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Abstract

Rapid increase of energy consumption has raised concerns over sup-
ply difficulties, exhaustion of energy resources and heavy environ-
mental impacts such as global warming, climate change and green-
house gasses. Ecological, economic and policy reasons require the
reduction of energy consumption in buildings. Overall worry for
energy conservation has hiked up, with the attention brought to en-
ergy consumption buildings, notably the large public ones.
To achieve lower energy consumption and better energy efficiency,
the role of the Building Energy Management Systems (BEMS) is
significant. These systems can contribute to the continuous energy
management and therefore to a better cost and energy saving perfor-
mance. Hence, data collection and analysis for the implementation
of prediction algorithms is critically important.
In this paper Principal Component Analysis (PCA) and K-means
clustering are proposed for monitoring electricity consumption in
buildings. Through PCA the correlations between independent vari-
ables (weather conditions) and energy consumption can be found,
allowing us to separate different buildings into certain groups. By
using K-means, we are able to evaluate the conclusions of the PCA.
This study aims at detecting abnormal behaviours in consumption
patterns as well as which independent variables are responsible for
them, thus acquiring the knowledge to make the right decisions for
better energy efficiency.
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Περίληψη

Η ταχεία αύξηση της κατανάλωσης ενέργειας έχει δημιουργήσει ανη-

συχίες λόγω του προβλήματος εφοδιασμού, της εξάντλησης των ενερ-

γειακών πόρων και των καίριων περιβαλλοντικών επιπτώσεων όπως

η υπερθέρμανση του πλανήτη, η αλλαγή του κλίματος και του φαινο-

μένου του θερμοκηπίου. Για οικολογικούς, οικονομικούς και πολιτι-

κούς λόγους, απαιτείται η μείωση της κατανάλωσης ενέργειας κτιρίων.

Η συλλογική συνείδηση για εξοικονόμηση ενέργειας έχει αυξηθεί, με

την προσοχή να στρέφεται κυρίως στην ενεργειακή κατανάλωση των

κτιρίων, ιδίως στα μεγαλύτερα, δημοσίας χρήσεως.

Για να επιτευχθεί χαμηλότερη κατανάλωση ενέργειας και καλύτερη ε-

νεργειακή απόδοση, ο ρόλος των Συστημάτων Διαχείρισης Κτιρίων

(BEMS) είναι άκρως σημαντικός. Τα συγκεκριμένα συστήματα μπο-
ρούν να συμβάλουν στη συνεχή ενεργειακή διαχείριση για καλύτερη

απόδοση κόστους και εξοικονόμησης ενέργειας. Ως εκ τούτου, η συλ-

λογή δεδομένων και η ανάλυση τους για την εφαρμογή αλγορίθμων

πρόβλεψης είναι εξαιρετικά θεμελιώδης.

Σε αυτή την εργασία οι αλγόριθμοι Principal Component Analysis
και K-means clustering προτείνονται για την παρακολούθηση της κα-
τανάλωσης ηλεκτρικής ενέργειας στα κτίρια. Μέσω της ανάλυσης

PCA μπορούν να βρεθούν και να υπολογισθούν οι συσχετίσεις μετα-
ξύ των ανεξάρτητων μεταβλητών (μετεωρολογικές συνθήκες) και της

κατανάλωσης ενέργειας, επιτρέποντάς μας να διαχωρίσουμε κτίρια σε

διαφορετικές ομάδες. Χρησιμοποιώντας K-means, είμαστε σε θέση
να αξιολογήσουμε τα συμπεράσματα της PCA ανάλυσης. Η μελέτη
αυτή στοχεύει στην ανίχνευση μη φυσιολογικών συμπεριφορών που

σχετίζονται με την κατανάλωση, αποσαφηνίζοντας ποιες ανεξάρτητες

μεταβλητές ευθύνονται για αυτές, επιτρέποντας μας να αποκτήσουμε

τις απαραίτητες γνώσεις για να ληφθούν οι σωστές αποφάσεις που θα

μας οδηγήσουν σε καλύτερη ενεργειακή απόδοση.
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1 Introduction

When working on energy efficiency, especially when focusing on
building efficiency, there are many of factors that affect final energy
consumption [15]. Relations can be found between the equipment
installed in the building and the weather (building acclimatization)
but also with each building’s occupants.

Nowadays, building automation has evolved sensibly beyond control
systems for HVAC and lighting. Albeit the idea of smart buildings is
present for quite a while now, with the emergence of IoT and a new
generation of intelligent edge devices, pioneering inventions are now
regarded as out-of-date. Constructions of all sizes and functions,
residential or commercial, are progressively linked to smart ecosys-
tems. These systems monitor and handle much more than climate
control and lighting. Intelligent devices aggregate point data, com-
bine, analyze, and issue data to edge computing where advanced
analytic and forecasting engines [2] will allow new levels of control,
while significantly upgrading the overall energy efficiency. These
new systems are smarter, self-learning and innovative and make re-
ducing energy consumption even easier and more valuable.

Building Energy Management Systems (BEMS) respond to climatic
conditions, the operation of the building and the human interfer-
ence. These systems enable building owners and occupants to moni-
tor, maintain and manage electrical and electromechanical functions
within a construction. BEMS development usually involves the in-
stallation of sensors, software, a network and a cloud-based data
store. BEMS functions include administration of heating, ventila-
tion and air conditioning systems, as well as lighting, security and
safety operations. Apart from these, the greater inclination of a
Building Energy Management System is its proven ability to reduce
energy consumption. Typically, a BEMS favors connection with
the user, enabling the operatives to program systems and keep the
preferable conditions steady, alert for any surfacing anomalies, and
execute pre-programmed algorithms [9], akin to a programmable
logic controller (PLC) used in industrial settings.
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The factors influencing building energy consumption can be sepa-
rated in seven categories [26]:

• Building characteristics

• User characteristics

• Climate

• Building occupants’ behaviour and activities

• Building services

• Indoor environmental quality requirements

• Social and economic factors

These seven influencing sources give a general idea of where to start
to find the consumption behaviour causes and where to devote time
to find relationships.

In this study, intelligent data-analysis methods, such as Principal
Component Analysis (PCA) and K-means Clustering, are proposed
for modelling and managing daily electricity consumption in build-
ings.

PCA is a projection technique which creates a representation of the
dependencies between variables in a lower dimension space (orthog-
onal components). Thus, the technique congregates relationships
among variables in this new subspace containing correlated infor-
mation, while non correlated information falls in the residual space.
The main purpose of a PCA implementation is the analysis of the
data in order to identify the variables responsible for such large vari-
ations and their patterns.
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Main advantages of the proposed approach to our data, which we
suppose to derive from a BEMS are summarized below:

• Monitoring (sensor errors, abnormal user behaviours, excessive
values, etc.).

• Finding abnormal consumption causes in the original moni-
tored variables.

• Finding relations involving consumption and the other indepen-
dent variables (weather conditions, year of construction, etc.).

• Detecting data errors or missing data.

• Separation of the buildings into groups with the same charac-
teristics.

