

Mechanisms for the Dynamic Installation and Control of Data Collection
Tasks on Smartphones

PRESENTED THE October 13, 2015

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF THESSALY

FOR GRADUATION OF MASTER OF SCIENCE

BY

Emmanouil KATSOMALLOS

supervised by:

Spyros Lalis, Associate Professor, University of Thessaly
Thanasis Papaioannou, Senior Researcher, CERTH

George Theodorakopoulos, Lecturer, Cardiff University

Greece
2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

ii

Acknowledgements
Upon the completion of my thesis, I would like to express my deep gratitude to my research supervisor Dr. Spyros Lalis

for his patient guidance, enthusiastic encouragement and useful critiques of this research work. Besides my advisor, I would like to

thank the rest of my thesis committee, Dr. Thanasis Papaioannou and Dr. George Theodorakopoulos for their invaluable contribution.

A special thanks to my department’s faculty, staff and fellow students for their valuable assistance whenever needed and for creating

a pleasant and creative environment during my studies.

Last but not least, I wish to thank my family and friends for their unconditional support and encouragement all these years.

Volos, October 13, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

iii

Περίληψη
Η διατήρηση της ιδιωτικότητας του χρήστη είναι ζωτικής σημασίας για την ευρεία υιοθέτηση εφαρμογών ανίχνευσης

χρήστη και εθελοντικής ανίχνευσης που βασίζονται σε προσωπικές συσκευές. Επί του παρόντος, κάθε εφαρμογή έχει τη δική της

καλωδιωμένη και ενδεχομένως ατεκμηρίωτη υποστήριξη ιδιωτικότητας (εάν υπάρχει), ενώ οι οριζόντιοι μηχανισμοί προστασίας

που παρέχονται από τα λειτουργικά συστήματα και συστήματα εκτέλεσης λειτουργούν σε χαμηλό επίπεδο που μπορούν να βλά-

ψουν σημαντικά τη χρησιμότητα της εφαρμογής, ή ακόμα να καταστήσουν μια εφαρμογή άχρηστη. Για να επιτευχθεί μεγαλύτερη

ευελιξία, προτείνουμε ένα πλαίσιο για την αποσύνδεση του μηχανισμού ιδιωτικότητας από τη λογική της εφαρμογής, ώστε να μπο-

ρεί να αναπτυχθεί από ένα άλλο, ίσως πιο αξιόπιστο πρόσωπο, και επιτρέποντας το δυναμικό δέσιμο διαφορετικών μηχανισμών

ιδιωτικότητας με την ίδια εφαρμογή πριν τα δεδομένα αφήσουν τη συσκευή για το Διαδίκτυο. Συζητάμε μια απόδειξη της εφαρμο-

γής του προτεινόμενου πλαισίου για Android, όπου μηχανισμοί ιδιωτικότητας αναπτύσσονται ανεξάρτητα ως ξεχωριστά συνδεό-

μενα μέρη, χρησιμοποιώντας μια απλή διεπαφή εφαρμογής προγράμματος με σαφή υποστήριξη για συλλογικά σχήματα που περι-

λαμβάνουν περισσότερες από μία προσωπικές συσκευές. Αξιολογούμε επίσης το φόρτο επεξεργαστή, την δραστηριότητα δικτύου,

τη χρήση μνήμης και την κατανάλωση μπαταρίας της εφαρμογής μας.

Λέξεις-κλειδιά

πλαίσια ιδιωτικότητας; μηχανισμοί ιδιωτικότητας; ανίχνευση πλήθους; εθελοντική ανίχνευση; έξυπνα τηλέφωνα

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

iv

Abstract
Preserving user privacy is crucial for the wide adoption of crowdsensing and participatory sensing applications that rely

on personal devices. Currently, each application comes with its own hardwired and possibly undocumented privacy support (if any),

while the horizontal protection mechanisms provided by operating and runtime systems operate at a low level that can significantly

harm application utility, or even render an application useless. To achieve greater flexibility, we propose a framework for decoupling

the privacy mechanism from the application logic, so that it can be developed by another, perhaps more trusted party, and for allow-

ing the dynamic binding of different privacy mechanisms to the same application before data leaves the device for the Internet. We

discuss a proof-of-concept implementation of the proposed framework for Android, where privacy mechanisms are independently

developed as separate plug-in components, using a simple API with explicit support for collaborative schemes that involve more than

one personal devices. We also evaluate the CPU load, network activity, memory usage and battery consumption of our implementa-

tion.

