved when each processor
executes a different thread (or process) on the same or different data. The threads
may execute the same or different code. In the general case, different execution
threads communicate with one another as they work, but is not a requirement.
Communication usually takes place by passing data from one thread to the next as
part of a workflow. [51]

As a simple example, if a system is running code on a 2-processor system
(CPUs "a" & "b") in a parallel environment and we wish to do tasks "A" and "B", it
is possible to tell CPU "a" to do task "A" and CPU "b" to do task "B" simultaneously,
thereby reducing the run time of the execution. The tasks can be assigned
using conditional statements as described below.

Task parallelism emphasizes the distributed (parallelized) nature of the
processing (i.e. threads), as opposed to the data (data parallelism). Most real
programs fall somewhere on a continuum between task parallelism and data
parallelism. [52]

Thread-level parallelism (TLP) is the parallelism inherent in an application
that runs multiple threads at once. This type of parallelism is found largely in
applications written for commercial servers such as databases. By running many
threads at once, these applications are able to tolerate the high amounts of I/O and
memory system latency their workloads can incur - while one thread is delayed
waiting for a memory or disk access, other threads can do useful work.

The exploitation of thread-level parallelism has also begun to make inroads
into the desktop market with the advent of multi-core microprocessors. This has
occurred because, for various reasons, it has become increasingly impractical to

https://en.wikipedia.org/wiki/Parallelization
https://en.wikipedia.org/wiki/Computer_code
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Workflow
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/CPU
https://en.wiktionary.org/wiki/parallel
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Multi-core

28

increase either the clock speed or instructions per clock of a single core. If this trend
continues, new applications will have to be designed to utilize multiple threads in
order to benefit from the increase in potential computing power. This contrasts
with previous microprocessor innovations in which existing code was automatically
sped up by running it on a newer/faster computer.

29

Memory Models

Basic differences in types of memory.

Data and code in a parallel program are stored in the main memory

accessible for processors of the executive system. Regarding the way in which the

main memory is used by processors in a multiprocessor system, we divide parallel

systems onto shared memory system and distributed memory systems.

Shared memory
Shared memory is memory that may be simultaneously accessed by multiple

programs with an intent to provide communication among them or avoid

redundant copies. Using memory for communication inside a single program, e.g.

among its multiple threads, is also referred to as shared memory.

Shared memory is an efficient means of passing data between programs.

Depending on context, programs may run on a single processor or on multiple

separate processors.

In a shared memory system, all processors can access all the main memory

address space. Fragments of the address space are usually located in separate

memory modules, which are supplied with separate address decoders.

Communication between processors (program code fragments) is done by means

of shared variables access in the main memory. It is called communication through

shared variables. Fetching instructions for execution in processors is also done from

a shared memory. The efficiency of accessing memory modules depends on the

structure and properties of the interconnection network. This network is a factor,

which imitates the memory access throughput for a larger number of processors.

It sets a limit on the number of processors in such systems, with which good

efficiency of a parallel system is achieved. Multiprocessor systems with shared

memory are called tightly coupled systems or multiprocessors. Due to symmetric

access of all processors to all memory modules, the computations in such systems

are called Symmetric Multiprocessing - SMP.

A shared memory system is relatively easy to program since all processors

share a single view of data and the communication between processors can be as

30

fast as memory accesses to a same location. The issue with shared memory systems

is that many CPUs need fast access to memory and will likely cache memory, which

has two complications:

Access time degradation: when several processors try to access the same

memory location it causes contention. Trying to access nearby memory locations

may cause false sharing. Shared memory computers cannot scale very well. Most

of them have ten or fewer processors;

Lack of data coherence: whenever one cache is updated with information

that may be used by other processors, the change needs to be reflected to the

other processors, otherwise the different processors will be working with

incoherent data. Such cache coherence protocols can, when they work well,

provide extremely high-performance access to shared information between

multiple processors. On the other hand, they can sometimes become overloaded

and become a bottleneck to performance.

A multiprocessor system with shared memory (tightly coupled system)

31

Distributed memory
Distributed memory refers to a multiprocessor computer system in which

each processor has its own private memory. Computational tasks can only operate

on local data, and if remote data is required, the computational task must

communicate with one or more remote processors. In contrast, a shared memory

multiprocessor offers a single memory space used by all processors. Processors do

not have to be aware where data resides, except that there may be performance

penalties, and that race conditions are to be avoided.

In a distributed memory system there is typically a processor, a memory, and

some form of interconnection that allows programs on each processor to interact

with each other. The interconnect can be organized with point to point links or

separate hardware can provide a switching network.

In a distributed memory multiprocessor system, each processor has its local

memory with the address space available only for this processor. Processors can

exchange data through the interconnection network by means of communication

through the message passing.

The instructions "send message" and "receive message" are used in

programs for this purpose. The communication instructions send or receive

messages with the use of identifiers of special elements (variables) are called

communication channels.

The channels represent the use of connections that exist permanently (or are

created in the interconnection network) between processors. There exist

processors that are specially adapted for sending and receiving messages by the

existence of communication links. Communication links can be serial or parallel.

The number of communication links in such processors is from 4 to 6 (ex. transputer

- 4 serial links, SHARC - a DSP (Data Signal Processor) from Analog Devices - 6

parallel links). Each link is supervised by an independent processor controller that

organizes external data transmissions over the link. When a message is sent, it is

fetched from the processor main memory. A message received from a link is next

sent to the main memory. Multiprocessor systems that have distributed memory

are called in the literature loosely coupled systems. In such systems, it is possible

to organize many inter-processor connections at the same time. It provides high

communication efficiency and, as a consequence, high efficiency of parallel

32

computations in processors (due to distribution of memory accesses), which gives

rise to calling computations in such systems the Massively Parallel Processing -

MPP.

Communication by message passing in such systems can be executed

according to the synchronous or asynchronous communication model.

In the synchronous communication model, the partner processes (programs)

- the sending and the receiving one, get synchronized on communication

instructions in a given channel. It means that the sending process can start

transmitting data only if the receiving process in another processor has reached

execution of the receive instruction in the same channel as the sending one. Since

the communication is performed with the use of send and receive instructions in

both processors simultaneously, there is no need of buffering of messages, and so,

they are sent as if they were sent directly from the main memory of one processor

to the memory of the other one. All this is done under supervision of link controllers

in both processors.

With the asynchronous communication model, the sending and receiving

processes (programs) do not synchronize communication execution in the involved

channels. A message is sent to a channel at any time and it is directed to the buffer

for messages in a given channel in the controller at the other side of the

interconnection between the processors. The receiving process reads the message

from the buffer of the given channel at any convenient time.

The third type of multiprocessor systems are systems with the distributed

shared memory called also the virtual shared memory. In such systems, which

currently show strong development, each processor has a local main memory.

However, each memory is placed in a common address space of the entire system.

It means that each processor can have access to the local memory of any other

processor. In this type of the system, communication between processors is done

by accessing shared variables. It involves execution of a simple read or write

instruction convening the shared variables in the memory of another processor. In

each processor, a memory interface unit examines addresses used in current

processor memory access instructions. As a result, it directs instruction execution

to the local main memory bus or it sends the address together with the operation

33

code to the local memory interface of another processor. Sending the address and

later the data is performed through the network that connects all processors

A multiprocessor system with a distributed memory (loosely coupled system)

Memory Access
Uniform memory access (UMA)

Uniform memory access (UMA) is a shared memory architecture used

in parallel computers. All the processors in the UMA model share the physical

memory uniformly. In a UMA architecture, access time to a memory location is

independent of which processor makes the request or which memory chip contains

the transferred data. In the UMA architecture, each processor may use a private

cache. Peripherals are also shared in some fashion. The UMA model is suitable for

general purpose and time sharing applications by multiple users. It can be used to

speed up the execution of a single large program in time-critical applications.

There are three types of UMA architectures:

 UMA using bus-based symmetric multiprocessing (SMP) architectures;

https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Parallel_computer
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing

34

 UMA using crossbar switches;

 UMA using multistage interconnection networks. [25]

In April 2013, the term hUMA (heterogeneous uniform memory access) began

to appear in AMD promotional material to refer to CPU and GPU sharing the same

system memory via cache coherent views. Advantages include an easier

programming model and less copying of data between separate memory pools. [26]

Non-uniform memory access (NUMA)

Non-uniform memory access (NUMA) is a computer memory design used
in multiprocessing, where the memory access time depends on the memory
location relative to the processor. Under NUMA, a processor can access its
own local memory faster than non-local memory (memory local to another
processor or memory shared between processors). The benefits of NUMA are
limited to particular workloads, notably on servers where the data is often
associated strongly with certain tasks or users.

NUMA architectures logically follow in scaling from symmetric
multiprocessing (SMP) architectures. They were developed commercially during
the 1990s by Burroughs (later Unisys), Convex Computer (later Hewlett-
Packard), Honeywell Information Systems Italy (HISI) (later Groupe Bull), Silicon
Graphics (later Silicon Graphics International), Sequent Computer
Systems (later IBM), Data General (later EMC), and Digital (later Compaq, then HP,

https://en.wikipedia.org/wiki/Crossbar_switch
https://en.wikipedia.org/wiki/Multistage_interconnection_networks
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Cache_coherence
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Local_memory
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/Unisys
https://en.wikipedia.org/wiki/Convex_Computer
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/Groupe_Bull
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/Silicon_Graphics_International
https://en.wikipedia.org/wiki/Sequent_Computer_Systems
https://en.wikipedia.org/wiki/Sequent_Computer_Systems
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Data_General
https://en.wikipedia.org/wiki/EMC_Corporation
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Compaq
https://en.wikipedia.org/wiki/Hewlett-Packard

35

now HPE). Techniques developed by these companies later featured in a variety
of Unix-like operating systems, and to an extent in Windows NT. [53]

Modern CPUs operate considerably faster than the main memory they use.
In the early days of computing and data processing, the CPU generally ran slower
than its own memory. The performance lines of processors and memory crossed in
the 1960s with the advent of the first supercomputers. Since then, CPUs
increasingly have found themselves "starved for data" and having to stall while
waiting for data to arrive from memory. Many supercomputer designs of the 1980s
and 1990s focused on providing high-speed memory access as opposed to faster
processors, allowing the computers to work on large data sets at speeds other
systems could not approach.

Limiting the number of memory accesses provided the key to extracting high
performance from a modern computer. For commodity processors, this meant
installing an ever-increasing amount of high-speed cache memory and using
increasingly sophisticated algorithms to avoid cache misses. But the dramatic
increase in size of the operating systems and of the applications run on them has
generally overwhelmed these cache-processing improvements. Multi-processor
systems without NUMA make the problem considerably worse. Now a system can
starve several processors at the same time, notably because only one processor
can access the computer's memory at a time. [27]

NUMA attempts to address this problem by providing separate memory for
each processor, avoiding the performance hit when several processors attempt to
address the same memory. For problems involving spread data (common
for servers and similar applications), NUMA can improve the performance over a
single shared memory by a factor of roughly the number of processors (or separate
memory banks). [28]

Another approach to addressing this problem, used mainly in non-NUMA
systems, is the multi-channel memory architecture, in which a linear increase in the
number of memory channels increases the memory access concurrency linearly. [29]

Of course, not all data ends up confined to a single task, which means that
more than one processor may require the same data. To handle these cases, NUMA
systems include additional hardware or software to move data between memory
banks. This operation slows the processors attached to those banks, so the overall
speed increase due to NUMA depends heavily on the nature of the running tasks.
[28]

https://en.wikipedia.org/wiki/Hewlett_Packard_Enterprise
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Cache_memory
https://en.wikipedia.org/wiki/Cache_miss
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Multi-channel_memory_architecture
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

36

One possible architecture of a NUMA system. The processors connect to the bus or crossbar by connections of varying thickness/number. This

shows that different CPUs have different access priorities to memory based on their relative location.