K-means clustering aims to divide a set of observations into k groups
(clusters) in which each observation belongs to the group (cluster)
with the nearest mean. Through this implementation we are able
to crawl the data blocks based on their characteristics. In addition,
K-means has been applied before and after PCA implementation to
our data in order to identify the discrepancies of these two proposed
case studies.

Section 2 describes a typical BEMS and its architecture, while in
section 3 our data is presented. In the next two sections, Princi-
pal Component Analysis and K-means clustering are outlined, and
the proposed methodologies are implemented in sections 6 and 7
respectively. Afterwards, conclusions and future work are presented
in section 8.
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2 Building Energy Management Systems (BEMS)

2.1 Management of Energy Consumption

The rapid proliferation of energy usage has raised concerns over
supply difficulties, exhaustion of energy resources and heavy envi-
ronmental impacts (global warming, climate change, etc.). Environ-
mental, economic and policy reasons require the reduction of energy
consumption in buildings.

Overall worry for energy conservation has hiked up, with the at-
tention brought to energy consumption buildings, notably the large
public ones.

The European Directive for n-ZEB (nearly - Zero Energy build-
ings) [19] demands the minimization of operation cost for heating,
cooling and lighting systems. However, the proper operation of the
systems and the required comfort level should be constantly moni-
tored and adjusted to evaluate the appropriate operation. In large
buildings, like a complex of firms, several systems from different
suppliers are installed. Proper communication of a centralized man-
agement system, with the various installed information exchange
systems and higher control commands, results in the required en-
ergy savings throughout their operation period.

In this endeavor, efforts are currently focused on the satisfaction
of energy needs for the energy efficient buildings, by assuring the
operational needs with the least possible energy cost and environ-
mental protection.

2.2 Definition of a Building Energy Management System

To achieve lower energy consumption and better energy efficiency,
the role of the Building Energy Management Systems (BEMS) is
significant. These systems (Fig. 1) can contribute to the continuous
energy management and therefore to the achievement of the possible
energy and cost savings.

The International Energy Agency [12] describes a BEMS as: ”an
electrical control and monitoring system that has the ability to con-
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trol monitoring points and an operator terminal. The system can
have atrributes from all facets of building control and management
functions such as heating, ventilation and air conditioning (HVAC)
to lighting, fire alarm system, security, maintenance and energy
management”.

Another definition is that ”BEMS is a control system for individual
buildings or groups of buildings which uses computers and distributed
microprocessors for monitoring, data storage and communication”
[10].

Other terms frequently used for these systems are Building Man-
agement System (BMS) and Energy Management System (EMS).

Figure 1: A common Building Energy Management System - BEMS.

In the interest of achieving being intelligent, energy efficient, green
and other environmental-targeted aid, the centralized management
of energy consumption is designed to improve the operation of the
equipment and reduce energy usage.
In conjunction with energy management, the system can oversee and
evaluate a wide assortment of other aspects of the building, whether
residential or commercial.
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There are many energy modules in a building, such as heating, venti-
lation, HVAC systems, lighting systems, elevators, office equipment,
etc [5]. During operation, these devices may be controlled or dis-
rupted by people or the environment. Hence, it is necessary to install
various units of measurement and control in the building, with the
system temporarily deviating from the optimal or normal operation
status to be corrected back to the ideal status.

Through the BEMS real-time monitoring, the following results can
be achieved:

• The level of building management is improved.

• The inefficient equipment can be found.

• Identifying abnormal energy consumption.

• Lower peak electrical demand.

2.3 Buiding Energy Management System Architecture

BEMS creates a database for energy information and processes the
data to perform building energy saving by monitoring and analyzing
the amount of energy and its efficiency.

The BEMS system consists of four units: monitoring system, me-
tering system, control system and analysis system, as shown in Fig.
2.

1. Monitoring System
Acquires air temperature, humidity, illumination (direct light,
diffuse light), etc., indicating the indoor quality of the air and
the effect of energy utilization.

2. Metering System
Measures air-conditioning power, lighting and socket power, ac-
tive power, special power, which reflect the amount of energy
consumption.

6



3. Control System
Optimizes the operation of equipment through the building au-
tomation system.

4. Analysis System
Provides energy analysis and evaluation reports. It then pro-
vides the appropriate advice for energy-saving approaches.

Figure 2: Performance units of a BEMS [11].

The infrastructure of the decision support model plays a leading role
and is usually based on the characteristics of a typical BEMS logic
[10].
The current model (Fig. 3) includes the following components:

• Indoor sensors

Sensors that measure or record temperature, relative humid-
ity, air quality, movement and brightness in the building areas.
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• Outdoor sensors

Sensors for external conditions such as temperature, relative
humidity and illumination.

• Controllers

This component category contains switches, diaphragms, valves,
actuators etc.

• Decision unit

A real time decision support unit is included, with the following
capabilities:

– Interaction with sensors to diagnose the condition of the
building and hence the formulation of the building’s energy
profile.

– Integration of intelligent systems to select the appropriate
interventions, depending on the building’s demands.

– Communication with the building’s controllers to imple-
ment the decision.

• Database

It includes the database for the building energy features and
the knowledge database, where all the basic information is
recorded.

8



Figure 3: The main functions of a BEMS.

2.4 Analysis of Energy Efficiency

Data mining is defined as ”An interdisciplinary field bringing to-
gether techniques from machine learning, pattern recognition, statis-
tics, databases and visualization”[20]. Data mining techniques are
widely disseminated in research areas such as marketing, biology,
engineering, medicine, and social sciences to address the issue of
pattern extraction from large databases.

Data mining is also a powerful technique in providing insights into
energy patterns (Fig. 4) related to the occupants’ behaviour, sim-
plifying assessments of building saving potential by improving users’
energy profiles as well as driving building energy policy formulation.
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Figure 4: Energy Consumption Analytics.

It must be stressed that the role of the decision support systems is
extremely significant. They can contribute to the continuous energy
management of the day-to-day operations of a building, in order to
maintain the comfort conditions of the buildings’ residents and to
minimize energy consumption and cost.

Advanced control techniques based on artificial intelligence (neu-
ral networks, fuzzy logic, genetic algorithms, etc.) and distributed
control networks offer many benefits in this direction, demonstrating
a significant energy efficiency.Algorithms such as Principal Compo-
nent Analysis or various Clustering techniques are able to detect
outliers and abnormal activities. Thus, we are able to model and
monitor the energy consumption of buildings.
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3 Data Set

3.1 Building Characteristics Sheet

The data we used for this study are based on the average value
of each parameter. However the implementation of the algorithms
which are described below can be done with any other relative data
sets.

Suppose that we have eight buildings described by their features.
Let us assume that a Building Energy Management System provides
us with these 9 characteristic parameters of these buildings such as
the Electricity Consumption, Air Temperature, Wind Velocity, etc.
(Table 1). The given values are equal to the daily average and have
been calculated based on actual measurements in similar situations.

Parameters determined

Direct Light (lux, lumen/m2)

Wind Velocity (m/s)

Wind Direction (°)

Electricity Consumption (kWh)

Air Humidity (%)

Year of Construction

Number of People

Air Temperature (°C)

Fan speed

Table 1: Characteristic Parameters of each Building
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Hence, a dataset is obtained which consists of 8 buildings and 9
independent variables. The actual measurements can be arranged
in a table or a matrix of size 8 × 9. A portion of this table is shown
in Fig. 5.