Keywords

privacy frameworks; privacy mechanisms; crowdsensing; participatory sensing; smartphones

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

v

Contents
Acknowledgements ... ii

Περίληψη ... iii

Abstract .. iv

List of Figures .. vi

List of Tables .. vii

List of Listings ... viii

 Introduction ... 9

 Conceptual Approach ... 11

 Overview of the EasyHarverst System .. 14

 The EasyHarvest Privacy Framework .. 17

4.1 Privacy mechanism registration and installation ... 17

4.2 Interface of privacy mechanism components .. 18

4.3 Flexible privacy schemes ... 18

4.4 Peer-to-peer interaction support .. 19

 Evaluation .. 21

 Related Work & Discussion .. 23

 Conclusion & Outlook .. 25

References ... 26

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

vi

List of Figures

Figure 1. Towards a structured introduction of privacy mechanisms for crowdsensing applications . 12

Figure 2. High-level system architecture of the runtime system on the personal device 12

Figure 3. High-level architecture of EasyHarvest ... 14

Figure 4. Data flow for standalone and collaborative privacy mechanisms ... 18

Figure 5. CPU, network and battery usage, at a data production and upload period 21

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

file:///C:/Users/Manos/Google%20Drive/docs/HMMY/HY000/EasyHarvest2.0/docs/thesis/Katsomallos_Emmanouil_MSc_151002.docx%23_Toc432047249
file:///C:/Users/Manos/Google%20Drive/docs/HMMY/HY000/EasyHarvest2.0/docs/thesis/Katsomallos_Emmanouil_MSc_151002.docx%23_Toc432047250
file:///C:/Users/Manos/Google%20Drive/docs/HMMY/HY000/EasyHarvest2.0/docs/thesis/Katsomallos_Emmanouil_MSc_151002.docx%23_Toc432047251
file:///C:/Users/Manos/Google%20Drive/docs/HMMY/HY000/EasyHarvest2.0/docs/thesis/Katsomallos_Emmanouil_MSc_151002.docx%23_Toc432047252
file:///C:/Users/Manos/Google%20Drive/docs/HMMY/HY000/EasyHarvest2.0/docs/thesis/Katsomallos_Emmanouil_MSc_151002.docx%23_Toc432047253

vii

List of Tables

Table 1. Sensing task interface... 15

Table 2. Privacy mechanism interface ... 17

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

viii

List of Listings

Listing 1. Sensing task that records a person’s hotspots.. 15

Listing 2. Simple standalone privacy mechanism for the hotspot sensing task 18

Listing 3. Simple collaborative privacy mechanism for the hotspot sensing task 19

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

9

 Introduction
According to a recent Gartner report [10], smartphone sales in 2014 grew 29% vs. 2013, corresponding to roughly 2/3 of

the total sales of mobile devices, at an estimated 1.2 billion users worldwide. Given this wide adoption, and being carried by most

people around the clock everywhere they go, the smartphone is the most ubiquitous sensing device on the planet, and a key enabler

for crowdsensing applications. It comes with various onboard sensors, such as GPS, front/backside cameras, accelerometers and

microphone. Moreover, it can serve as a hub for an even broader range of sensors embedded in clothes [15] and wearable artifacts

[16], as well as other personal mobile objects like a bicycle [13].

However, to realize the vision of mass-scale crowdsensing based on mobile personal devices, like the smartphone, several challenges

need to be tackled. For instance, one has to deal with asymmetrical and intermittent connectivity, save precious battery lifetime,

simplify the installation and management of sensing applications on the smartphone, and address various privacy and trust concerns.

In fact, privacy turns out to be of key importance so that people indeed agree/volunteer to provide data via their mobile personal

devices, and can be a show-stopper for many crowdsensing efforts1,2.