37

Threads

In computer science, a thread of execution is the smallest sequence of

programmed instructions that can be managed independently by a scheduler,

which is typically a part of the operating system. [30]
 The implementation of threads

and processes differs between operating systems, but in most cases a thread is a

component of a process. Multiple threads can exist within one process,

executing concurrently and sharing resources such as memory, while different

processes do not share these resources. In particular, the threads of a process share

its executable code and the values of its variables at any given time.

A process with two threads of execution, running on one processor

Threads made an early appearance in OS/360 Multiprogramming with a

Variable Number of Tasks (MVT) in 1967, in which context they were called "tasks".

The term "thread" has been attributed to Victor A. Vyssotsky. [31]
 Process

schedulers of many modern operating systems directly support both time-sliced

and multiprocessor threading, and the operating system kernel allows

programmers to manipulate threads by exposing required functionality through

the system call interface. Some threading implementations are called kernel

threads, whereas light-weight processes (LWP) are a specific type of kernel thread

that share the same state and information. Furthermore, programs can have user-

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Concurrent_computation
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/OS/360_and_successors#MVT
https://en.wikipedia.org/wiki/OS/360_and_successors#MVT
https://en.wikipedia.org/wiki/Victor_A._Vyssotsky
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Operating_system_kernel
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Light-weight_process

38

space threads when threading with timers, signals, or other methods to interrupt

their own execution, performing a sort of ad hoc time slicing.

Threads vs. processes

Threads differ from traditional multitasking operating system processes in that:

 processes are typically independent, while threads exist as subsets of a process

 processes carry considerably more state information than threads, whereas
multiple threads within a process share process state as well as memory and
other resources

 processes have separate address spaces, whereas threads share their address
space

 processes interact only through system-provided inter-process
communication mechanisms

 context switching between threads in the same process is typically faster than
context switching between processes.

Systems such as Windows NT and OS/2 are said to have cheap threads
and expensive processes; in other operating systems there is not so great a
difference except the cost of an address space switch which on some architectures
(notably x86) results in a translation look aside buffer (TLB) flush.

https://en.wikipedia.org/wiki/Ad_hoc
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

39

Single threading

In computer programming, single-threading is the processing of
one command at a time. The opposite of single-threading is multithreading. While
it has been suggested that the term single-threading is misleading, the term has
been widely accepted within the functional programming community. With
traditional single-threaded process implementation within a web server for
example, the server can serve only one client request at a time and can make the
waiting period for other users requesting services a very long time.

Multithreading

Multithreading is mainly found in multitasking operating systems.
Multithreading is a widespread programming and execution model that allows
multiple threads to exist within the context of one process. These threads share
the process's resources, but are able to execute independently. The threaded
programming model provides developers with a useful abstraction of concurrent
execution. Multithreading can also be applied to one process to enable parallel
execution on a multiprocessing system.

Multithreaded applications have the following advantages:

 Responsiveness: multithreading can allow an application to remain responsive
to input. In a one-thread program, if the main execution thread blocks on a long-
running task, the entire application can appear to freeze. By moving such long-
running tasks to a worker thread that runs concurrently with the main execution
thread, it is possible for the application to remain responsive to user input while
executing tasks in the background. On the other hand, in most cases
multithreading is not the only way to keep a program responsive, with non-
blocking I/O and/or UNIX signals being available for gaining similar results. [32]

 Faster execution: this advantage of a multithreaded program allows it to
operate faster on computer systems that have multiple central processing
units (CPUs) or one or more multi-core processors, or across a cluster of
machines, because the threads of the program naturally lend themselves to
parallel execution, assuming sufficient independence (that they do not need to
wait for each other).

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_data_processing
https://en.wikipedia.org/wiki/Command_(computing)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Non-blocking_I/O
https://en.wikipedia.org/wiki/Non-blocking_I/O
https://en.wikipedia.org/wiki/Unix_signals
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Computer_cluster

40

 Lower resource consumption: using threads, an application can serve multiple
clients concurrently using fewer resources than it would need when using
multiple process copies of itself.

 Better system utilization: as an example, a file system using multiple threads can
achieve higher throughput and lower latency since data in a faster medium
(such as cache memory) can be retrieved by one thread while another thread
retrieves data from a slower medium (such as external storage) with neither
thread waiting for the other to finish.

 Simplified sharing and communication: unlike processes, which require
a message passing or shared memory mechanism to perform inter-process
communication (IPC), threads can communicate through data, code and files
they already share.

 Parallelization: applications looking to use multicore or multi-CPU systems can
use multithreading to split data and tasks into parallel subtasks and let the
underlying architecture manage how the threads run, either concurrently on
one core or in parallel on multiple cores. GPU computing environments
like CUDA and OpenCL use the multithreading model where dozens to hundreds
of threads run in parallel across data on a large number of cores.

Concurrency and data structures

Threads in the same process share the same address space. This allows
concurrently running code to couple tightly and conveniently exchange data
without the overhead or complexity of an IPC. When shared between threads,
however, even simple data structures become prone to race conditions if they
require more than one CPU instruction to update: two threads may end up
attempting to update the data structure at the same time and find it unexpectedly
changing underfoot. Bugs caused by race conditions can be very difficult to
reproduce and isolate.

To prevent this, threading application programming interfaces (APIs)
offer synchronization primitives such as mutexes to lock data structures against
concurrent access. On uniprocessor systems, a thread running into a locked mutex
must sleep and hence trigger a context switch. On multi-processor systems, the
thread may instead poll the mutex in a spinlock. Both of these may sap
performance and force processors in symmetric multiprocessing (SMP) systems to
contend for the memory bus, especially if the granularity of the locking is fine.

https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Manycore
https://en.wikipedia.org/wiki/Coupling_(computer_science)
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Race_condition#Computing
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Synchronization_primitive
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Granularity

41

Although threads seem to be a small step from sequential

computation, in fact, they represent a huge step. They discard the most

essential and appealing properties of sequential computation:

understandability, predictability, and determinism. Threads, as a model of

computation, are wildly non-deterministic, and the job of the programmer

becomes one of pruning that non-determinism.

The Problem with Threads, Edward A. Lee, UC Berkeley, 2006

42

Challenges in Concurrent Programming

Race Conditions
A race condition occurs when two or more threads can access shared data

and they try to change it at the same time. Because the thread scheduling algorithm
can swap between threads at any time, you don't know the order in which the
threads will attempt to access the shared data. Therefore, the result of the change
in data is dependent on the thread scheduling algorithm, i.e. both threads are
"racing" to access/change the data.

Problems often occur when one thread does a "check-then-act" (e.g. "check"
if the value is X, then "act" to do something that depends on the value being X) and
another thread does something to the value in between the "check" and the "act".
E.g.:

if (x == 5) // The "Check"

{

 y = x * 2; // The "Act"

 // If another thread changed x in between "if (x == 5)" and "y = x * 2"

above,

 // y will not be equal to 10.

}

The point being, y could be 10, or it could be anything, depending on whether
another thread changed x in between the check and act. You have no real way of
knowing.

In order to prevent race conditions from occurring, you would typically put a
lock around the shared data to ensure only one thread can access the data at a
time. This would mean something like this: [40]

// Obtain lock for x

if (x == 5)

{

 y = x * 2; // Now, nothing can change x until the lock is released.

 // Therefore y = 10

}

// release lock for x

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

43

Data Races
A data race occurs when two (or more) tasks attempt to access the same

shared memory location, at least one of the accesses is a write, and the accesses
may happen simultaneously.
For instance:

int x = 0;
 x = 1; ||| printf("%d", x);

While race conditions may be benign, data races must be avoided! In many

programming languages, they have very weak semantics (e.g., your program might
crash).

Data races denote concurrent access to shared variables with insufficient
lock protection, leading to a corrupted program state. Classical, or low-level, data
races concern accesses to single fields. The notion of high-level data races deals
with accesses to sets of related fields which should be accessed atomically. View
consistency is a novel concept considering the association of variable sets to locks.
This permits detecting high-level data races that can lead to an inconsistent
program state, similar to classical low-level data races. Experiments on a small set
of applications have shown that developers seem to follow the guideline of view
consistency to a surprisingly large extent. Thus view consistency captures an
important idea in multithreading design. [41]

Deadlocks

A deadlock is a state in which each member of a group is waiting for some
other member to take action, such as sending a message or more commonly
releasing a lock. [42]

 Deadlock is a common problem
in multiprocessing systems, parallel computing, and distributed systems, where
software and hardware locks are used to handle shared resources and
implement process synchronization. [43]

In an operating system, a deadlock occurs when a process or thread enters a
waiting state because a requested system resource is held by another waiting
process, which in turn is waiting for another resource held by another waiting
process. If a process is unable to change its state indefinitely because the resources
requested by it are being used by another waiting process, then the system is said
to be in a deadlock. [44]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

44

In a communications system, deadlocks occur mainly due to lost or corrupt
signals rather than resource contention. [45]

Necessary conditions

A deadlock situation on a resource can arise if and only if all of the following
conditions hold simultaneously in a system: [44]

1. Mutual exclusion: The resources involved must be unshareable; otherwise,
the processes would not be prevented from using the resource when
necessary. Only one process can use the resource at any given instant of
time.

2. Hold and wait or resource holding: a process is currently holding at least one
resource and requesting additional resources which are being held by other
processes.

3. No preemption: a resource can be released only voluntarily by the process
holding it.

4. Circular wait: each process must be waiting for a resource which is being held
by another process, which in turn is waiting for the first process to release
the resource. In general, there is a set of waiting processes, P = {P1, P2, …, PN},
such that P1 is waiting for a resource held by P2, P2 is waiting for a resource
held by P3 and so on until PN is waiting for a resource held by P1.

These four conditions are known as the Coffman conditions from their first
description in a 1971 article by Edward G. Coffman, Jr.

Deadlock handling

Most current operating systems cannot prevent deadlocks. [44] When a
deadlock occurs, different operating systems respond to them in different non-
standard manners. Most approaches work by preventing one of the four Coffman
conditions from occurring, especially the fourth one. Major approaches are as
follows.

Ignoring deadlock

In this approach, it is assumed that a deadlock will never occur. This is also
an application of the Ostrich algorithm. This approach was initially used
by MINIX and UNIX. This is used when the time intervals between occurrences of
deadlocks are large and the data loss incurred each time is tolerable.

https://en.wikipedia.org/wiki/Communications_system
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Edward_G._Coffman,_Jr.
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Ostrich_algorithm
https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/UNIX

45

Detection

Under the deadlock detection, deadlocks are allowed to occur. Then the
state of the system is examined to detect that a deadlock has occurred and
subsequently it is corrected. An algorithm is employed that tracks resource
allocation and process states, it rolls back and restarts one or more of the processes
in order to remove the detected deadlock. Detecting a deadlock that has already
occurred is easily possible since the resources that each process has locked and/or
currently requested are known to the resource scheduler of the operating system.
[46]

After a deadlock is detected, it can be corrected by using one of the following
methods:

1. Process termination: one or more processes involved in the deadlock may be
aborted. One could choose to abort all competing processes involved in the
deadlock. This ensures that deadlock is resolved with certainty and
speed. But the expense is high as partial computations will be lost. Or, one
could choose to abort one process at a time until the deadlock is resolved.
This approach has high overhead because after each abort an algorithm
must determine whether the system is still in deadlock. Several factors must
be considered while choosing a candidate for termination, such as priority
and age of the process.