Figure 5: A subset of the dataset.

A good starting point is to plot individual variables combined with
the Electricity Concumption of each Building. Two of the variables
are shown in Fig. 6.

(a) Direct Light and Electricity Consump-
tion values for each building.

(b) Wind Velocity and Electricity Con-
sumption values for each building.

Figure 6: Independent variables vs Electricity Consumption.
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4 Principal Component Analysis

4.1 PCA as Model

Hervé Abdi and Lynne J. William presented Principal component
analysis (PCA) as a ”multivariate technique that analyzes a data
table in which observations are described by several inter-correlated
quantitative dependent variables” [1]. PCA provides an efficient
way of capture the dominant components of an infinite-dimensional
process. The main purpose of this procedure is the analysis of data
to identify patterns. Finding these patterns allows us to reduce the
dimensions of the dataset with minimal loss of information.

PCA is a statistical procedure that orthogonally transforms (Fig.
7) the original n coordinates of a data set into a new set of n coor-
dinates called principal components. As a result of the transforma-
tion, the first principal component has the largest possible variance.
Each succeeding component has the highest possible variance under
the constraint that it is orthogonal to (i.e., uncorrelated with) the
preceding components. Keeping only the first m < n components
reduces the data dimensionality while retaining most of the data
information, i.e. the variation in the data.

Figure 7: Data Reduction

We need to notice that the PCA transformation is sensitive to
the relative scaling of the initial variables. Data column ranges need
to be normalized before applying PCA. Furthermore, the new co-
ordinates (PCs), as shown in Fig. 8, are not real system-produced
variables anymore. Applying PCA to our data set loses its inter-

13



pretability.

One of the methods often used to graph the results obtained from
the PCA is the bi-plot of PCA scores and loadings. It is the method
of representation that displays the data formed by transforming the
original ones into the space of the PCs (scores). The loading pro-
vides a measure of the contribution of each variable to the principal
components.

Figure 8: The fist 2 Principal Components

A Summary of the PCA Approach [17]

1. Standardize the data.

2. Obtain the Eigenvectors and Eigenvalues from the covariance
matrix or correlation matrix, or perform Singular Vector De-
composition.

3. Sort eigenvalues in descending order and choose the k eigenvec-
tors that correspond to the k-largest eigenvalues where k is the
number of dimensions of the new feature subspace (k <= d).

4. Construct the projection matrix W from the selected k eigen-
vectors.

14



5. Transform the original dataset X via W to obtain a k-dimensional
feature subspace Y.

4.2 Aspects of PCA

When large multivariate datasets are analyzed, it is often desirable
to reduce their dimensionality. In a project related to energy effi-
ciency of set of buildings having available data such as Demograph-
ics, Building data, Psychographics, Room Sensor data or Building
Sensor data, to separate which of them have a significant impact on
the consumption each time, is of primary importance. Visualizing
energy consumption patterns and understanding them could help
us decide in which key factors we should pay our attention, after
implementing the Principal Component Analysis.

• Building customer segments

A very common approach to building and understanding cus-
tomer segments [22] is through the use of clustering techniques
such as Principal Component Analysis (PCA). These cluster-
ing techniques will analyze the customer data and observe if
customers tend to cluster by certain features (Fig. 9), or com-
binations of features. Implementing PCA may be useful at
identifying which groups of users are mostly presented in each
room/building, finding whether there are physically vulnerable
groups of users and associate their preferences for heating and
cooling etc.

• Identifying key performance indicators (KPIs)

A key performance indicator (KPI) is a type of performance
measurement. KPIs (Fig. 10) estimate the success of a corpora-
tion or of a particular undertaking (such as projects, programs,
products and other initiatives) in which it engages. Often is
merely the recurring, periodic achievement of certain levels of
the business objective, and sometimes attainment is realized in

15



Figure 9: Different customer classes

terms of decision-making progress toward crucial goals. There-
upon, choosing the right KPIs relies on a adequate insight of
what is important to the organization or the project. These as-
sessments often lead to the identification of potential improve-
ments, so performance indicators are routinely associated with
’performance improvement’ initiatives.

Figure 10: Flow of a KPI process

The KPIs for monitoring the energy efficiency requires specific
form to evaluate the realization of the goal on the consumer
level. A common option in this case is the definition of con-
sumption per entity/household. The definition of the perfor-
mance indicator consists of the two components:

1. The choice of the variables involved.

16



2. The definition of the monitoring interval.

The variables involved into the indicator must be dependent.
It is recommended that the dependence is linear. PCA is the
methodology applied to detect the KPI [25]. Through this ap-
proach, it is possible to identify the relation between different
variables measured. The analysis of these connections leads to
detecting of key variables to build a proper KPI.

The PCA represents the variation of the data into the system,
so implementing this methodology allows us to measure vari-
ous data such the daily Electricity consumption or the average
daily consumption per floor. We can also visualize and check
Historical information related to consumption.

• Detecting outliers

Principal component analysis is a powerful and versatile method
capable of providing an overview of complex multivariate data.
PCA can also be used to detect outliers.

Figure 11: Observation of an outlier sample

Outliers (Fig. 11 presents a typical abnormal value) are sam-
ples that are somehow disturbing or unusual. Often, outliers

17



are downright wrong samples. For example, in determining
the height of persons, five samples are obtained ([1.78, 1.92,
1.83, 167, 1.87]). The values are in meters but accidentally, the
fourth sample has been measured in centimeters. If the sam-
ple is not either corrected or removed, the subsequent analysis
is going to be detrimentally disturbed by this outlier. Outlier
detection is about identifying and handling such samples.

Often outliers are mistakenly taken to mean ‘wrong samples’
and nothing could be more wrong. Outliers can be absolutely
right, but e.g. just badly represented. In such a case, the
solution is not to remove the outlier, but to supplement the
data with more of the same type.

• Detecting Moving Objects

PCA is not a technique commonly used in this domain. De-
spite this, it could be helpful sometimes. We can consider a
n-frame subsequence, where each frame is associated with one
dimension of the feature space, and we apply PCA [21] to map
data in a lower-dimensional space where points picturing co-
herent motion are close to each other. Frames are then split
into blocks that we project in this new space. Inertia ellipsoids
of the projected blocks allow us to qualify the motion occurring
within the blocks. By doing this we can identify which of the
residents have kids or track new occupants (tenants).

18



4.3 PCA Flow Diagram

A flowchart is a visual representation of the sequence of steps and
decisions needed to perform a process. Each step in the sequence is
noted within a diagram shape. Steps are linked by connecting lines
and directional arrows. This allows anyone to view the flowchart
and logically follow the process from beginning to end.

With proper design and construction, it communicates the steps
in a process very effectively and efficiently. For this reason a flow
diagram (Fig. 12) was constructed for better understanding of the
critical steps for the PCA implementation. The key components of
the diagram are also explained below.

• Subtract the mean:
For PCA to work properly, we need to subtract the mean from
each of the data dimensions. The mean subtracted is the av-
erage across each dimension. This produces a data set whose
mean is zero.