The privacy issue has already gathered a lot of attention among researchers, and different methods for preserving user privacy in

crowdsensing scenarios have been proposed and studied in the literature. But few of these methods are adopted in practice. These

implementations are also tightly-coupled with the application logic, making them hard to be inspected, replaced, let alone reused in

other applications. Basically, if people wish to participate in a data collection campaign, they have to take the corresponding mobile

application “as is”, bundled with whichever privacy mechanism (if any) was considered to be appropriate by the developer. There is

also a conflict of interest here: strong privacy is desirable for the user but will typically lead to reduced utility for the application, so

the application developer has no direct incentive to integrate strong privacy support into the application. And even if the application

developer has good intentions, she may not be a privacy expert, hence may be unaware of better privacy methods that could be used

in conjunction with the application. Finally, each user may have different privacy concerns, requiring different privacy mechanisms.

Motivated by the above observations, we propose an open framework for the flexible development, installation and activation of

different privacy mechanisms on mobile personal devices, as independently developed software components that can be used in

conjunction with sensing applications that run on the device. We also describe a prototype implementation of this framework for

EasyHarvest [12], a crowdsensing system for Android smartphones and tablets, and illustrate its flexibility by showing how both

standalone and collaborative mechanisms can be supported for the same crowdsensing application.

The main features of our privacy framework are briefly as follows: (i) Privacy mechanisms are developed using a simple yet also quite

powerful API, which provides explicit support for collaborative schemes. Concretely, a privacy mechanism can receive updates on the

presence of peer devices that run the same mechanism in order to adapt its operation accordingly and exchange data with its peers.

(ii) Privacy mechanisms are uploaded to a public repository and can be freely inspected by the community. The user can then pick

and install the privacy mechanism that seems most appropriate for her needs. (iii) On the personal device, privacy mechanisms are

dynamically linked to the mobile application that produces the data. (iv) The user can adjust the privacy level of the mechanism, or

change the privacy mechanism for a given application, as desired.

Most proposed privacy frameworks for mobile phones in effect block access to various sensor and personal data feeds for selected

or all applications. These frameworks adopt a low-level binary “on/off” approach for individual data feeds, before they reach the

application. But once the application is given access to these data feeds, there is no control on the data the leaves the device, and it

is left for the user to assess the risks of such an information exposure. Furthermore, blocking data feeds at a low level may greatly

diminish or even nullify the functionality of the application. In contrast, our framework can support more complex and flexible privacy

1 www.pcworld.com/article/261935/survey_mobile_users_care_about_data_privacy.html
2 www.net-security.org/secworld.php?id=18154

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

Introduction

10

mechanisms, allows for higher data utility for the application, and removes a significant decision-making burden from the user who

does not have to trust the application developer.

The rest of the thesis is structured as follows. 0 introduces the proposed concept and high-level system model. 0 gives an overview

of the EasyHarvest system. 0 describes a proof-of-concept implementation of the proposed privacy framework for it, and provides

examples of simple standalone and collaborative privacy mechanisms. Chapter 5 evaluates the privacy framework in terms of the

overhead that is introduced on top of the basic EasyHarvest system. Chapter 6 gives an overview of related work. Finally, Chapter 7

concludes the thesis and identifies directions for future work.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

11

 Conceptual Approach
Users who provide data to crowdsensing applications via their personal devices have several privacy aspects that might

need to be hidden, e.g., user identity (linking attacks), user location (trajectory tracing), user activities (activity tracing), or sensitive

attributes (eavesdropping). Different mechanisms have been proposed to tackle the different threats [4], e.g., using data hiding (sup-

pression), perturbation (adding noise to the data or adding fake data), obfuscation (generalization, mixing) and anonymization. These

mechanisms may be collaborative (involve multiple users) or standalone, and they may be internal to the user devices producing the

data or rely on external trusted third parties for privacy preservation. Also, mechanisms differ in their effectiveness on protecting the

user against the various privacy threats, as well in their impact on the data utility for the various applications.

Despite this plethora of privacy mechanisms, crowdsensing applications come with hardwired privacy protection support, if any. Even

if the code is open for inspection, the average user clearly does not have the expertise or the time to check the existence and/or

effectiveness of the privacy mechanism of every single application. As a consequence, in practice, the user simply has to trust the

persons/organizations that develop and manage these applications.