2. Resource preemption: resources allocated to various processes may be
successively preempted and allocated to other processes until the deadlock
is broken.

Prevention

Deadlock prevention works by preventing one of the four Coffman conditions
from occurring.

 Removing the mutual exclusion condition means that no process will have
exclusive access to a resource. This proves impossible for resources that cannot
be spooled. But even with spooled resources, deadlock could still occur.
Algorithms that avoid mutual exclusion are called non-blocking
synchronization algorithms.

 The hold and wait or resource holding conditions may be removed by requiring
processes to request all the resources they will need before starting up (or

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Spooling
https://en.wikipedia.org/wiki/Non-blocking_synchronization
https://en.wikipedia.org/wiki/Non-blocking_synchronization

46

before embarking upon a particular set of operations). This advance knowledge
is frequently difficult to satisfy and, in any case, is an inefficient use of resources.
Another way is to require processes to request resources only when it has none.
Thus, first they must release all their currently held resources before requesting
all the resources they will need from scratch. This too is often impractical. It is
so because resources may be allocated and remain unused for long periods.
Also, a process requiring a popular resource may have to wait indefinitely, as
such a resource may always be allocated to some process, resulting in resource
starvation.[12] (These algorithms, such as serializing tokens, are known as the all-
or-none algorithms.)

 The no preemption condition may also be difficult or impossible to avoid as a
process has to be able to have a resource for a certain amount of time, or the
processing outcome may be inconsistent or thrashing may occur. However,
inability to enforce preemption may interfere with a priority algorithm.
Preemption of a "locked out" resource generally implies a rollback, and is to be
avoided, since it is very costly in overhead. Algorithms that allow preemption
include lock-free and wait-free algorithms and optimistic concurrency control.
If a process holding some resources and requests for some another resource(s)
that cannot be immediately allocated to it, the condition may be removed by
releasing all the currently being held resources of that process.

 The final condition is the circular wait condition. Approaches that avoid circular
waits include disabling interrupts during critical sections and using a hierarchy
to determine a partial ordering of resources. If no obvious hierarchy exists, even
the memory address of resources has been used to determine ordering and
resources are requested in the increasing order of the enumeration.[3] Dijkstra's
solution can also be used.

Livelocks
A livelock is similar to a deadlock, except that the states of the processes

involved in the livelock constantly change with regard to one another, none
progressing. Livelock is a special case of resource starvation; the general definition
only states that a specific process is not progressing.

A real-world example of livelock occurs when two people meet in a narrow
corridor, and each tries to be polite by moving aside to let the other pass, but they
end up swaying from side to side without making any progress because they both
repeatedly move the same way at the same time.

https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Deadlock#cite_note-12
https://en.wikipedia.org/wiki/Serializing_tokens
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Rollback_(data_management)
https://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Deadlock#cite_note-os_galvin-3
https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution
https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution

47

Livelock is a risk with some algorithms that detect and recover from
deadlock. If more than one process takes action, the deadlock detection algorithm
can be repeatedly triggered. This can be avoided by ensuring that only one process
(chosen randomly or by priority) takes action.

Resource Starvation

Starvation is a problem encountered in concurrent computing where
a process is perpetually denied necessary resources to process its work. [47]

Starvation may be caused by errors in a scheduling or mutual exclusion algorithm,
but can also be caused by resource leaks, and can be intentionally caused via
a denial-of-service attack such as a fork bomb.

The impossibility of starvation in a concurrent algorithm is called starvation-
freedom, lockout-freedom[48]

 or finite bypass, [49]
 is an instance of liveness, and is

one of the two requirements for any mutual exclusion algorithm (the other being
correctness). The name "finite bypass" means that any process (concurrent part) of
the algorithm is bypassed at most a finite number times before being allowed
access to the shared resource. [49]

Starvation is usually caused by an overly simplistic scheduling algorithm. For
example, if a (poorly designed) multi-tasking system always switches between the
first two tasks while a third never gets to run, then the third task is being starved
of CPU time. The scheduling algorithm, which is part of the kernel, is supposed to
allocate resources equitably; that is, the algorithm should allocate resources so that
no process perpetually lacks necessary resources.

Many operating system schedulers employ the concept of process priority. A
high priority process A will run before a low priority process B. If the high priority
process (process A) blocks and never yields, the low priority process (B) will (in
some systems) never be scheduled—it will experience starvation. If there is an even
higher priority process X, which is dependent on a result from process B, then
process X might never finish, even though it is the most important process in the
system. This condition is called a priority inversion. Modern scheduling algorithms
normally contain code to guarantee that all processes will receive a minimum
amount of each important resource (most often CPU time) in order to prevent any
process from being subjected to starvation.

https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Computer_process
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Resource_leak
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Liveness
https://en.wikipedia.org/wiki/Shared_resource
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/CPU_time
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Priority_inversion

48

In computer networks, especially wireless networks, scheduling
algorithms may suffer from scheduling starvation. An example is maximum
throughput scheduling.

Starvation is similar to deadlock in that it causes a process to freeze. Two or
more processes become deadlocked when each of them is doing nothing while
waiting for a resource occupied by another program in the same set. On the other
hand, a process is in starvation when it is waiting for a resource that is continuously
given to other processes. Starvation-freedom is a stronger guarantee than the
absence of deadlock: a mutual exclusion algorithm that must choose to let one of
two processes into a critical section and picks one arbitrarily is deadlock-free, but
not starvation-free. [49]

A possible solution to starvation is to use a scheduling algorithm with priority
queue that also uses the aging technique. Aging is a technique of gradually
increasing the priority of processes that wait in the system for a long time. [44]

https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Maximum_throughput_scheduling
https://en.wikipedia.org/wiki/Maximum_throughput_scheduling
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Aging_(scheduling)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

49

Basic concepts and principles of concurrent

programming

Atomicity - Linearizability

In concurrent programming, an operation (or set of operations)
is atomic, linearizable, indivisible or uninterruptible if it appears to the rest of the
system to occur at once without being interrupted. Atomicity is a guarantee
of isolation from interrupts, signals, concurrent processes and threads. It is relevant
for thread safety and reentrancy. Additionally, atomic operations commonly have
a succeed-or-fail definition—they either successfully change the state of the
system, or have no apparent effect.

In a concurrent system, processes can access a shared object at the same
time. Because multiple processes are accessing a single object, there may arise a
situation in which while one process is accessing the object, another process
changes its contents. This example demonstrates the need for linearizability. In a
linearizable system although operations overlap on a shared object, each operation
appears to take place instantaneously. Linearizability is a strong correctness
condition, which constrains what outputs are possible when an object is accessed
by multiple processes concurrently. It is a safety property which ensures that
operations do not complete in an unexpected or unpredictable manner. If a system
is linearizable it allows a programmer to reason about the system. [12]

Atomicity is often enforced by mutual exclusion, whether at the hardware
level building on a cache coherency protocol, or the software level
using semaphores or locks. Thus, an atomic operation does not
necessarily actually occur instantaneously. The benefit comes from
the appearance: the system behaves as if each operation occurred instantly,
separated by pauses. This makes the system consistent. Because of this,
implementation details may be ignored by the user, except insofar as they affect
performance. If an operation is not atomic, the user will also need to understand
and cope with sporadic extraneous behavior caused by interactions between
concurrent operations, which by their nature are likely to be hard to reproduce and
debug.

https://en.wikipedia.org/wiki/Concurrent_programming
https://en.wikipedia.org/wiki/Isolation_(computer_science)
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Signal_(IPC)
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Cache_coherency
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Lock_(computer_science)

50

Linearizability was first introduced as a consistency
model by Herlihy and Wing in 1987. It encompassed more restrictive definitions of
atomic, such as "an atomic operation is one which cannot be (or is not) interrupted
by concurrent operations", which are usually vague about when an operation is
considered to begin and end.

An atomic object can be understood immediately and completely from its
sequential definition, as a set of operations run in parallel which always appear to
occur one after the other; no inconsistencies may emerge. Specifically,
linearizability guarantees that the invariants of a system
are observed and preserved by all operations: if all operations individually preserve
an invariant, the system as a whole will.

A concurrent system consists of a collection of processes communicating
through shared data structures or objects. Linearizability is important in these
concurrent systems where objects may be accessed by multiple processes at the
same time and a programmer needs to be able to reason about the expected
results. An execution of a concurrent system results in a history, an ordered
sequence of completed operations.

A history is a sequence of invocations and responses made of an object by a
set of threads or processes. An invocation can be thought of as the start of an
operation, and the response being the signaled end of that operation. Each
invocation of a function will have a subsequent response. This can be used to model
any use of an object.

A sequential history is one in which all invocations have immediate
responses, that is the invocation and response are considered to take place
instantaneously. A sequential history should be trivial to reason about, as it has no
real concurrency. This is where linearizability comes in.

A history σ is linearizable if there is a linear order of the completed operations such
that:

1. For every completed operation in σ, the operation returns the same result in
the execution as the operation would return if every operation was
completed one by one in order σ.

2. If an operation op1 completes (gets a response) before op2 begins (invokes),
then op1 precedes op2 in σ.[13]

https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Maurice_Herlihy
https://en.wikipedia.org/wiki/Jeannette_Wing
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

51

In other words:

 its invocations and responses can be reordered to yield a sequential history;

 that sequential history is correct according to the sequential definition of the
object;

 If a response preceded an invocation in the original history, it must still precede
it in the sequential reordering.

Primitive atomic instructions

Processors have instructions that can be used to implement locking and lock-
free and wait-free algorithms. The ability to temporarily inhibit interrupts, ensuring
that the currently running process cannot be context switched, also suffices on
a uniprocessor. These instructions are used directly by compiler and operating
system writers but are also abstracted and exposed as bytecodes and library
functions in higher-level languages:

 atomic read-write;

 atomic swap;

 test-and-set;

 fetch-and-add;

 compare-and-swap;

 Load-link / store-conditional.

High-level atomic operations

The easiest way to achieve linearizability is running groups of primitive
operations in a critical section. Strictly, independent operations can then be
carefully permitted to overlap their critical sections, provided this does not violate
linearizability. Such an approach must balance the cost of large numbers
of locks against the benefits of increased parallelism.

Another approach, favored by researchers (but not yet widely used in the
software industry), is to design a linearizable object using the native atomic
primitives provided by the hardware. This has the potential to maximize available
parallelism and minimize synchronization costs, but requires mathematical proofs
which show that the objects behave correctly.

https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
https://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Uniprocessor
https://en.wikipedia.org/wiki/Atomic_swap
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Fetch-and-add
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Load-link/store-conditional
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Lock_(computer_science)

52

A promising hybrid of these two is to provide a transactional
memory abstraction. As with critical sections, the user marks sequential code that
must be run in isolation from other threads. The implementation then ensures the
code executes atomically. This style of abstraction is common when interacting
with databases

A common theme when designing linearizable objects is to provide an all-or-
nothing interface: either an operation succeeds completely, or it fails and does
nothing. If the operation fails (usually due to concurrent operations), the user must
retry, usually performing a different operation. For example:

 Compare-and-swap writes a new value into a location only if the latter's
contents matches a supplied old value. This is commonly used in a read-modify-
CAS sequence: the user reads the location, computes a new value to write, and
writes it with a CAS (compare-and-swap); if the value changes concurrently, the
CAS will fail and the user tries again.

 Load-link/store-conditional encodes this pattern more directly: the user reads
the location with load-link, computes a new value to write, and writes it with
store-conditional; if the value has changed concurrently, the SC (store-
conditional) will fail and the user tries again.