• Calculate the covariance matrix:
Covariance calculations are used to find relationships between
dimensions in high dimensional data sets where visualization
is difficult. Covariance is a measure of how much each of the
dimensions varies from the mean with respect to each other.
The covariance between one dimension and itself is the vari-
ance. Variance is a measure of the deviation from the mean for
points in one dimension.

• Calculate the eigenvectors and eigenvalues of the co-
variance matrix:
Calculating the eigenvectors and eigenvalues is extremely im-
portant, as they tell us useful information about our data. They
provide us with information about the patterns in the data.

• Choosing components and forming a feature vector:
The eigenvector with the highest eigenvalue is the principle
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component of the data set. Generally, once eigenvectors are
found from the covariance matrix, the next step is to order
them by eigenvalue, highest to lowest. This gives us the com-
ponents in order of significance. To be accurate, if we initially
have n dimensions in our data and thus calculate n eigenvectors
and eigenvalues, and then select only the first p eigenvectors,
then the final data set has only p dimensions. Feature vector s
is constructed by taking the eigenvectors that we want to keep
from the list of eigenvectors and forming a matrix with these
eigenvectors in the columns.

• Deriving the new data set:
Having selected the components (eigenvectors) that we wish to
maintain in our data and formed a feature vector, we simply
take the transpose of the vector and multiply it to the left of
the initial data set, transposed.

FinalData = RowFeatureVector x RowDataAdjust

where “RowFeatureVector” is the matrix with the eigenvectors
in the columns transposed so that the eigenvectors are now in
the rows, with the most important eigenvector at the top, and
“RowDataAdjust” is the data that has been customized on av-
erage.

• Getting the old data back:
Recall that the final transform is this:

FinalData = RowFeatureVector x RowDataAdjust

which can be turned around so that, to get the original data
back:

RowDataAdjust = RowFeatureV ector−1x FinalData

However, when we take all the eigenvectors in our feature vec-
tor, it turns out that the inverse of our feature vector is actually
equal to the transpose of our feature vector. This only applies
because the elements of the matrix are all the unit eigenvectors
of our data set.
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The equation becomes:

RowDataAdjust = RowFeatureV ectorT x FinalData

But, to get the actual original data back, we need to add on
the mean of that original data:

RowOriginalAdjust=(RowFeatureV ectorT x FinalData) +
OriginalMean

Figure 12: PCA Flow Diagram
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5 Clustering Techniques

5.1 Description of Clustering Algorithms

Clustering or cluster analysis is a form of unsupervised learning,
which means that the class labels of the input data are unknown.
The aim of clustering is to detect groups in the data, called clusters.
The input data points should be partitioned into a number of clus-
ters, in such a way that the points belonging to the same cluster are
more similar to each other than to points belonging to other clusters.

In order to accomplish this objective, the most common starting
point is computing a matrix, called dissimilarity matrix, which con-
tains information about the dissimilarity of the observed units. Ac-
cording to the nature of the observed variables (quantitative, qual-
itative, binary or mixed type variables), we can define and use dif-
ferent measures of dissimilarity.

If the observed variables are all quantitative, each unit can be iden-
tified with a point in the p-dimensional space and the dissimilarity
between two objects i and j can be measured through:

1. a) Euclidean distance:

√√√√ n∑
i=1

(xi − yi)2

2. City-Block or Manhattan distance:

n∑
i=1

|xi − yi|
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Both of these two distances are specific cases, respectively for
p = 2 and p = 1, of a generic distance family known as

3. Minkowski metric:

(
n∑

i=1

|xi − yi|p
)1/p

Indeed, clustering has a wide range of applications. It can be im-
plemented in order to detect clusters among the documents sug-
gested by search engines or to achieve market segmentation of an
e-commerce store. Obviously, clustering can have also an impact on
the energy sector. For instance, energy consumption patterns could
be found and groups of people with the same behaviour could be
formed.

More specifically, when dealing with cluster analysis there are three
main issues to be resolved. Firstly, it is of utmost importance to de-
fine a score function, in order to evaluate different clustering meth-
ods and approaches. Secondly, the number of clusters is also signif-
icant as this is a crucial hyper-parameter for many clustering algo-
rithms. Last but not least, selecting the proper clustering algorithm
is also challenging. It depends significantly on the data set and on
what is the aim of the clustering. Of course, there are other issues
associated with choosing the right distance function and handling
the different data types.

In order to implement a cluster analysis and in general a data min-
ing task, the following steps could be followed as suggested by the
Cross Industry Standard Process for Data Mining (Fig. 13), com-
monly known by its acronym CRISP-DM [23]. This methodology is
widely used and remains the leading methodology used by industry
data miners according to polls (2002, 2004, 2007, 2014) conducted
by KDNuggets [16].
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Figure 13: Cross Industry Standard Process for Data Mining.

• Business Understanding

Business requirements should be understood and a specific busi-
ness goal should be set before defining the clustering task.

• Data Understanding

Data understanding is an integral part of the procedure. In
this step, descriptive statistics could be used in order to detect
trend and anomalies on the data set. Those first insights on
the data through the data exploration are helpful in designing
and tuning the clustering algorithms subsequently.

• Data Preparation

Before selecting the clustering algorithm and modelling the
problem data should be processed. This is a process, which
does not have specific steps as each cluster analysis and data
have different characteristics. However, it could entail stan-
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dardization of the data, dimensionality reduction attribute se-
lection and data transformation. Of course, new data could
also be derived by existing data.

• Modelling

In this step of the methodology various clustering algorithms
are assessed and applied before getting tuned using different
methods. There is a plethora of clustering methods but the
most widely used and known is k-means.

Apart from k-means algorithms hierarchical algorithms could
also be used to implement a cluster analysis. Basically, there
are two different types of hierarchical clustering [4]: the agglom-
erative, in which pairs of clusters are merged while moving up
on the hierarchy and the divisive, in which all the points at the
beginning belong to one cluster and then splits are performed
as we are moving down to the hierarchy.

Due to the nature of that method, there is no need to deter-
mine the number of clusters in advance, while the result of the
algorithm could be visualized with the use of a dendrogram and
heatmaps. Hierarchical clustering algorithms are pretty useful
for observing hierarchical structure but they are more suitable
for relatively small data sets due to their time complexity. Hi-
erarchical algorithms also usually use as a distance metric the
Euclidean distance while there are different methods of agglom-
erative hierarchical methods.

Finally, there are spectral clustering methods [7], which refer
to algorithms that cluster points using eigenvector of matri-
ces derived from the data. Spectral clustering methods seem
easy to implement and reasonably fast. Basically, one of the
main differences of the aforementioned approaches from spec-
tral clustering is that it considers the clustering task as a graph
partitioning task. Spectral clustering methods are employed in
case cluster data is connected but not compact.
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• Evaluation

In this stage the results of the clustering should be assessed
in order to determine if they meet the original purpose of the
task. This step is of pivotal importance as the results will be
used in order to create a list of actions and measures to be
taken.

• Deployment

Finally, in the deployment step the final results of the actions
are presented in order to better evaluate the whole project. It
could also be designed a monitoring and maintenance plan of
the data mining procedure, in case it continues to take place.