We believe that this problem can be addressed, to a large extent, by introducing privacy support for crowdsensing applications based

on the following principles:

 Decoupling. Separate the sensing part of the application which runs on the personal device and generates data based on

local sensor and personal data feeds, from the mechanism that preserves the privacy of the user who contributes the data.

Ideally, the sensing part of the application should be developed without any concern for user privacy.

 Diversity/Flexibility. Support the development of privacy mechanisms which may have different characteristics and may

protect different privacy attributes. In particular, provide support for collaborative privacy schemes, which may involve

interaction between multiple personal devices and adapt their behavior accordingly.

 Locality. Preserve privacy locally, on the personal device or among a group of trusted devices. Once data leaves the personal

device and reaches external components of the crowdsensing application on the Internet/cloud, the user has practically no

control over it. Also, support collaborative privacy mechanisms while minimizing or even eliminating the reliance on cen-

tralized trusted third parties.

 Utility. Place the privacy mechanisms at a proper stage of the information production pipeline, so that it can intercept and

process/filter privacy-sensitive data without completely destroying its utility. Enable the association of each application

with the most suitable privacy mechanism – one that can effectively protect one or more privacy aspects that are of im-

portance to the user, while at the same time preserving application utility.

Followingly, we propose an approach for the structured development and deployment of crowdsensing applications and privacy

mechanisms on mobile personal devices, shown in Figure 1. On the one hand, the application owner declares the data model of the

application, and provides the sensing component for the personal device. The data model defines the data items and allowed values

that are produced by the sensing component that runs on the personal device – it may also include additional information about the

transformations that can be performed on the data without harming its utility for the application. On the other hand, privacy experts

review this data model, and provide suitable privacy mechanisms for it, which may filter, distort or aggregate data to protect certain

privacy attributes while maintaining data utility for the application in question. The type of the transformation performed by a given

privacy mechanism, and the impact on data utility can be described via suitable (human and machine-readable) metadata. Finally,

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

Conceptual Approach

12

the user who wishes to contribute to a crowdsensing effort picks and installs on her personal device the respective mobile sensing

component along with one or more compatible privacy mechanism components.

On the personal device, a suitable runtime system supports the dynamic installation, binding and execution of these software com-

ponents. Figure 2 shows an indicative high-level architecture. In a nutshell, the data produced by the sensing component of the

application is fed into the privacy mechanism component, which in turn outputs the same type of data towards external application

components (these will typically reside on a remote computing infrastructure, to perform data aggregation, processing and visuali-

zation). From a purely functional perspective, the privacy mechanism is transparent to the application (although the transformation

performed on the data may affect utility). This way it becomes possible to use different privacy mechanisms for the same application.

It is also possible to change the privacy mechanism for a given application on the fly, with the runtime taking care of the respective

re-binding behind the scenes. Such a change can be requested by the user, or even be performed automatically by the runtime. Of

course, the application can still work without any privacy component bound to it: for instance, the owner of the personal device may

not care about privacy, or may fully trust the owner of a specific crowdsensing application.

The runtime system is responsible for providing the interfaces/hooks needed for these components to implement their functionality.

More specifically, the sensing component should be given access to the local onboard sensors and other personal data feeds (possibly

including explicit user input) in order to produce data that is required for the crowdsensing application. It also needs an interface for

sending the produced data upstream (which the runtime redirects to the privacy mechanism component). Similarly, the privacy

mechanism component needs to receive/retrieve context information to adjust its operation accordingly, and should be given the

means to interact with peer components on other devices to be able to work in a collaborative way. Further, it should be possible to

Figure 1. Towards a structured introduction of privacy mecha-
nisms for crowdsensing applications: stakeholders and software

artifacts.

Figure 2. High-level system architecture of the runtime system on the per-
sonal device. Grey boxes stand for the system interfaces/hooks.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

Conceptual Approach

13

change the desired level of the privacy mechanism, triggering corresponding adjustments in the type and/or magnitude of the data

transformation that is performed internally.