 In a database transaction, if the transaction cannot be completed due to a
concurrent operation (e.g. in a deadlock), the transaction will be aborted and
the user must try again.

https://en.wikipedia.org/wiki/Transactional_memory
https://en.wikipedia.org/wiki/Transactional_memory
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Load-link/store-conditional
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Deadlock

53

Sequential consistency

Sequential consistency is one of the consistency models used in the domain
of concurrent computing (e.g. in distributed shared memory, distributed
transactions, etc.).

It was first defined as the property that requires that

"... the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program." [55]

To understand this statement, it is essential to understand one key property
of sequential consistency: execution order of program in the same processor (or
thread) is the same as the program order, while execution order of program
between processors (or threads) is undefined. In an example like this:

execution order between A1, B1 and C1 is preserved, that is, A1 runs before B1,
and B1 before C1. The same for A2 and B2. But, as execution order between
processors is undefined, B2 might run before or after C1 (B2 might physically run
before C1, but the effect of B2 might be seen after that of C1, which is the same as
"B2 run after C1")

Conceptually, there is single global memory and a "switch" that connects an
arbitrary processor to memory at any time step. Each processor issues memory
operations in program order and the switch provides the global serialization among
all memory operations. [56]

https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Distributed_shared_memory
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

54

The sequential consistency is weaker than strict consistency, which requires
a read from a location to return the value of the last write to that location; strict
consistency demands that operations be seen in the order in which they were
actually issued.

Data-race-free programming
As we mentioned before, data races denote concurrent access to shared

variables with insufficient lock protection, leading to a corrupted program state.

One more-or-less equivalent formulation of the above phrase can be produced

based on total ordering of instructions. In more detail, a happens-before b in a

program execution if

● a is sequenced before b in same thread

● a is a synchronization operation (e.g. lock release), that is observed by

synchronization operation b.

● a happens-before c and c happens before b.

Consequently, a data race may be defined as conflicting accesses ordered by

the happens-before principle. Thus, essentially data races are equal to non-

determinism and undefined behavior making it impossible for someone to predict

the future of an execution.

Data-race-free programming, meaning to produce pieces of concurrent and

parallel code that do not contain data races, has become the programmer-centered

model adopted to develop these pieces of code.

https://en.wikipedia.org/wiki/Strict_consistency

55

Transactional memory

Multi-core hardware is incredibly complex. In order to write

concurrent/parallel programs we need to use abstractions. Abstraction is a way to

introduce new concepts that are meaningful to humans. Abstraction tries to reduce

and factor out details so that, e.g., the programmer can focus on a few concepts at

a time.

Two common approaches are:

 Data parallelism

 Task-based parallelism

Data parallelism: the same operation is performed on different pieces of
Data. On the advantages are:

+ Simple programming model
+ Convenient for certain numeric computations (e.g., matrix operations)
+ Parallelization (e.g., synchronization and load-balancing) can be left to the
compiler and run-time system,

while a disadvantage is that it is not a universal programming model since it is only
applicable to certain data structures and programming problems.

Task-based parallelism: operations are performed on separate threads that are
coordinated with explicit synchronization (fork/join, locks, etc.)
This model places no restrictions on the code that each thread executes, when and
how threads communicate, etc.

The main advantage is that it is a universal programming model which is
capable of expressing all forms of parallel computation.
On the other hand, we should mention that it is a low level of abstraction, since it
is close to hardware, and it is also very difficult to write correct programs.

Idea: Transactions provide a convenient abstraction also for coordinating
reads and writes of shared data in a concurrent (or parallel) system. If we could
wrap a computation in a transaction, we would get atomicity, consistency and
isolation without having to worry about locking!
Since programs typically access shared data in memory, this approach to
concurrency control is known as transactional memory.

56

In computer science and engineering, transactional memory attempts to

simplify concurrent programming by allowing a group of load and store instructions

to execute in an atomic way. It is a concurrency control mechanism analogous

to database transactions for controlling access to shared memory in concurrent

computing. Transactional memory systems provide high level abstraction as an

alternative to low level thread synchronization. This abstraction allows for

coordination between concurrent reads and writes of shared data in parallel

systems. [22]

In concurrent programming, synchronization is required when parallel

threads attempt to access a shared resource. Low level thread synchronization

constructs such as locks are pessimistic and prohibit threads that are outside

a critical section from making any changes. The process of applying and releasing

locks often functions as additional overhead in workloads with little conflict among

threads. Transactional memory provides optimistic concurrency control by

allowing threads to run in parallel with minimal interference. The goal of

transactional memory systems is to transparently support regions of code marked

as transactions by enforcing atomicity, consistency, isolation and durability.

A transaction is a collection of operations that can execute and commit
changes as long as a conflict is not present. When a conflict is detected, a
transaction will revert to its initial state (prior to any changes) and will rerun until
all conflicts are removed. Before a successful commit, the outcome of any
operation is purely speculative inside a transaction. In contrast to lock-based
synchronization where operations are serialized to prevent data corruption,
transactions allow for additional parallelism as long as few operations attempt to
modify a shared resource. Since the programmer is not responsible for explicitly
identifying locks or the order in which they are acquired, programs that utilize
transactional memory cannot produce a deadlock. [23]

With these constructs in place, transactional memory provides a high level
programming abstraction by allowing programmers to enclose their methods
within transactional blocks. Correct implementations ensure that data cannot be
shared between threads without going through a transaction and produce
a serializable outcome.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_engineering
https://en.wikipedia.org/wiki/Concurrent_programming
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Serializability

57

The concept of a transaction forms the foundation of transactional memory.

Transactions first appeared as database unit abstractions with a defined set of

attributes. Transactions must appear indivisible and instantaneous to the end-user

or observer. The ACID properties were used as a requirement for database

transactions, but apply equally to transactions for memory operations.

 (A) Atomicity

Each transaction is atomic, and if part of the transaction fails then the entire

transaction fails and the system state is left unchanged

 (C) Consistency

Any transaction that is performed will take it from one consistent state to

another. This is especially imperative when looking at transactional memory

where the memory must remain in a consistent state while a transaction has

taken place.

 (I) Isolation

Other transactions or operations cannot access data that has been altered

by a transaction currently in progress.

 (D) Durability

Durability is described as the ability of a system to be able to recover

committed transaction updates. In database systems this is especially

important with regards to returning to a correct state after a system failure.

In the case of transactional memory, it is the weakest requirement. Mainly,

we can gather that once a transaction has succeeded, it cannot be lost. [24]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

58

Advantages of transactional memory

 Easy to use synchronization construct

o As easy to use as coarse-grain locks

o Programmer declares, system implements

 Often performs as well as fine-grain locks

o Automatic read-read concurrency & fine-grain concurrency

 Failure atomicity & recovery

o No lost locks when a thread fails

o Failure recovery = transaction abort + restart

 Composability

o Safe & scalable composition of software modules

Atomic () ≠ lock () +unlock ()

 The difference

o Atomic: high-level declaration of atomicity

 Does not specify implementation/blocking behavior

 Does note provide a consistency model

o Lock: low-level blocking primitive

 Does note provide atomicity or isolation on its own

 Keep in mind

o Locks can be used to implement atomic (), but...

o Locks can be used for purposes beyond atomicity

 Cannot replace all lock regions with atomic regions

o Atomic eliminates many data races, but...

o Programming with atomic blocks can still suffer from atomicity

violations. E.g., atomic sequence incorrectly split into two atomic

blocks

59

Concurrent Data Structures
(e.g. ‘Stacks’, ‘Queues’, ‘Pools’, ‘Linked lists’, ‘Hash Tables’, ‘Search Trees’, ‘Priority

Queues’)

In computer science, a concurrent data structure is a particular way of

storing and organizing data for access by multiple computing threads (or processes)

on a computer.

Historically, such data structures were used on uniprocessor machines with

operating systems that supported multiple computing threads (or processes). The

term concurrency captured the multiplexing/interleaving of the threads operations

on the data by the operating system, even though the processors never issued two

operations that accessed the data simultaneously.

Today, as multiprocessor computer architectures that provide parallelism

become the dominant computing platform (through the proliferation of multi-core

processors), the term has come to stand mainly for data structures that can be

accessed by multiple threads which may actually access the data simultaneously

because they run on different processors that communicate with one another. The

concurrent data structure (sometimes also called a shared data structure) is usually

considered to reside in an abstract storage environment called shared memory,

though this memory may be physically implemented as either a "tightly coupled"

or a distributed collection of storage modules. [14] [33]

Shared-memory multiprocessors are systems that concurrently execute
multiple threads of computation which communicate and synchronize through
data structures in shared memory. The efficiency of these data structures is crucial
to performance. On today’s machines, the layout of processors and memory, the
layout of data in memory, the communication load on the various elements of the
multiprocessor architecture all influence performance. Furthermore, the issues of
correctness and performance are closely tied to each other: algorithmic
enhancements that seek to improve performance often make it more difficult to
design and verify a correct data structure implementation.

By most accounts, concurrent data structures are far more difficult to design

than sequential ones because threads executing concurrently may interleave their

steps in many ways, each with a different and potentially unexpected outcome.

This requires designers to modify the way they think about computation, to

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

60

understand new design methodologies, and to adopt a new collection of

programming tools. Furthermore, new challenges arise in designing scalable

concurrent data structures that continue to perform well as machines that execute

more and more concurrent threads become available) [33]

https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

61

Preface on the Implementation Techniques

Mutual Exclusion
Mutual exclusion is a property of concurrency control, which is instituted for

the purpose of preventing race conditions; it is the requirement that one thread of

execution never enter its critical section at the same time that

another concurrent thread of execution enters its own critical section.

The requirement of mutual exclusion was first identified and solved
by Edsger W. Dijkstra in his seminal 1965 paper titled Solution of a problem in
concurrent programming control, which is credited as the first topic in the study
of concurrent algorithms. [34] [35]

A simple example of why mutual exclusion is important in practice can be
visualized using a singly linked list of four items, where the second and third are to
be removed. The removal of a node that sits between 2 other nodes is performed
by changing the next pointer of the previous node to point to the next node (in
other words, if node i is being removed, then the next pointer of node i − 1 is
changed to point to node i + 1, thereby removing from the linked list any reference
to node i). When such a linked list is being shared between multiple threads of
execution, two threads of execution may attempt to remove two different nodes
simultaneously, one thread of execution changing the next pointer of node i − 1 to
point to node i + 1, while another thread of execution changes the next pointer of
node i to point to node i + 2. Although both removal operations complete
successfully, the desired state of the linked list is not achieved: node i + 1 remains
in the list, because the next pointer of node i − 1 points to node i + 1.

Two nodes, i and i + 1, being removed simultaneously results

in node i + 1 not being removed.

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Concurrent_algorithm
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Singly_linked_list

62

This problem (called a race condition) can be avoided by using the
requirement of mutual exclusion to ensure that simultaneous updates to the same
part of the list cannot occur.

The term mutual exclusion is also used in reference to the simultaneous
writing of a memory address by one thread while the aforementioned memory
address is being manipulated or read by another thread or other threads.

The problem which mutual exclusion addresses is a problem of resource
sharing: how can a software system control multiple processes' access to a shared
resource, when each process needs exclusive control of that resource while doing
its work? The mutual-exclusion solution to this makes the shared resource available
only while the process is in a specific code segment called the critical section. It
controls access to the shared resource by controlling each mutual execution of that
part of its program where the resource would be used.

A successful solution to this problem must have at least these two properties:

 It must implement mutual exclusion: only one process can be in the critical
section at a time.

 It must be free of deadlocks: if processes are trying to enter the critical section,
one of them must eventually be able to do so successfully, provided no process
stays in the critical section permanently.