5.2 K-means Clustering

K-means is a partitioning-based clustering algorithm and constitutes
one of the simplest unsupervised learning algorithms. The main idea
[13] is to define k centers, one for each cluster. These centers should
be placed in an intelligent way because of different location causes
different result. So, the best option is to place them as much as
possible far away from each other. The next step is to take each
point belonging to a given data set and connect it to the nearest
center. When no point is pending, the first step is completed and
an early group age is done.

At this point we need to re-calculate k new centroids as barycen-
ter of the clusters resulting from the previous step. After we have
these k new centroids, a new binding has to be done between the
same data set points and the nearest new center. A loop has been
generated. As a result of this loop we may notice that the k centers
change their location step by step until no more changes are done,
that is, centers do not move any more.
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Finally the purpose of the algorithm is to minimize the within-
cluster sum of squared errors. So, the objective function is the
following where ||xij − ci|| is a chosen distance measure (usually
Euclidean distance) between an object and the cluster centre.

J =
n∑

j=1

k∑
i=1

||xij − ci||2

The algorithm uses the Euclidean distance and it requires to de-
fine a priori the number of clusters. The algorithm could be de-
scribed as follows:

1. Start with randomly chosen cluster centres (centroids).

2. Assign each object to the group that has the closest centroid.
- Assignment Step

3. When all objects have been assigned, recalculate the positions
of the K centroids. - Update Step

4. Repeat the Assignment and the Update step until the assign-
ments do not change.

In this algorithm it is critical to determine the correct number of
clusters and there is a wide range of methods (i.e. the elbow method,
the silhouette method etc.) that could be used in order to achieve
this. Of course, the most significant when specifying the number
of clusters is data understanding because the proposed automatic
methods do not take into account all the different parameters.
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• The elbow method

The idea of the elbow method is to implement k-means clus-
tering on the data set for a range of values for the number of
clusters. For each value for the number of clusters calculate the
percentage of variance explained, which is defined as the ratio
of the between-group variance to the total variance. Then we
should plot the percentage of variance explained by the clusters
against the number of clusters. If there is a point where the
marginal gain will drop we will detect an angle at this point
and consequently the number of clusters. Of course, it is not
always easy to detect an angle and for this reason as stated be-
fore those methods are complementary and their results should
not be taken for granted.

• The silhouette method

The silhouette constitutes also a useful criterion for determin-
ing the proper number of clusters and it was firstly suggested
by Peter J. Rousseeuw [18]. The silhouette shows which ob-
jects lie well within their cluster, and which ones are merely
somewhere in between clusters. A silhouette close to 1 implies
the sample is in an appropriate cluster, while a silhouette close
to 1 implies the sample is in the wrong cluster.
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5.3 K-means Flow Diagram

The steps described in the previous chapter can be easily represented
in a flow diagram. Thus, a flow diagram (Fig. 14) was constructed
for better understanding of the critical steps for the k-means imple-
mentation.

Figure 14: K-means Flow Diagram
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6 Implementation of PCA

6.1 Programming Language and Tools

Python and the Jupyter Notebook were used to perform analyzes
and implement the algorithms. The necessary packages to complete
this study were:

• pandas

• numpy

• matplotlib

• plotly

• scikit-learn

• statsmodels

6.2 Data preprocessing

Principal component analysis is a powerful data analysis tool, capa-
ble of reducing large complex data sets containing many variables.
Examination of the principal components set allows the user to spot
underlying trends and patterns that might otherwise be masked in
a very large volume of data.

This technique is commonly used to detect underlying correlations
that exist in a (potentially very large) set of variables. The aim of
this analysis is to transform a set of n variables, X1, X2, X3, ..., Xn,
and to estimate the correlations. The most important of these cor-
relations are called the Principal Components (PCs). The analysis
will return vectors Y1, Y2, Y3, ..., Yn, each describing a different
underlying variation found in the initial dataset. The vectors of Y
are ordered by their importance. More specific, the component Y1
is the most prevailing trend throughout the data, and accounts for
more variation than Y2. Y2 is a component uncorrelated with Y1,
and will account for the second largest trend in the data. Y3 de-
scribes the third largest component, and so forth.
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PCA provides the weights required to get the new variable Y1
better explains the variation in the entire data set in a certain sense.
This new variable including the critical weights, is called the first
principal component.

At this point, we need to remember the table that has been cre-
ated from our data.

Figure 15: A subset of the dataset.

To find the first principal component of our data, it is necessary
to preprocess the data. Looking at our data (Fig. 15) it is observed,
that some variables such as Direct Light are measured in numbers
that are much larger than e.g. Wind Velocity. For example, for
Bulding 3, Direct Light is 513.74 whereas Wind Velocity is 5.52.

If this difference in scale and possibly offset is not handled, then
the PCA model will only focus on variables measured in large num-
bers. It is desirable to model all variables, and pre-process them.
This procedure is called Standardizing and will make each column
have the same size so that all variables have equal opportunities
to be modelled. Standardization means that from each variable,
the mean value is subtracted and then the variable is divided by
its standard deviation. It is crucial to notice that each variable is
transformed in the same size and in the process, each variable will
have negative as well as positive values because its average has been
subtracted. The scikit-learn Python library supports this prepro-
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cessing.

With this pre-processing of the data, PCA can be performed. The
rationale behind performing PCA on a data set is the idea that
hopefully much, or perhaps even most, of the variation seen can be
attributed to just a few of the most important principal components.
A highly correlated data set can often be described by just a handful
of principal components. Equally, it is possible for the analysis to
produce no useful results at all if the original variables are highly
uncorrelated.

6.3 Eigendecomposition - Computing Eigenvectors and Eigen-
values

Eigenvectors and eigenvalues are numbers and vectors associated to
square matrices. Together they provide the eigendecomposition of
a matrix, which analyzes the structure of this matrix. The eigen-
vectors and eigenvalues of a covariance matrix represent the core of
a PCA.

The eigenvectors (principal components) determine the directions
of the new feature space and the eigenvalues determine their size.
In particular, eigenvalues explain the variance of the data along the
new feature axes.

The typical approach of PCA is to perform the eigendecomposi-
tion on the covariance matrix Σ, which is a d × d matrix where
each element represents the covariance between two features. The
covariance between two features is calculated as follows:

σjk =
1

n− 1

N∑
i=1

(xij − x̄j) (xik − x̄k) .

We can summarize the calculation of the covariance matrix via the
following matrix equation:

Σ =
1

n− 1

(
(X− x̄)T (X− x̄)

)

32



where x̄ is the mean vector x̄ =
n∑

k=1
xi. The mean vector is a d-

dimensional vector where each value in this vector represents the
average index of a feature column in the dataset.

Python’s library numpy provides us with the appropriate functions
in order to calculate the covariance matrix. The covariance matrix
of the standardized data is presented in Table 2.