The main advantages of this approach are the following:

First of all, there is no attempt to control the type and/or amount of data that is consumed by the sensing component of the appli-

cation at a low level. The application component can freely access the sensors and personal data feeds of the personal device (subject

to the restrictions of the runtime API and low-level access control mechanisms). The information gathered by the application sensing

component on the personal device is considered harmless, as long as it does not propagate to the Internet. However, precisely this

information flow is controlled, through the privacy mechanism component and the level at which this is set to operate, as chosen by

the user.

Secondly, the privacy mechanisms for a given application can be developed exclusively based on the corresponding data model,

without having access to the code of the sensing component or any other external component of the application. Of course, the

application must declare the data model truthfully. But doing so is in its own interest. More specifically, false declarations concerning

the value ranges and utility of the data will result to the application being associated with an inappropriate privacy mechanism that

will partly destroy or completely invalidate the data that is being produced. Also note that the runtime system can check the data

produced by the application sensing component for type and value range compliance, and terminate/blacklist applications that vio-

late their officially declared data model.

Thirdly, the user places her trust in the expert who develops the privacy mechanism, rather than in the owner of the crowdsensing

application (of course, the runtime system on the personal device has to be trusted too). This greatly reduces the risk of privacy leaks

since the privacy expert has no incentive to cheat the user. Moreover, the trust in a given mechanism can be enhanced by letting

different experts review and certify the method and its concrete implementation (one can reasonably assume that the developer of

a privacy mechanism will gladly make the code available for inspection). Privacy mechanism components can also be digitally signed

so that the runtime system can verify their integrity before installing them on the personal device.

One question that arises is if someone will be motivated to contribute a privacy mechanism for a crowdsensing application that was

developed and is run by others. There are good reasons to believe so. On the one hand, privacy experts can see this as a challenge

and participate voluntarily, by developing new privacy mechanisms, as well as by reviewing or enhancing existing ones, in the spirit

of many other thriving open source communities. On the other hand, given the clear decoupling between the core sensing part of

the application and the mechanism that protects user privacy, owners of crowdsensing applications that need mandatory access to

several onboard sensors and personal data feeds, will have a strong interest in their applications being linked to modular and easy-

to-inspect privacy mechanisms, in order to boost the application’s popularity, and thus could pro-actively invite privacy experts to

develop suitable privacy mechanisms for it.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

14

 Overview of the EasyHarverst Sys-

tem
The EasyHarvest system was designed to simplify the development, managed deployment and controlled execution of

sensing tasks on personal devices. Each sensing task is an application-specific agent to be replicated on a large number of devices.

Focus is on background tasks that use the sensors of personal devices, without any explicit user input (though the system could be

extended to support this), and produce data over a longer time period, in a best-effort manner. Besides taking sensor measurements,

a task can perform custom processing on the device, before uploading data to the Internet.

EasyHarvest follows a client-server architecture, shown in the lower part of Figure 3. The server is managed by the community/or-

ganization that wishes to support crowdsensing applications. Application owners submit sensing tasks to the server, which in turn

automatically deploys them on personal devices and collects the data produced by them. At any point, one can inspect the deploy-

ment progress of a given task, and retrieve the data collected so far. One can also suspend, resume or permanently remove a task

from the server.

The EasyHarvest client provides the runtime environment for sensing tasks on the personal device. It can subscribe to one or more

servers, which it inquires about application tasks that need to be executed. If the client decides to accept a task, it downloads the

binary, creates a new task instance locally, and schedules it for execution on the device. The data produced by the sensing task is

transferred to the server behind the scenes while dealing with disconnections in a transparent way.

Sensing tasks can be associated with a target geographical location and time period within the day. These parameters are supplied

when the task is submitted to the server and can be modified later, if desired. The client receives these parameters together with the

task binary, occasionally checks the server for updates, and accordingly activates or deactivates the sensing task depending on the

current location and time context of the device. Post-processing of the data collected on the server is left for external, application-

specific subsystems, which can retrieve this data via a suitable machine interface.