There exist both software and hardware solutions for enforcing mutual exclusion.
Some different solutions are discussed below.

https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Deadlock

63

Hardware solutions

On uniprocessor systems, the simplest solution to achieve mutual exclusion
is to disable interrupts during a process's critical section. This will prevent
any interrupt service routines from running (effectively preventing a process from
being preempted). Although this solution is effective, it leads to many problems. If
a critical section is long, then the system clock will drift every time a critical section
is executed because the timer interrupt is no longer serviced, so tracking time is
impossible during the critical section. Also, if a process halts during its critical
section, control will never be returned to another process, effectively halting the
entire system. A more elegant method for achieving mutual exclusion is the busy-
wait.

Busy-waiting is effective for both uniprocessor and multiprocessor systems.
The use of shared memory and an atomic test-and-set instruction provide the
mutual exclusion. A process can test-and-set on a location in shared memory, and
since the operation is atomic, only one process can set the flag at a time. Any
process that is unsuccessful in setting the flag can either go on to do other tasks
and try again later, release the processor to another process and try again later, or
continue to loop while checking the flag until it is successful in acquiring
it. Preemption is still possible, so this method allows the system to continue to
function—even if a process halts while holding the lock.

Several other atomic operations can be used to provide mutual exclusion of
data structures; most notable of these is compare-and-swap (CAS). CAS can be used
to achieve wait-free mutual exclusion for any shared data structure by creating a
linked list where each node represents the desired operation to be performed. CAS
is then used to change the pointers in the linked list [36]

 during the insertion of a
new node. Only one process can be successful in its CAS; all other processes
attempting to add a node at the same time will have to try again. Each process can
then keep a local copy of the data structure, and upon traversing the linked list, can
perform each operation from the list on its local copy.

https://en.wikipedia.org/wiki/Uniprocessor
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_service_routine
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/System_clock
https://en.wikipedia.org/wiki/Busy-wait
https://en.wikipedia.org/wiki/Busy-wait
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Wait-free
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1

64

Software solutions

Beside hardware-supported solutions, some software solutions exist that
use busy waiting to achieve mutual exclusion. Examples of these include the
following:

 Dekker's algorithm

 Peterson's algorithm

 Lamport's bakery algorithm

 Szymanski's algorithm

 Taubenfeld's black-white bakery algorithm.

These algorithms do not work if out-of-order execution is used on the platform
that executes them. Programmers have to specify strict ordering on the memory
operations within a thread. [37]

It is often preferable to use synchronization facilities provided by an operating
system's multithreading library, which will take advantage of hardware solutions if
possible but will use software solutions if no hardware solutions exist.

The solutions explained above can be used to build the synchronization primitives
below:

 locks (mutexes);

 readers–writer locks

 recursive locks

 semaphores

 monitors

 message passing

 Tuple space.

https://en.wikipedia.org/wiki/Busy_waiting
https://en.wikipedia.org/wiki/Dekker%27s_algorithm
https://en.wikipedia.org/wiki/Peterson%27s_algorithm
https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm
https://en.wikipedia.org/wiki/Szymanski%27s_algorithm
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Reentrant_mutex
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Tuple_space

65

Locks
In computer science, a lock or mutex (from mutual exclusion) is

a synchronization mechanism for enforcing limits on access to a resource in an

environment where there are many threads of execution. A lock is designed to

enforce a mutual exclusion concurrency control policy. [14]

Generally, locks are advisory locks, where each thread cooperates by
acquiring the lock before accessing the corresponding data. Some systems also
implement mandatory locks, where attempting unauthorized access to a locked
resource will force an exception in the entity attempting to make the access.

The simplest type of lock is a binary semaphore. It provides exclusive access
to the locked data. Other schemes also provide shared access for reading data.
Other widely implemented access modes are exclusive, intend-to-exclude and
intend-to-upgrade.

Another way to classify locks is by what happens when the lock
strategy prevents progress of a thread. Most locking designs block the execution of
the thread requesting the lock until it is allowed to access the locked resource. With
a spinlock, the thread simply waits ("spins") until the lock becomes available. This
is efficient if threads are blocked for a short time, because it avoids the overhead
of operating system process re-scheduling. It is inefficient if the lock is held for a
long time, or if the progress of the thread that is holding the lock depends on
preemption of the locked thread.

Locks typically require hardware support for efficient implementation. This
support usually takes the form of one or more atomic instructions such as "test-
and-set", "fetch-and-add" or "compare-and-swap". These instructions allow a
single process to test if the lock is free, and if free, acquire the lock in a single atomic
operation.

Uniprocessor architectures have the option of using uninterruptable
sequences of instructions—using special instructions or instruction prefixes to
disable interrupts temporarily—but this technique does not work
for multiprocessor shared-memory machines. Proper support for locks in a
multiprocessor environment can require quite complex hardware or software
support, with substantial synchronization issues.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/w/index.php?title=Lock_strategy&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Lock_strategy&action=edit&redlink=1
https://en.wikipedia.org/wiki/Blocking_(computing)
https://en.wikipedia.org/wiki/Execution_(computers)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Atomic_(computer_science)
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Fetch-and-add
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Uniprocessor
https://en.wikipedia.org/w/index.php?title=Uninterruptable_sequence&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Uninterruptable_sequence&action=edit&redlink=1
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Synchronization

66

The reason an atomic operation is required is because of concurrency, where
more than one task executes the same logic. For example, consider the
following C code:

The above example does not guarantee that the task has the lock, since more
than one task can be testing the lock at the same time. Since both tasks will detect
that the lock is free, both tasks will attempt to set the lock, not knowing that the
other task is also setting the lock. Dekker's or Peterson's algorithm are possible
substitutes if atomic locking operations are not available.

Careless use of locks can result in deadlock or livelock. A number of strategies
can be used to avoid or recover from deadlocks or livelocks, both at design-time
and at run-time. (The most common strategy is to standardize the lock acquisition
sequences so that combinations of inter-dependent locks are always acquired in a
specifically defined "cascade" order.)

Disadvantages

Lock-based resource protection and thread/process synchronization have many
disadvantages:

 Contention: some threads/processes have to wait until a lock (or a whole set of
locks) is released. If one of the threads holding a lock dies, stalls, blocks, or
enters an infinite loop, other threads waiting for the lock may wait forever.

 Overhead: the use of locks adds overhead for each access to a resource, even
when the chances for collision are very rare. (However, any chance for such
collisions is a race condition.)

 Debugging: bugs associated with locks are time dependent and can be very
subtle and extremely hard to replicate, such as deadlocks.

 Instability: the optimal balance between lock overhead and lock contention can
be unique to the problem domain (application) and sensitive to design,
implementation, and even low-level system architectural changes. These
balances may change over the life cycle of an application and may entail
tremendous changes to update (re-balance).

https://en.wikipedia.org/wiki/Atomic_operation
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Dekker%27s_algorithm
https://en.wikipedia.org/wiki/Peterson%27s_algorithm
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Livelock
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Deadlock

67

 Composability: locks are only composable (e.g., managing multiple concurrent
locks in order to atomically delete item X from table A and insert X into table B)
with relatively elaborate (overhead) software support and perfect adherence
by applications programming to rigorous conventions.

 Priority inversion: a low-priority thread/process holding a common lock can
prevent high-priority threads/processes from proceeding. Priority
inheritance can be used to reduce priority-inversion duration. The priority
ceiling protocol can be used on uniprocessor systems to minimize the worst-
case priority-inversion duration, as well as prevent deadlock.

 Convoying: all other threads have to wait if a thread holding a lock is
descheduled due to a time-slice interrupt or page fault.

https://en.wikipedia.org/wiki/Priority_inversion
https://en.wikipedia.org/wiki/Priority_inheritance
https://en.wikipedia.org/wiki/Priority_inheritance
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Lock_convoy

68

Spinlocks

A spinlock is a lock which causes a thread trying to acquire it to simply wait
in a loop ("spin") while repeatedly checking if the lock is available. Since the thread
remains active but is not performing a useful task, the use of such a lock is a kind
of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly
released, although in some implementations they may be automatically released if
the thread being waited on (that which holds the lock) blocks, or "goes to sleep".

Because they avoid overhead from operating system process
rescheduling or context switching, spinlocks are efficient if threads are likely to be
blocked for only short periods. For this reason, operating-system kernels often use
spinlocks. However, spinlocks become wasteful if held for longer durations, as they
may prevent other threads from running and require rescheduling. The longer a
thread holds a lock, the greater the risk that the thread will be interrupted by the
OS scheduler while holding the lock. If this happens, other threads will be left
"spinning" (repeatedly trying to acquire the lock), while the thread holding the lock
is not making progress towards releasing it. The result is an indefinite
postponement until the thread holding the lock can finish and release it. This is
especially true on a single-processor system, where each waiting thread of the
same priority is likely to waste its quantum (allocated time where a thread can run)
spinning until the thread that holds the lock is finally finished.

Implementing spin locks correctly offers challenges because programmers
must take into account the possibility of simultaneous access to the lock, which
could cause race conditions. Generally, such implementation is possible only with
special assembly-language instructions, such as atomic test-and-set operations,
and cannot be easily implemented in programming languages not supporting truly
atomic operations. [38]

 On architectures without such operations, or if high-level
language implementation is required, a non-atomic locking algorithm may be used,
e.g. Peterson's algorithm. But note that such an implementation may require
more memory than a spinlock, be slower to allow progress after unlocking, and may
not be implementable in a high-level language if out-of-order execution is allowed.

https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Busy_waiting
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Operating_system_kernel
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Atomic_operation
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Peterson%27s_algorithm
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Out-of-order_execution

69

Lock-free

An algorithm is called non-blocking if failure or suspension of
any thread cannot cause failure or suspension of another thread for some
operations. These algorithms provide a useful alternative to traditional blocking
implementations. A non-blocking algorithm is lock-free if there is guaranteed
system-wide progress, and wait-free if there is also guaranteed per-thread
progress.

The word "non-blocking" was traditionally used to
describe telecommunications networks that could route a connection through a set
of relays "without having to re-arrange existing calls". Also, if the telephone
exchange "is not defective, it can always make the connection".

The traditional approach to multi-threaded programming is to use locks to
synchronize access to shared resources. Synchronization primitives such
as mutexes, semaphores, and critical sections are all mechanisms by which a
programmer can ensure that certain sections of code do not execute concurrently,
if doing so would corrupt shared memory structures. If one thread attempts to
acquire a lock that is already held by another thread, the thread will block until the
lock is free.

Blocking a thread can be undesirable for many reasons. An obvious reason is
that while the thread is blocked, it cannot accomplish anything: if the blocked
thread had been performing a high-priority or real-time task, it would be highly
undesirable to halt its progress.

Other problems are less obvious. For example, certain interactions between
locks can lead to error conditions such as deadlock, livelock, and priority inversion.
Using locks also involves a trade-off between coarse-grained locking, which can
significantly reduce opportunities for parallelism, and fine-grained locking, which
requires more careful design, increases locking overhead and is more prone to
bugs.

Unlike blocking algorithms, non-blocking algorithms do not suffer from these
downsides, and in addition are safe for use in interrupt handlers: even though
the preempted thread cannot be resumed, progress is still possible without it. In
contrast, global data structures protected by mutual exclusion cannot safely be
accessed in an interrupt handler, as the preempted thread may be the one holding
the lock.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Telecommunications_network
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Livelock
https://en.wikipedia.org/wiki/Priority_inversion
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Pre-emptive_multitasking

70

A lock-free data structure can be used to improve performance. A lock-free
data structure increases the amount of time spent in parallel execution rather than
serial execution, improving performance on a multi-core processor, because access
to the shared data structure does not need to be serialized to stay coherent.