Covariance Matrix

1.1428 0.3351 -0.3964 0.9973 0.9605 -1.0950 0.3796 -0.0215 0.4324

0.3351 1.1428 -0.5148 0.3195 0.0186 -0.3580 0.7082 -0.0283 -0.3546

-0.3964 -0.5148 1.1428 -0.0696 -0.2682 0.1870 0.1911 0.3048 -0.0525

0.9973 0.3195 -0.0696 1.1428 0.9688 -1.0702 0.6978 0.0486 0.0608

0.9605 0.0186 -0.2682 0.9688 1.1428 -0.9043 0.4199 0.1106 0.0862

-1.0950 -0.3580 0.1870 -1.0702 -0.9043 1.1428 -0.5544 -0.1211 -0.3209

0.3796 0.7082 0.1911 0.6978 0.4199 -0.5544 1.1428 0.4188 -0.6275

-0.0215 -0.0283 0.3048 0.0486 0.1106 -0.1211 0.4188 1.1428 -0.4553

0.4324 -0.3546 -0.0525 0.0608 0.0862 -0.3209 -0.6275 -0.4553 1.1428

Table 2: The variability of the 9 parameters.

We can now perform an eigendecomposition on the covariance ma-
trix. Numpy performs the calculations required to generate the
eigenvectors. The resulting eigenvectors are shown in Table 3.
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Eigenvectors

-0.4649 -0.2123 0.0030 -0.0623 0.1472 0.0904 -0.4649 -0.1075 0.2430

-0.2110 0.2904 -0.5996 0.2457 0.3635 0.0954 -0.4023 0.0832 -0.1105

0.1289 0.1932 0.6523 0.5636 0.0457 0.0530 -0.4142 -0.1106 -0.1544

-0.4717 0.0022 0.1336 0.1665 -0.2024 -0.4938 0.0455 0.6642 0.5503

-0.4245 -0.1032 0.1746 -0.3081 -0.4388 0.5157 -0.1707 -0.0378 -0.2481

0.4743 0.0962 -0.1027 -0.0648 -0.2192 0.3917 -0.2751 0.6399 0.6822

-0.3011 0.5085 -0.0027 0.3104 -0.0303 0.4369 0.5282 0.0127 0.1518

-0.0508 0.4239 0.3726 -0.5938 0.5377 -0.0178 -0.0157 0.1831 0.1337

-0.0390 -0.6122 0.1310 0.2051 0.5217 0.3539 0.2532 0.2887 0.1843

Table 3: The 9-dimensional vector space.

By this procedure the eigenvalues are also obtained and Table 4
presents these particular values.

Eigenvalues

4.69140798e+00

2.37894062e+00

1.66148403e+00

8.31803110e-01

6.19167215e-01

8.37483937e-02

1.91629362e-02

-1.65892178e-16

-5.08833845e-17

Table 4: The resulting eigenvalues after implementing eigendecomposition.
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6.4 Selecting Principal Components

The main purpose of a PCA is to reduce the size of the original
feature space by projecting it into a smaller subspace, where the
eigenvectors will form the axes.

In favor of deciding which eigenvector(s) can be dropped with the
least loss of information for the construction of lower-dimensional
subspace, the inspection of correlative eigenvalues is needed: The
eigenvectors with the lowest eigenvalues hold the least material about
the dispensation of the data, thus being the ones to be dropped.

To accomplish this, the usual procedure is to rank the eigenval-
ues (as we can see in Table 5) from highest to lowest and then to
select the top k eigenvectors.

Eigenvalues in descending order

4.69140797635

2.37894062499

1.66148402952

0.831803110161

0.619167214858

0.0837483936743

0.0191629361635

1.658921776e-16

5.0883384456e-17

Table 5: The 9 ordered eigenvalues.

If the data is autoscaled, each variable has a variance of one. If
all variables are orthogonal to each other, then every component in a
PCA model would have an eigenvalue of one since the preprocessed
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cross-product matrix (the correlation matrix) is identity. According
to the Kaisers’ rule [3], if a component has an eigenvalue larger than
one, it explains variation of more than one variable.

After sorting the eigenpairs, the next question is ”how many prin-
cipal components are we going to choose for our new feature sub-
space?” At this point, it is crucial to determine the proper number
of components more strongly than in the exploratory or casual use
of PCA.

One of the more popular approaches is cross-validation. S. Wold
established cross-validation of PCA models [24] and then several
slightly different approaches have been developed.
The notion of cross-validation is to count out part of the data and
then determine the left-out part. If this is done prudently, the esti-
mation of the left-out part is independent of the actual left-out part.
Hence, too optimistic models due to over fitting are not possible.

6.5 Explained Variance

In statistics, explained variance measures the proportion to which
a mathematical model accounts for the variation of a given data set.
This practical moderation can be determined by the eigenvalues.
Thus, the explained variance provides us with how much informa-
tion can be traced to each of the principal components. Plotly let
us visualize this measure and create an interactive chart.

Fig. 16 shows that most of the variance (45.6109% of the variance
to be precise) can be explained by the first principal component
alone. The second principal component still bears some information
(23.1285%).

The first 4 principal components all together contain 92.9797% of
the information. The rest of the principal components can safely be
dropped without losing to much information. This can be verified
by Fig. 17.
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Figure 16: Explained variance (2 principal components).

Figure 17: Explained variance (4 principal components).

For the purpose of this study, we will focus only to the first two
principal components.
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6.6 Projection onto the new Feature Space

The construction of the projection matrix that will be used to trans-
form the data and then project them onto the new feature sub-
space is the indeed impressive part. It is basically the matrix of
our sequence of the top k eigenvectors. Here, we are reducing the
9-dimensional feature space to a 2-dimensional feature subspace, by
choosing the ”top 2” eigenvectors with the highest eigenvalues to
construct our 9 × 2-dimensional eigenvector matrix W. Table 6
presents the projection matrix of the data.

Projection Matrix

-0.46491564 -0.21239065

-0.21101122 0.29042947

0.12892033 0.19322503

-0.47179446 0.00220149

-0.42458333 -0.10327942

0.47437389 0.09623856

-0.30117674 0.50853169

-0.05085815 0.42397744

-0.0390087 -0.61229922

Table 6: The 9× 2-dimensional eigenvector matrix W

It is well known that the readings of a variable can be plotted. Di-
rect Light is measured on 8 samples. These 8 values can be plotted
in a multitude of ways.

We will use the 9×2-dimensional projection matrix W to transform
our samples onto the new subspace via the equation Y = X ×W,
where Y is a 8× 2 matrix of our transformed samples. The library
scikit-learn, once again, provides us with all the necessary tools
to obtain the values of the coefficients for each one of the 8 samples
(Buildings).

These factor scores for the first two components are given in Ta-
ble 7 and the corresponding map (by using plotly) is displayed in
Fig. 18.
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Figure 18: PCA buildings characteristics. Factor scores of the observations
plotted on the first two components.

Buildings PC 1 PC 2
Bulding 1 3.20058416 -0.1213711
Bulding 2 1.77228699 -0.769164
Bulding 3 -3.74462618 1.1669147
Bulding 4 -0.98928057 -0.04738738
Bulding 5 -1.46813611 -0.8198826
Bulding 6 -0.65747232 -2.30333569
Bulding 7 1.1516584 2.94985547
Bulding 8 0.73498562 -0.05562941

Table 7: Coefficients of each Building for the first two components.