The current EasyHarvest prototype is designed for Android devices. The client is a user-level application that interacts with the server

via a REST-based interface. Sensing tasks have the form of Java classes for the Dalvik environment3, and implement a predefined

3 source.android.com/devices/tech/dalvik/

Figure 3. High-level architecture of EasyHarvest. Sensing tasks (STs) are re-
trieved from the server and are executed by the client on the smartphone.
The extensions made to support flexible plug-in privacy mechanisms (PMs)
are shown above the dashed horizontal line. The data flow from the ST to
the server and application back-end is in bold lines; dashed lines illustrate

this data flow when using a PM.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

http://source.android.com/devices/tech/dalvik/

Overview of the EasyHarverst System

15

interface though which they interact with and are controlled by the client runtime. The main primitives of the task interface are

summarized in Table 1.

Primitive Description
void onStart(

 Context c,

 ObjectInputStream s

);

Initialize task in order to (re)start
execution; previously saved state can be
retrieved via the input stream.

void onStop(

 ObjectOutputStream s

);

Release resources held by the task;
optionally save state in the output
stream.

List<Object> getData();
Return new data produced by the task
since the last invocation.

Table 1. Sensing task interface.

Sensing tasks access the sensors (and possibly other data sources) of the smartphone via the native Android API. Note that the

application developer is free to define the data objects that will be produced by the task. These must be serializable so that they can

be transferred over the network, and may not contain any private fields. Respective checks are made when a task is submitted to the

EasyHarvest server, as part of the process for producing the final binary. Also, at runtime, the EasyHarvest client performs type-

checks to verify that the task indeed produces the expected type of data.

As an example, assume we wish to find the most crowded places in a city, over different periods of the day. For this purpose, one

could employ the sensing task shown in Listing 1.

public class HotSpotData implements Serializable {
 public Location loc; // geographical location

 public HotSpotDetectionData(Location loc) {
 this.loc = loc;
 }
 … // custom serialization methods, as needed
};

public class HotSpotDetector implements LocationListener {
 List<HotSpotData> data;
 Location loc;

 public void onStart(Context c, InputStream s) {
 data = new ArrayList<>();
 …
 timer = new CountDownTimer(…) {
 …
 public void onFinish() {
 data.add(new HotSpotData(loc));
 }
 };
 …
 locMgr = (LocationManager) c.getSystemService(…);
 locMgr.requestLocationUpdates(…, this);
 }

 void boolean onStop(OutputStream s) {
 timer.cancel();
 locMgr.removeUpdates(this);
 }

 public List<Object> getData() {
 List<HotSpotData> tmp = data;
 data.clear();
 return tmp;
 }

 public void onLocationChanged(Location loc) {
 this.loc = loc;
 timer.cancel();
 timer.start();
 }
}

Listing 1. Sensing task that records a person’s hotspots.

The above task employs the location sensor and a timer to infer how long the user remains at the current location. If the duration is

above a threshold, the location is added to a list of hotspots, which is sent upstream, to the server.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

Overview of the EasyHarverst System

16

The user can configure the EasyHarvest client to contact one or more servers for task download, and to ask for explicit permission

before accepting a sensing task. One can also set the desired client load (the frequency at which the client runtime polls the sensing

task for data, and synchronizes with the server) as well as the type of connectivity to use for the communication (Wi-Fi, cellular). Last

but not least, it is possible for the user to define so-called privacy regions (in time and space) where all sensing tasks are suspended.

We note that in our current prototype the sensing task can freely access the resources of the smartphone via the Android API. Safer

and more controlled task execution can be achieved by adopting existing sandboxing techniques [1]. Another limitation (mainly for

debugging purposes) is that the client will accept/run only one sensing task at a time.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

17

 The EasyHarvest Privacy Frame-

work
We extended the EasyHarvest system to include support for flexible plug-in privacy mechanisms, along the lines of the

conceptual approach described in Section II. The key elements of the extended system architecture are shown in Figure 3. Next, we

give an overview of the implementation, as well as examples of standalone and collaborative privacy mechanisms for the sensing

task that was discussed earlier.

4.1 Privacy mechanism registration and installation

Similar to application sensing tasks, privacy mechanisms are implemented as independent software components which are registered

with the EasyHarvest server. Using a web-based interface, the privacy expert uploads the source code, associates the privacy mech-

anism with one or more sensing tasks, and provides a description of the mechanism and its privacy-preservation properties. The

server compiles the code, and checks it for the required methods (see next section).