With few exceptions, non-blocking algorithms use atomic read-modify-
write primitives that the hardware must provide, the most notable of which
is compare and swap (CAS). Critical sections are almost always implemented using
standard interfaces over these primitives. Until recently, all non-blocking
algorithms had to be written "natively" with the underlying primitives to achieve
acceptable performance. However, the emerging field of software transactional
memory promises standard abstractions for writing efficient non-blocking code.

Much research has also been done in providing basic data structures such
as stacks, queues, sets, and hash tables. These allow programs to easily exchange
data between threads asynchronously.

Additionally, some non-blocking data structures are weak enough to be
implemented without special atomic primitives. These exceptions include:

 a single-reader single-writer ring buffer FIFO, with a size which evenly divides
the overflow of one of the available unsigned integer types, can unconditionally
be implemented safely using only a memory barrier

 Read-copy-update with a single writer and any number of readers.

 Read-copy-update with multiple writers and any number of readers.

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Read-modify-write
https://en.wikipedia.org/wiki/Read-modify-write
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Queue_(data_structure)
https://en.wikipedia.org/wiki/Set_(computer_science)
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem#Without_semaphores_or_monitors
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Read-copy-update

71

Read Copy Update (RCU)

 In computer science, read-copy-update (RCU) is

a synchronization mechanism, that was added to the Linux kernel in October of

2002, based on mutual exclusion. [39]
 It is used when performance of reads is crucial

and is an example of space–time tradeoff, enabling fast operations at the cost of

more space.

Read-copy-update allows multiple threads to efficiently read from shared
memory by deferring updates after pre-existing reads to a later time while
simultaneously marking the data, ensuring new readers will read the updated data.
This makes all readers proceed as if there were no synchronization involved, hence
they will be fast, but also making updates more difficult.

RCU achieves scalability improvements by allowing reads to occur
concurrently with updates. In contrast with conventional locking primitives that
ensure mutual exclusion among concurrent threads regardless of whether they be
readers or updaters, or with reader-writer locks that allow concurrent reads but
not in the presence of updates, RCU supports concurrency between a single
updater and multiple readers. RCU ensures that reads are coherent by maintaining
multiple versions of objects and ensuring that they are not freed up until all pre-
existing read-side critical sections complete. RCU defines and uses efficient and
scalable mechanisms for publishing and reading new versions of an object, and also
for deferring the collection of old versions. These mechanisms distribute the work
among read and update paths in such a way as to make read paths extremely fast.
In some cases (non-preemptable kernels), RCU's read-side primitives have zero
overhead.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-1
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Synchronization_(computer_science)

72

The typical RCU update sequence goes something like the following:

1. Ensure that all readers accessing RCU-protected data structures carry out
their references from within an RCU read-side critical section.

2. Remove pointers to a data structure, so that subsequent readers cannot gain
a reference to it.

3. Wait for a grace period to elapse, so that all previous readers (which might
still have pointers to the data structure removed in the prior step) will have
completed their RCU read-side critical sections.

4. At this point, there cannot be any readers still holding references to the data
structure, so it now may safely be reclaimed (e.g., freed).

Read-copy-update insertion procedure. A thread allocates a structure with three fields, then sets the global pointer gptr to point to this
structure.

Read-copy-update deletion procedure

73

In the above procedure (which matches the earlier diagram), the updater is
performing both the removal and the reclamation step, but it is often helpful
for an entirely different thread to do the reclamation. Reference counting can
be used to let the reader perform removal so, even if the same thread performs
both the update step (step (2) above) and the reclamation step (step (4) above),
it is often helpful to think of them separately.

Compare and Swap

Compare-and-swap (CAS) is an atomic instruction used in multithreading to
achieve synchronization. It compares the contents of a memory location with a
given value and, only if they are the same, modifies the contents of that memory
location to a new given value. This is done as a single atomic operation. The
atomicity guarantees that the new value is calculated based on up-to-date
information; if the value had been updated by another thread in the meantime, the
write would fail. The result of the operation must indicate whether it performed
the substitution; this can be done either with a simple Boolean response (this
variant is often called compare-and-set), or by returning the value read from the
memory location (not the value written to it).

Compare-and-swap (and compare-and-swap-double) has been an integral
part of the IBM 370 (and all successor) architectures since 1970. The operating
systems that run on these architectures make extensive use of this instruction to
facilitate process (i.e., system and user tasks) and processor (i.e., central
processors) parallelism while eliminating, to the greatest degree possible, the
"disabled spin locks" which had been employed in earlier IBM operating systems.
Similarly, the use of test-and-set was also eliminated. In these operating systems,
new units of work may be instantiated "globally", into the global service priority
list, or "locally", into the local service priority list, by the execution of a single
compare-and-swap instruction. This substantially improved the responsiveness of
these operating systems.

https://en.wikipedia.org/wiki/Atomic_(computer_science)
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computer_science)#Multithreading
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Boolean_logic
https://en.wikipedia.org/wiki/System/370
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Test-and-set

74

Implementation Part

Experimentation Setup
This thesis is determined to not only explore the theoretical aspect of these

matters, but also the practical part as well. Indeed, the uttermost goal is to evaluate

the behavior of sorted lists, accessed in a multithreaded fashion, in terms of speed,

scalability, suitability and ease of implementation.

This evaluation will be conducted with respect to the prototypes explained

above. That means a variation of techniques that make a list suitable for concurrent

accesses. This includes the coarse and fine-grained locking of the nodes using

simple mutex locks, implementation of a Test and Test and Set spinlock and

applying it instead of the mutex ones, using the lock-free compare and Swap

technique and finally using gcc's library of transactional memory.

Furthermore, a simple benchmarking library is developed In order to

correctly measure the performance of each one of them. All these were developed

in C++ and compiled according to the g++11 standard.

Besides the details regarding purely the implementation part, a discussion

section will follow up, containing the outcomes of the benchmarking.

75

Of course, we have to gain some intelligence about the hardware that we are
going to experiment on, since this is a critical matter for our benchmarking. After
running the lscpu command on the terminal, we gained the following information
about our system.

When we trigger the –p flag, the detailed map of the multicore architecture can
be seen.

76

Which translates to:

Detailed description of the Data Structure and available functions

in the API

For the first mutex test, we implement a sorted simply-linked list with no

sentinels containing three (3) basic functions in its API. The implementation of the

list is simple enough. Every node consists only of its value and a pointer to the next

node. The first function is the "insert" which scans the existing list, finds the proper

position of the newly constructed node, and inserts it in the list. It represents the

"write" function. The second function is the "remove" which, given a node, either

finds the node in the list and removes it, or fails and prints the corresponding

message. It represents another type of "write" function. The third and final function

is "count" which counts the number of nodes containing the number given as input

which is the same as a "read" function. In more detail:

Insert(int v): When this function is called, firstly, traverses through the list and

searches for the position to add the given integer. When found, it allocates space

for the new node, copies the value inside it, and places it in the position found

before changing the corresponding pointers. This way, our list is being sorted the

whole time.

77

Remove(int v): When this function is called, firstly, traverses through the list and

searches if the input number is an element of the list. If not, then it returns and

goes out of scope. If it is then it changes the corresponding pointers to bypass this

node, thus deleting it virtually, and then it frees the node, deleting it physically too.

 Count(int v): When this function is called, traverses through the list searching for

the given number. When found we augment a counter dedicated to counting the

number of appearances of the specific number. When it finishes, it falls out of scope

returning this counter.

These very same functions and this data structure is also used for

benchmarking the spinlock implementation too.

As far as the lock free implementation is concerned, the only thing we

changed is that we added a sentinel to the list which at that timepoint seemed to

deal better with extreme situations as removing the head of the list and so on. This

is something that doesn't really affect our measurements significantly in any way.

Finally, the transactional memory implementation the concept involved

implementing a doubly-linked queue with right and left sentinels, and a head

pointer pointing at them. Also, the functions available in this benchmarking, were

PushLeft, PushRight, PopLeft and PopRight representing browsing shared memory

in a "write" manner, inserting and deleting.

PushLeft: When this function is called, a new node of the Queue with its value is

created. Then the new node's right is set to the old right and the old right's left is

set to the new node. Respectively the new node's left is set to sentinel and the

sentinel's right is set to the new node.

PushRight: Similarly with the PushLeft, when this function is called, a new node of

the Queue with its value is created. Then the new node's left is set to the old left

and the old left's right is set to the new node. Respectively the new node's right is

set to sentinel and the sentinel's left is set to the new node.

PopLeft: When this function is called, the left node of the list is deleted. This is

accomplished by pointing the sentinel to the 2nd node from the left and deleting

the 1st node by pointing its right to the left sentinel.

78

PopRight: Similarly, with the PopLeft, when this function is called, the right node

of the list is deleted. This is accomplished by pointing the sentinel to the 2nd node

from the right and deleting the last node by pointing its left to the right sentinel.

Adaptation to the theory
Below follows a detailed description of the aforementioned concurrent

techniques. That should be coarse and fine-grained locking of the list, further

experimentation of gcc’s memory library by implementing our own spinlock

(TestAndTestAndSet style) and integration in the above motifs, lock-free, and using

transactional memory library in gcc.

We initially developed the "Coarse grain" and "Fine grain" locking scheme of

the list. The first one (Coarse grain) seemed to be the most straight forward. Each

time a method was called, we had to lock the whole structure. So, we declared a

mutex lock, and when insert, delete and count was called, we locked the mutex, so

that every other thread that tried to access its method could not do that. So, this

meant that e.g. when inserting or deleting or counting something from the list,

other threads had to wait for the lock to be unlocked, in order to execute the

function.

HUGE difference between these two is that the second requires a lock integrated

into every node!!

The fine-grained solution seemed to be more conceptually correct regarding

the concurrent accesses on the list. However, we can’t implement the fine grain

locking with only one lock. So, having two locks every time a thread wants to access

a node of the list, we make sure that no other thread can “touch” the place we

want to change. As reasonable as the design may seem though, the implementation

was not that easy at all. We had to add a mutex inside every node of the struct and

another one for locking the head, taking care of the scenarios messing with the

head of the list. Of course, the remove method was much more difficult to take

care of than the insert or count methods. Furthermore, concerning the counting

method we had to add a lock specifically for the first node, just to take care of the

edge case that we have to count the number of appearances of the first value of

the list.

79

TATAS LOCK -- COARSE-GRAINED TATAS -- FINE-GRAINED TATAS

The second part contains the implementation of our own locking technique

using the Test And Test And Set method. The list remains the same (sorted

simply-linked list with no sentinels) with the same 3 functions insert, remove and

count.

Instead of the previous mutex we created a spinlock using std:atomic type.

In the lock() method, a do-while loop is used with another while loop inside the

block.

Test part: The inner while loop loads from the value stored in the atomic Boolean

and compares it to “false” as “false” means the lock is free. If the returned value is

“true”, it means the lock is still in use by another thread.

Test and set part: When the inner loop is broken, the condition of the outer do-

while loop is processed, which writes to the atomic Boolean the value “true”,

meaning it will be locked. The exchange () method returns the previous value of the

Boolean, so it is compared with “false” to ensure that it was our thread that got the

lock. If the comparison succeeds, it means another thread got the lock and the inner

while loop starts executing again. If the comparison fails, it means we got the lock

so the outer loop breaks as well.

 How is it in fact implemented in C++?

The flag variable has to be atomic and thus we create and atomic bool type

variable. As a result, in order to handle this variable, we have to use the

corresponding atomic load and store directives. A memory prototype has to be

followed and it is chosen from the one in the std::memory_order library.