We can see from Fig. 18 that there seem to be certain groupings
in the data. For example, Building 1 and Building 3 seem to be
almost distinctly different in this score plot.

In more detail, the first component separates Buildings 3, 4 and
5 from Buildings 1, 2 and 7, while the second component separates
Buildings 3 and 7 from Buildings 2, 5 and 6. The examination of
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the values of the contributions, shown in Table 7, complements and
refines this interpretation because the contributions suggest that
Component 1 essentially contrasts Building 1 with Building 3 and
that Component 2 essentially contrasts Building 7 with Building 6.

This suggests that it is possible to classify a Building using these
measured variables. Samples that are close are similar in terms of
what the components represent which is defined by the loading vec-
tors. Evaluation of the similarities and differences among samples
in terms of the raw data is attainable. If two components explain
all of the variation in the data, then a score scatter plot will reflect
distances in terms of the data directly if the scores are shown on
the same scale. That is, the plot must be shown as original scores
where the basis is the loading vector.

6.7 Loading: Correlation of a Component and a Variable

To find the variables that account for the differences between the
rooms which were observed above, we examine the loadings [8] of
the variables on the first two components. The correlation between
a component and a variable estimates the information they share.
In the PCA framework, this correlation is called a loading. Loadings
define what a principal component represents. Hence, they define
what linear combination of the variables a particular component
represents.

Table 8 shows the loadings of the first two components. In the
variable statement, we will include these particular principal compo-
nents (PC 1 and PC 2), in addition to all 9 of the original variables.
We will use these correlations between the principal components and
the initial variables to interpret these principal components.

With these, it is possible to explain what the scores of the model
represent. For example, Building 6 has low (negative) score for
component 2. This implies that it has a lot of the opposite of the
phenomenon represented in loading 2. Hence, this sample has vari-
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Features PC 1 PC 2

Direct Light -0.46491564 -0.21239065
Wind Velocity -0.21101122 0.29042947
Wind Direction 0.12892033 0.19322503
Electricity Consumption -0.47179446 0.00220149
Air Humidity -0.42458333 -0.10327942
Year of Construction 0.47437389 0.09623856
Number of People -0.30117674 0.50853169
Air Temperature -0.05085815 0.42397744
Fan speed -0.0390087 -0.61229922

Table 8: Correlation of the variables with the first two components.

ation where Wind Velocity, Number of People and Air Temperature
are low at the same time while e.g. Fan speed is high. Also, and this
is an important point, certain variables that have low loadings close
to zero, such as e.g. Electricity Consumption and Year of Construc-
tion, do not follow this trend. Hence, the loading tells about what
the trend is and also which variables are not part of the trend.

Figure 19: The loadings of the first component.
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Examining the loadings of the variables on the first two compo-
nents, we see that the first component contrasts the construction
year with the building’s lighting, the humidity of the air, the num-
ber of people in the building and the electricity consumption in this
building. The second component contrasts the buildings’s popula-
tion, wind speed and air temperature with its lighting and the Fan
Speed.

Observing more closely (Fig. 19), the first principal component is
strongly correlated with five of the original variables. The first prin-
cipal component increases with decreasing Direct Light, Electricity
Consumption, Air Humidity and Number of People scores. This sug-
gests that these four criteria vary together. If one decreases, then
the remaining ones tend to as well. It also increases with increasing
the score related to the Year of Construction.

This component can be viewed as a measure of whether the building
is in the shade, reduced electricity consumption, understanding that
there are few people in this building and the quality of the building
(recall that the Year of Construction has a positive high value.)
Furthermore, we see that the first principal component correlates
most strongly with the Electricity Consumption and Year of Con-
struction. In fact, we could state that based on the correlation of
-0.4717 and 0.4743 accordingly, that this principal component is
primarily a measure of those two Parameters. It would follow that
buildings with high values on this component, would tend to be very
new, in terms of foundations, heat insulation, ventilation systems
etc. and extremely economical due to energy efficiency. Whereas
buildings with small values would have very few of these types of
innovations.

The second principal component increases with increasing Wind Ve-
locity, Number of People and Air Temperature. Furthermore, it in-
creases by decreasing Fan Speed. This suggests that buildings with
wind velocity, huge number of occupants and very high tempera-
tures also tend not to open the fans, or the ventilation systems do
not work as they should. Finally, observing Fig. 20, it is clear that
the second principal component correlates most strongly with Num-
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Figure 20: The loadings of the second component.

ber of People and Fan Speed. Thus, this component can be viewed
as a measure of the fact that a building with many people does not
function properly and effectively its ventilation system (recall that
the Air Temperature has a positive high value).
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7 Implementation of K-means

7.1 2 Final Clusters

As we have seen in Chapter 7, we have the data table in a sim-
ple structure. Using Principal Component Analysis, we plotted the
samples in the first two principal components (Fig. 21).

Figure 21: PCA buildings characteristics. Factor scores of the observations
plotted on the first two components.

For this example, we used the Python packages scikit-learn and
NumPy for computations.

Following the steps of the algorithm described in Chapter 6 we
set the k-means function to find 2 clusters. The clustering results
are given in Table 9. We note that Buildings 1, 2, 7 and 8 were
classified into the Cluster 1, and Buildings 3, 4, 5 and 6 into the
Cluster 0.
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Buildings Cluster (0, 1)
Bulding 1 1
Bulding 2 1
Bulding 3 0
Bulding 4 0
Bulding 5 0
Bulding 6 0
Bulding 7 1
Bulding 8 1

Table 9: Separation of the buildings in two clusters in the 2-dim space. PCA
was applied and the data were projected onto the new feature space.

Visually, we can see that the K-means algorithm splits the two
groups based on their distance from the centroids. Fig. 22 shows
the results. Each cluster is distinguished by a different color and
mark.

Figure 22: The two clusters in which our samples were split after implementing
the K-means algorithm.

At this point, we will apply k-means to the raw data. Using the
same function we aim to separate the Buildings in two clusters.
However, this time, taking into account the initial 9 parameters and
their values. Table 10 presents the cluster assigned to each build-
ing and we can see that the results are exactly the same as in the
previous case, where we first applied the PCA on the primary data.
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Buildings Cluster (0, 1)
Bulding 1 1
Bulding 2 1
Bulding 3 0
Bulding 4 0
Bulding 5 0
Bulding 6 0
Bulding 7 1
Bulding 8 1

Table 10: Separation of the buildings in two clusters in the 9-dim space. PCA
was not applied to the data.

7.2 3 Final Clusters

We would also like to classify the Buildings in three clusters. Now,
we set k = 3. Hence, the k-means function will find the three clus-
ters which separate the projection of the data in the best possible
way. Table 11 shows the results of the k-mean algorithm to the data
after we applied PCA. Fig. 23 allow us to observe these 3 clusters
in 2-D feature space. Buildings 1, 2, 7 and 8 form Cluster 0, Buld-
ings 4, 5 and 6 the second one (Cluster1) and Building 3 is Cluster 2.

Buildings Cluster (0, 1, 2)
Bulding 1 0
Bulding 2 0
Bulding 3 2
Bulding 4 1
Bulding 5 1
Bulding 6 1
Bulding 7 0
Bulding 8 0

Table 11: Separation of the buildings in three clusters in the 2-dim space. PCA
was applied and the data were projected onto the new feature space.
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Figure 23: The three clusters in which our samples were split after implementing
the K-means algorithm.