Memory order relaxed: Relaxed operation: there are no synchronization or

ordering constraints imposed on other reads or writes, only this operation's

atomicity is guaranteed

Memory order acquire: A load operation with this memory order performs the

acquire operation on the affected memory location: no reads or writes in the

current thread can be reordered before this load. All writes in other threads that

release the same atomic variable are visible in the current thread

80

Memory order release: A store operation with this memory order performs the

release operation: no reads or writes in the current thread can be reordered after

this store. All writes in the current thread are visible in other threads that acquire

the same atomic variable and writes that carry a dependency into the atomic

variable become visible in other threads that consume the same atomic

 Load: Atomically loads and returns the current value of the atomic variable.

Memory is affected according to the value of order.

 Store: Atomically replaces the current value with desired. Memory is affected

according to the value of order.

After that, the only thing that we had to do, was to change our first coarse

and fine grain lock implementation of the list. That means that we had to replace

our mutexes used, with our TATAS lock. The rest remained the same in terms of

logic behind locking the concurrent data structure.

LOCK FREE IMPLEMENTATION

The lock-free solution was the most intriguing of them all. First of all, some

words about implementing the list. We almost kept the same structure with some

changes in respect to our goal. The pointer inside the structure now has to become

a shared pointer as well as the one pointing to our head. Our list in this case has a

sentinel, in order to have less cases to take care of when inserting and deleting.

Regarding the insert and delete functions, now everything works “a bit” differently.

All pointers used are shared pointers and the reason for that is what was stated in

the instructions, garbage collection. Also, we have implemented a copy_list

method whose work is to just take as argument a pointer of the list and create a

new one, identical, returning us the head of the new copied list. Consider the case

of a thread intending to insert or delete something on the list. It makes a copy of

the list while keeping the head of the old list, and it proceeds inserting or deleting

whatever it wants on its own copied list not having to do anything at all with the

original list.

Afterwards, when it is done modifying its own list, it checks to see if the head

of the original list that had kept in the beginning is the same up until now - meaning

that no one else had modified the list in the meantime- and if this is true it swaps

81

the head of the original list to the head of its list, making its list the original one.

This is achieved via atomic_compare_exhange guaranteeing us atomicity in the

compare and swap. If someone else had changed the list in the meantime and the

CAS instruction fails, it proceeds taking the new head and starting over, and that is

the reason our insert and delete function are wrapped up in a while(true) loop. We

have also to check if the list has changed even if a thread wanted to delete

something and did not find it, because it may have been just inserted for example.

Of course, as aforementioned, the copied lists that should have been freed after

every iteration or after completed CAS are freed automatically as we have used

shared pointers. Another thing that we have to note at this point, is that we kept

getting data races as long as we just assigned addresses to the pointers, and not

atomically load them. Keep in mind that this kind of structure doesn’t have to take

special care of count- or else reading- as changes made from every thread are made

on their private copies.

TRANSACTIONAL MEMORY

For the last implementation we developed a queue doubly-linked with two

sentinels, head of which point at them. Available functions in its API, as mentioned

above, are 4 write function. The main idea as discussed, is the ease of

implementation of the programmer, translating into physical hardware and

guaranteeing Atomicity, Consistency, Isolation, Durability properties on the critical

region. This essentially means that wrap around every critical region – shared

memory, with an atomic transaction, thus ensuring correct concurrent properties.

82

Detailed description of the benchmarking structure
Main concern of the benchmarking part was to produce legitimate and

totally unbiased results and there were a few assumptions made to help us move

towards that target. Firstly, before benchmarking starts, we prefill our list with

numbers, integers as we chose. Secondly, we wait for all worker threads to start

working and then start counting the time, so creation overhead is not included.

More importantly we run each benchmark for a specific amount of seconds and

then divide by this number to get a mean value of operations, so no noticeable

differentiation on the results could happen. Besides that, we run 3 different

benchmarks each one containing different combination of read and write

operations on the list, one containing only read accesses referred as Read, one

containing only write operations, referred as Update and the other one containing

both, referred as Mixed. The result is returned and counted in thousands of

operations per second (kops/sec).

83

Debugging issues
 This section is devoted to the debugging issues that we faced during the

development of this thesis. It is considered an equal part of the process, since

data-race hunting was one of the most time consuming processes. Embedded into

pretty much every IDE one can find the thread sanitizer tool, base of whom is the

native thread sanitizer tool provided from gcc.

 The most common data race we faced, was during the development of the

fine-grained locking mechanism from the list, something totally reasonable if we

consider the amount locks we had to deal with.

Example of a data race. Feedback with exact trace of the crash by gcc’s thread sanitizer.

84

Analysis of the trace

In the previous screenshot we can see a data race example that we faced
during the Coarse-grained implementation of the single-linked list. It concerned the
case where we had not locked the remove function (line 76). Running, during our
compile, the –fsanitizer –g command, we are provided by a complete path of the
code that is executed, the data races that happen, even their exact position. The
data race occurred when 2 different threads (T5 & T6) tried to access the same
place in memory in a different manner. As we can see, the exact same time that T6
“writes” at 0x7d040000ec88, T5 is trying to read from the same address. Inevitably
a data race happens since there is an obvious conflict about the correct value of
the 0x7d040000ec88 address.

Below, we have highlighted the code that corresponds to that kind of
unexpected behavior. It is apparent, that by not locking the remove accesses, one
node gets deleted by one thread, while another thread requests to read it but
doesn’t exist anymore.

/* insert v into the list */

void insert(T v) {

 ins_lock.lock();

 node<T>* pred = nullptr;

 node<T>* succ = first;

 //things to do while inserting

 ins_lock.unlock();

}

/* remove v from the list */

void remove(T v) {

 //ins_lock.lock();

 node<T>* pred = nullptr;

 node<T>* succ = first;

 //things to do while removing

 if(!found){

 //ins_lock.unlock;

 return;

 }

 delete current;

 //ins_lock.unlock();

}

85

Result figures

1335

1000

690

950 990 1010 1000
920

80 59 55 55 52 45.5 41 38

202
145 132 138 135 112 107 100

0

200

400

600

800

1000

1200

1400

1600

1 2 4 6 8 10 12 16

ko
p

s/
se

c

Threads

Coarse-grained locking Read, Update and Mixed

Read Update Mixed

202

235

140

108
119

157
169

177

31.5 33
46 48 50

37 35 34

78 80

108

85 78 75 75 72

0

50

100

150

200

250

1 2 4 6 8 10 12 16

ko
p

s/
se

c

Threads

Fine-grained Locking Read, Update and Mixed

Read Update Mixed

86

1340
1250

1161
1101 1082

846

701

512

76 73.5 68 65 63 45 38 26

185 187 182 170 166
112 100 65

0

200

400

600

800

1000

1200

1400

1600

1 2 4 6 8 10 12 16

ko
p

s/
se

c

Threads

Coarse-grained Locking TATAS Read, Update and Mixed

Read Update Mixed

114
141

243

328

289

5.2 4.8 4.17
20 25 35 43 44

2.2 1.9 0.96

47 56
81

101 103

5.1 3.8 3.6
0

50

100

150

200

250

300

350

1 2 4 6 8 10 12 16

ko
p

s/
se

c

Threads

Fine-grained Locking TATAS Read, Update and Mixed

Read Update Mixed

87

122

193.5

309

388

457 448 454 455

2.5 3 2.9 2.6 2.3 2.4 2.2 2.2
27 35 36.8 35 33 33.3 32 33

0

50

100

150

200

250

300

350

400

450

500

1 2 4 6 8 10 12 16

ko
p

s/
se

c

Threads

Lock-free Locking Read, Update and Mixed

Read Update Mixed

7215
4620 4205 3880 3242 1801 1652 331

26500

9302
7270 6891 5890

3810
1980 526

45700

14688
11820 11826

10155
7680

4976
3067

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 4 6 8 10 12 16

ko
p

s/
se

c

Threads

Transactional Memory

Push Left Push Left/Pop Left Push Left/Pop Right

88

Performance evaluation

Basic axes of evaluating benchmarking

Coarse vs. fine

Comparing the two charts of Coarse and Fine-grained locking we observe a

main difference and a main similarity. The basic difference is the amount of

operations that are running every second. In the Coarse-grained locking, we

achieved about 1 million operations per second in the “read” function of the

benchmark, while in the Fine grained technique this number falls to about 150.000.

The numbers achieved in the “update” and “mixed” functions, are about the same

yielding about 135.000 in update and 50.000 in mixed. The similarity lies in the fact

that as the number of threads is increasing, there is a drop in the number of

operations that we achieve every second. This happens for 2 and 4 threads in

Coarse-grained and then we have a small steady increase as the threads are

increasing. The same behavior is observed in Fine-grained when we use 2, 4 and 6

threads.

Mutex vs. spinlock

Now, comparing the previous mutex implementation with our own spinlock.

We have managed to implement a spinlock that performs just a bit better than a

mutex lock in a single-threaded execution. From 1.335.000 operations per second

in Coarse-grained we reached 1.340.000 operations per second for the read

function. Besides that, in the coarse-grained scheme the TATAS spinlock seems

more stable. From 1.340.000 operations per second in the single threaded

execution we achieved 1.082.000 operations per second using 8 threads, always

yielding more operations per second than the mutex implementation in the same

number of threads (e.g. 8 thread mutex execution gives as 990.000 operations per

second). As far as the fine-grained concept, our spinlock performs worse than a

simple mutex lock in 1 or 2 threaded execution, it scales remarkably for more

threads.

89

Mutex vs. spinlock vs. lock-free

Introducing the Lock-free technique in comparison with the mutex locking

and the spinlock that we implemented, we can see that it is by far the best of them

all as far as the scaling is concerned. We observe that as the number of threads

increases the number of operations executed is growing constantly reaching about

457.000 in 8 threads for the “read” function. Something totally reasonable, since

our Read Copy Update technique is reader-friendly. Nevertheless, we should not

disregard the fact that the number of operations executed in the other two

functions (“update” and “mixed”) is the lowest of them all. We barely achieved

3.000 operations/sec in update and 35.000 operations/sec in mixed. Respectively,

this is something expected because of the continuous copying of the structure.

Mutex vs. spinlock vs. lock-free vs. transactional

In the final part we have the results of a queue running in contrast with the

previous experiments where we had a list, either simply or doubly linked.

Nevertheless, the mentality is quite different mostly in terms of difficulty and

complexity of the codes. In this case we approach concurrency through the use of

transactional memory and the results are quite fascinating. Although we still have

a significant drop in the number of operations executed as the number of threads

is increasing however the difference in terms of performance is big enough

compared to the previous techniques despite their native algorithmic complexity

differences. Characteristically we achieved a maximum of 45.700.000 operations

per second in the PushLeft/PopRight function, 26.500.000 operations per second

in the PushLeft/PopLeft function and 7.215.000 operations per second in the

PushLeft function using one thread. As we increase the number of threads, the

number of operations that are executed is falling considerably, but this is not

enough to tarnish the abilities of this technique. As we can see, even at the lowest

level at 8 threads we have about 4.976.000 operations per second executed in the

PushLeft/PopRight function, a number that is by far better than the best estimates

of all the other techniques used. A way to reason about this is that operations are

being executed on different ends of the queue, thus enabling better circulation of

readers or writers.

90

Overall Comparison
As we can observe from the numbers, coarse grain lock works better with

only one thread working, and that seems accurate as the list gets locked for only

one thread every time, but as we increase the number of threads we have a

slowdown. On the other side, on the fine grain locking we can observe an actual

speedup pretty serious in the most cases, proving that this concept actually works

as the number of thread increases.

Using tatas lock with coarse grain, we get slightly better results

comparatively to the coarse grain locking, but overall as number of thread increases

we don’t get a slowdown as the concept of coarse graining imposes. Fine grain with

tatas lock works poorly with low number of threads, but as we increase them we

actually see some nice speedup.