By repeating the same procedure as in subsection 8.1, we imple-
ment k-means to the raw data. The results are presented in Table
12, from which we understand that the clusters are the same as in
the previous implementation of the k-means to the data obtained
from the PCA.

Buildings Cluster (0, 1, 2)
Bulding 1 0
Bulding 2 0
Bulding 3 2
Bulding 4 1
Bulding 5 1
Bulding 6 1
Bulding 7 0
Bulding 8 0

Table 12: Separation of the buildings in three clusters in the 9-dim space. PCA
was not applied to the data.

7.3 4 Final Clusters

After we decide to separate the data into more clusters, we first
apply the PCA to the data and then we apply k-means to their
projection onto the 2-D feature space. We set the k-means function
to find 4 clusters. Table 13 and Fig. 24 give us the details of these
particular clusters. Cluster 0 contains Buildings 1, 2 and 8, Cluster
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1 comprises Buldings 4, 5 and 6 while Cluster 2 and 3 consist of
Buildings 7 and 3, respectively.

Buildings Cluster (0, 1, 2, 3)
Bulding 1 0
Bulding 2 0
Bulding 3 3
Bulding 4 1
Bulding 5 1
Bulding 6 1
Bulding 7 2
Bulding 8 0

Table 13: Separation of the buildings in four clusters in the 2-dim space. PCA
was applied and the data were projected onto the new feature space.

Figure 24: The four clusters in which our samples were split after implementing
the K-means algorithm.

Following the same steps as in the previous subsections 8.1 and
8.2 we apply k-means to the raw data. Observing carefully the Table
14, we find that the clusters formed are different from the ones we
had previously applied first PCA and then k-means. ore specifically,
we see that Clusters 0 and 2 have been altered and now consist of
Buildings 1 and 7, and Buildings 2 and 8, respectively.
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Buildings Cluster (0, 1, 2, 3)
Bulding 1 0
Bulding 2 2
Bulding 3 3
Bulding 4 1
Bulding 5 1
Bulding 6 1
Bulding 7 0
Bulding 8 2

Table 14: Separation of the buildings in four clusters in the 9-dim space. PCA
was not applied to the data.

This inaccuracy is due to the lack of information of the first two
components. After applying k-means to the raw data we understand
that Building’s 1 characteristics are more similar to those of Building
7. Table gave us the impression that the characteristics of Building 1
are closer to Building 2. If the two components had explained 100%
- all information - Table and Table would be exactly the same.
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8 Conclusions

PCA and K-means clustering methodologies have been introduced
for modelling and monitoring energy consumption in buildings. PCA
is the basic methodology while K-means allows to compare and con-
firm the findings of PCA.

Visualization of the correlation matrix allows representing relation-
ships among variables and helps selecting variables to be used for
monitoring. Projecting the data onto a new 2-dim feature space
we were able to identify the different groups of buildings formed.
Abnormal electricity consumption values can be detected (in case
we have a bigger dataset) and which independent variables that are
mainly responsible for these high values may occur with the aid of
the loadings of each component. Furthermore, relations between
the buildings can be found by analyzing the correlations between
the principal components and the original variables.

Implementing the K-means algorithm we were able to confirm the
groups of data which were formed by applying PCA. What we have
observed is that when we divided our samples in two and three clus-
ters the results were exactly the same. When we split the data in
four clusters, though, K-means presented discrepancies in the way
it separated the data before and after the PCA was applied. This
is explained if we remember the variation related to the two first
principal components. 68.7395% of the variation is explained by
these two components. If the two components had explained 100%,
all information would be contained in these two components, but
for this particular model, almost one third of the variation is still
retained in other components, so when we applied K-means after
PCA the components were not fully indicative of variations in the
data, and big part of the information was lost.

It is true that PCA and K-means clustering are considered to have
very different goals and initially do not seem to be related. Nev-
ertheless, as Chris Ding and Xiaofeng He explained [6], there is a
deep relationship between them. PCA represents the n data vectors
as linear combinations of a small number of eigenvectors. Through
this procedure it minimizes the mean-squared reconstruction error.
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In contrast, K-means represents the n data vectors as linear combi-
nations of a small number of cluster centroid vectors. This is also
carried out to minimize the mean-squared reconstruction error. So
the agreement between K-means and PCA is quite good, but it is
not exact.

The method can extend towards energy forecasting applications
through developing a regression model [14] that directly predicts
the value of Electricity Consumption, using all of the potential pre-
dictor variables we obtain from a BEMS.

We fit a linear model (Fig. 25) for one of the predictor variables, Air
Temperature, to the Electricity Consumption using the statsmod-
els library. We can use this linear model for any of the features.

Additional object of future study could be the development of re-
gression models using the the coefficients of the loadings for each
one of the predictor variables. In this case, we would be able to
investigate and determine how precise is our prediction by using a
certain number of principal components.

Figure 25: Linear regression between Electricity Consumption and Air Temper-
ature.
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[15] Luis Pérez-Lombard, José Ortiz, and Christine Pout. “A review on build-
ings energy consumption information”. In: Energy and buildings 40.3 (2008),
pp. 394–398.

[16] Gregory Piatetsky. “CRISP-DM, still the top methodology for analytics,
data mining, or data science projects”. In: KDD News (2014).

[17] S Raschka. Implementing a Principal Component Analysis (PCA) in Python
step by step. 2014.

[18] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of computational and applied
mathematics 20 (1987), pp. 53–65.

[19] S Schimschar et al. “Towards nearly zero-energy buildings—Definition of
common principles under the EPBD”. In: Ecofys, Politecnico di Milano,
University of Wuppertal (Unpublished) for European Commission (2013).

[20] Sai Sumathi and SN Sivanandam. Introduction to data mining and its
applications. Vol. 29. Springer, 2006.

[21] Nicolas Verbeke and Nicole Vincent. “A PCA-based technique to detect
moving objects”. In: Image Analysis (2007), pp. 641–650.

[22] Jaap E Wieringa and Peter C Verhoef. “Understanding customer switch-
ing behavior in a liberalizing service market: an exploratory study”. In:
Journal of Service Research 10.2 (2007), pp. 174–186.

[23] Rüdiger Wirth and Jochen Hipp. “CRISP-DM: Towards a standard pro-
cess model for data mining”. In: Proceedings of the 4th international con-
ference on the practical applications of knowledge discovery and data min-
ing. 2000, pp. 29–39.

[24] Svante Wold. “Cross-validatory estimation of the number of components
in factor and principal components models”. In: Technometrics 20.4 (1978),
pp. 397–405.

[25] Shen Yin, Xiangping Zhu, and Okyay Kaynak. “Improved PLS focused on
key-performance-indicator-related fault diagnosis”. In: IEEE Transactions
on Industrial Electronics 62.3 (2015), pp. 1651–1658.

[26] Zhun Yu et al. “A systematic procedure to study the influence of occupant
behavior on building energy consumption”. In: Energy and Buildings 43.6
(2011), pp. 1409–1417.

53