As for the lock-free list it works perfectly for concurrent readers, as it allows

all of them to read the list concurrently not minding particularly of this action,

though it works poorly when inserts and deletes are happening as we stated above.

There have been some solutions about this problem in the lock free list in which

first of all copying the whole list is not needed. Besides the rest, Harris has come

up with an algorithm for a different implementation such as: place a 'mark' in the

next pointer of the soon-to-be deleted node, fail when we try to CAS the 'mark',

when detected go back to start of the list and restart. Of course, we can proceed

with plenty of implementations.

Transactional Memory performance

In all the implementations, we see a negative speed-up compared to running

the program on one thread. We think this happens because the queue

implementation works by adding or removing elements from/to the edges, and this

causes a lot of contention and transactions to fail when there is more than one

thread. When only PushLeft() function is called, the program executes slowest

compared to the others. When PushLeft() and PopLeft() functions are subsequently

called from each thread, more operations are possible.

We benchmarked PushLeft() and PopLeft() functions separately for an

explanation, and we have noticed that the popping operation is much faster

compared to the pushing operation. This probably happens because we are

91

allocating new memory dynamically when pushing new elements. The third case

(P3) is faster at all points compared to the second case (P2). This is expected and

easily explained by how the transactions work. In this case the push and the pop

functions are operating on the different parts of the queue, and their transactions

do not affect each other.

Ease of implementation / Reasoning for performance issues

COARSE

On the advantages: it was easy to perceive and implement; it is faster and

easier to implement operations that access multiple locations because they are all

guarded by the same lock, easier to implement modifications on the data structure

shape and obviously, the concept seems correct while on The disadvantages: the

list isn’t really used concurrently as threads “stand in line” to use the list, leading

to unnecessary blocking, and creating a sequential bottleneck, plus adding more

threads doesn’t seem to improve throughput. Finally, works poorly with

contention.

FINE

On the advantages: manages to have more concurrent accesses on the list

than the coarse grain lock of course, because threads can traverse in parallel thus

improves performance, while on

The disadvantages it was obviously harder to implement – spend a

respectable amount of time detecting and fixing data races- we get a long chain of

acquiring and releasing lock, making it no so efficient after all. Takes up more space

92

TATAS COARSE and FINE GRAINED

 Spinlock implementation

Implementing a spinlock is not an easy job. On the contrary, one must be

really careful, study also some basic architecture stuff, and be aware of the quality

of the result. After studying thoroughly about caching effects and the

implementation of corresponding memory library of gcc we managed to have the

desired effects. Bottom line, it is difficult to implement even a descent spinlock, but

the results of success are rewarding.

 Integration on the above techniques

In order to integrate the TATAS technique, the only thing that we had to do, was to

change our first coarse and fine grain lock implementation of the list. That means

that we had to replace our mutexes used, with our tatas_lock. The rest remained

the same in terms of logic behind locking the concurrent data structure.

LOCK FREE

On the advantages: although it may seem difficult to implement, it was easier

than the fine-grained locking, although some parts were tricky, not using locks and

not locking unlocking and/or waiting for a lock seems to be faster at first sight.

On the disadvantages: by no means is it efficient to copy an entire list at least

one time for inserting or deleting a node, making this mechanism friendly for

concurrent readers only.

93

TRANSACTIONAL MEMORY

This paradigm corresponds to actual hardware. Despite that, the library

provided by gcc literally works as a language abstraction. It is created in such a way

that the programmer should not change his course of thought while implementing,

and also that he should not be bothered with many details regarding how to

transform his data structure (use responsibly! Only when suitable of course!) to

one with capability of handling concurrent accesses. So naturally enough, the

course of implementing and handling of our data structure did not differ at all from

a sequential one. Only difference is that we wrapped around our critical parts an

atomic transaction and all of our blocks' code was automatically considered to

happen atomically, and even better with ACID properties as discussed above!

94

References

1. Barney, B. (2010). Introduction to parallel computing. Lawrence Livermore

National Laboratory.

2. Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a

quantitative approach. Elsevier.

3. Almasi, G. S., & Gottlieb, A. (1988). Highly parallel computing.

4. Adve, S., Adve, V. S., Agha, G., Frank, M. I., Garzarán, M., Hart, J. & Marinov,

D. (2008). Parallel computing research at Illinois: The UPCRC agenda. Urbana,

IL: Univ. Illinois Urbana-Champaign.

5. Singh, A., & Singh, S. P. (2013). Terminology and taxonomy parallel

computing architecture. ASIAN JOURNAL OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY, 1(5).

6. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K.

& Yelick, K. A. (2006). The landscape of parallel computing research: A view

from berkeley (Vol. 2). Technical Report UCB/EECS-2006-183, EECS

Department, University of California, Berkeley.

7. Pike, R., & Gerrand, A. (2012). Concurrency is not parallelism. Heroku Waza.

8. David, A. P., & John, L. H. (2005). Computer organization and design: the

hardware/software interface. San mateo, CA: M organ Kaufmann Publishers,

1, 998.

9. Operating System Concepts 9th edition, Abraham Silberschatz. "Chapter 4:

Threads"

10. Schneider, F. B. (2012). On concurrent programming. Springer Science &

Business Media.

11. http://www.emu.edu.tr/aelci/courses/d-318/d-318-
files/plbook/concurre.htm

12. Shavit, N., & Taubenfeld, G. (2016). The computability of relaxed data
structures: queues and stacks as examples. Distributed Computing

13. Herlihy, M. P., & Wing, J. M. (1990). Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and
Systems (TOPLAS)

14. www.wikipedia.org

95

15. Kukanov, Alexey (2008-03-04). "Why a simple test can get parallel
slowdown"

16. https://cs.stackexchange.com/questions/55433/what-is-meant-by-
superlinear-speedup-is-it-possible-to-have-superlinear-speedup

17. Grama, A. (2003). Introduction to parallel computing. Pearson Education.
18. Xavier, C., & Iyengar, S. S. (1998). Introduction to parallel algorithms (Vol. 1).

John Wiley & Sons.
19. Loebner, N. (2006). Senior Project: Parallel Programming.
20. Goodacre, J. & Sloss, A.N. 2005, "Parallelism and the ARM instruction set

architecture", Computer, vol. 38, no. 7, pp. 42-50.
21. Culler, D. E., Singh, J. P., & Gupta, A. (1999). Parallel computer architecture:

a hardware/software approach. Gulf Professional Publishing.
22. Harris, T., Larus, J., & Rajwar, R. (2010). Transactional memory (synthesis

lectures on computer architecture). Synthesis Lectures on Computer
Architecture. Morgan and Claypool.

23. "Transactional Memory: History and Development". Kukuruku Hub.
Retrieved

24. Parri, J. (2010). An introduction to transactional memory. ELG7187 Topics In
Computers: Multiprocessor Systems On Chip, fall.

25. Hwang, K., & Jotwani, N. (2011). Advanced Computer Architecture, 3e.
McGraw-Hill Education.

26. Peter Bright. AMD's "heterogeneous Uniform Memory Access" coming this
year in Kaveri, Ars Technica.

27. Blagodurov, S., Zhuravlev, S., Fedorova, A., & Kamali, A. (2010, September).
A case for NUMA-aware contention management on multicore systems. In
Proceedings of the 19th international conference on Parallel architectures
and compilation techniques. ACM.

28. Majo, Z., & Gross, T. R. (2011, May). Memory system performance in a NUMA
multicore multiprocessor. In Proceedings of the 4th Annual International
Conference on Systems and Storage. ACM.

29. "Intel Dual-Channel DDR Memory Architecture White Paper" (PDF) (Rev. 1.0
ed.). Infineon Technologies North America and Kingston Technology.

30. Lamport, L. (1979). How to make a multiprocessor computer that correctly
executes multiprocess progranm. IEEE transactions on computers.

31. Saltzer, J. H. (1966). Traffic control in a multiplexed computer system
(Doctoral dissertation, Massachusetts Institute of Technology).

32. Single-Threading: Back to the Future? Sergey Ignatchenko, Overload

http://kukuruku.co/hub/cpp/transactional-memory-history-and-development
https://arstechnica.com/information-technology/2013/04/amds-heterogeneous-uniform-memory-access-coming-this-year-in-kaveri/
https://arstechnica.com/information-technology/2013/04/amds-heterogeneous-uniform-memory-access-coming-this-year-in-kaveri/
https://web.archive.org/web/20110929024052/http:/www.kingston.com/newtech/MKF_520DDRwhitepaper.pdf
http://accu.org/index.php/journals/1634

96

33. Shavit, N., & Moir, M. (2007). Concurrent data structures. Handbook of Data
Structures and Applications.

34. Dijkstra, E. W. (1965). "Solution of a problem in concurrent programming
control". Communications of the ACM.

35. "PODC Influential Paper Award: 2002", ACM Symposium on Principles of
Distributed Computing

36. https://timharris.uk/papers/2001-disc.pdf
37. Holzmann, G. J., & Bosnacki, D. (2007). The design of a multicore extension

of the SPIN model checker.
38. Silberschatz, A. (1994). Peter B. galvin. Operating system concepts, 4th ed.,

reading, MA: Addision-wesley.
39. Guniguntala, D., McKenney, P. E., Triplett, J., & Walpole, J. (2008). The read-

copy-update mechanism for supporting real-time applications on shared-
memory multiprocessor systems with Linux. IBM Systems Journal.

40. www.stackoverflow.com
41. Artho, C., Havelund, K., & Biere, A. (2003). High‐level data races. Software

Testing, Verification and Reliability.
42. Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems:

concepts and design. pearson education.
43. Padua, D. (Ed.). (2011). Encyclopedia of parallel computing. Springer Science

& Business Media.
44. Silberschatz, A., Galvin, P. B., & Gagne, G. (2006). Operating system

principles. John Wiley & Sons.
45. Schneider, G. M., & Gersting, J. (2018). Invitation to computer science.

Cengage Learning.
46. Tanenbaum, A. S. (1995). Distributed operating systems. Pearson Education

India.
47. Đorđević-Kajan, S. (2001). Tanenbaum Andrew S.: Modern operating

systems , Prentice-Hall, Upper Saddle River, New Jersey, USA, 2001. Facta
universitatis-series: Electronics and Energetics

48. Herlihy, Maurice; Shavit, Nir (2012). The Art of Multiprocessor Programming.
Elsevier.

49. Raynal, M. (2012). Concurrent programming: algorithms, principles, and
foundations. Springer Science & Business Media.

50. Reinders, James (10 September 2007). "Understanding task and data
parallelism | ZDNet"

http://www.podc.org/influential/2002.html
https://timharris.uk/papers/2001-disc.pdf
http://www.stackoverflow.com/
https://en.wikipedia.org/wiki/Maurice_Herlihy
https://en.wikipedia.org/wiki/Nir_Shavit

97

51. Quinn, Michael J. (2007). Parallel programming in C with MPI and openMP
(Tata McGraw-Hill ed.). New Delhi: Tata McGraw-Hill Pub

52. Hicks, Michael. "Concurrency Basics"
53. Nakul Manchanda; Karan Anand (2010-05-04). "Non-Uniform Memory

Access (NUMA)" (PDF). New York University.
54. Ami Marowka, “A Study of the Usability of Multicore Threading Tools”,

International Journal of Software Engineering and Its Applications, Vol. 4,
No.3, 2010

55. Leslie Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs", IEEE Trans. Comput. C-28,9 (Sept. 1979),
690-691.

56. Sarita V. Adve, Kourosh Gharachorloo, "Shared Memory Consistency Models:
A Tutorial"