As part of its periodic interaction with the server, the EasyHarvest client queries about privacy mechanisms that can be used for the

application sensing task that runs locally on the smartphone – this can be done in the background or at the user’s request. The user

browses the list of suitable privacy mechanisms, and selects the one to employ for the application. In turn, the client downloads the

privacy mechanism on the phone, and instantiates/binds it to the sensing task. At runtime, the user can change the privacy level,

completely deactivate the privacy mechanism, or select/switch to another privacy mechanism, as desired.

Method / Data Primitives Description
void onStart(

 Context c,

 int privLevel,

 ObjectInputStream s

);

Initialize the privacy mechanism, for the
supplied privacy level; previously saved
state can be retrieved via the input
stream.

void onStop(

 ObjectOutputStream s

);

Release resources held by the privacy
mechanism; optionally save state in the
output stream.

List<PMData>

handleAppData(

 List<Object> data

);

Process the data produced by the
sensing task, return the data to send
upstream.

List<PMData> handle-

PeerData(

 List<PMData> data

);

Process the data received from a peer,
return the data to send upstream. (only
for collaborative privacy mechanisms)

void onLevelUpdate(

 int privLevel

);

Adjust internal operation based on the
newly supplied privacy level setting.

void onPeerGroupUpdate(

 List<PeerInfo> peers

);

Adjust internal operation based on the
updated peer group configuration. (only
for collaborative privacy mechanisms)

public class PMData {

 int destID;

 List<Object> data;

}

Data structure for the data produced by
the privacy mechanism, along with the
identifier of the destination for this data
(0 for the server; <>0 for a peer).

public class PeerInfo {

 int peerID;

 int privLevel;

}

Data structure for peer information,
consisting of the peer identifier and its
current privacy level.

Table 2. Privacy mechanism interface.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

The EasyHarvest Privacy Framework

18

4.2 Interface of privacy mechanism components

In terms of software development, privacy mechanisms are implemented as Java classes for the Dalvik environment. By convention,

a privacy mechanism shall provide a pre-defined interface, summarized in Table 2. Note that only a subset of this interface is man-

datory (highlighted rows of the table).

The data interface of privacy mechanisms refers to abstract data objects, just as this is the case for application sensing tasks. However,

the data that will be actually forwarded to a privacy mechanism at runtime depends on the sensing task to which the mechanism will

be bound. As already discussed in Section II, the developer of the privacy mechanism must be familiar with the application-specific

data produced by the sensing task, in order to handle it properly. Also recall that the privacy mechanism is expected to generate the

same type of data towards the server – corresponding type checks are done by the client runtime, before sending the data upstream.

4.3 Flexible privacy schemes

The above interface allows for the development of fully standalone as well as collaborative privacy mechanisms. It is also possible to

implement privacy mechanisms that adapt their mode of operation, switching between standalone and collaborative mode, depend-

ing on the presence of other peers.

Standalone privacy mechanisms do not provide the handlePeerData() and onPeerGroupUpdate() methods. When the

EasyHarvest client detects that these methods are missing, it hardwires the privacy mechanism to work in isolation, as illustrated in

Figure 4 (solid lines). Also, in this case handleAppData() should always set the destination of the returned PMData object to

zero, indicating to the client that the data produced should be sent directly to the server. As an example, Listing 2 shows the relevant

code excerpts for a simple implementation which adds noise to the location component of the data that is produced by the sensing

task discussed in the previous section (Listing 1).

public class SimpleStandalonePM {
 int level;
 List<PMData> buf;

 public void onStart (Context c, int privLevel, InputStream s) {
 buf = new ArrayList<>();
 level = privLevel;
 }

public void onStop (OutputStream s) {}

 public List<PMData> handleAppData (List<Object> data) {
 for (int i = 0; i < data.size(); i++) {
 data.set(i, distortLocation((HotSpotData) data.get(i), level));
 }
 buf.get(0).destID = 0; // send to server
 buf.get(0).data = data;
 List<PMData> tmp = buf;
 buf.clear();
 return tmp;
 }

 public void onLevelUpdate (int privLlevel)
 level = privLevel;
 }
}

Listing 2. Simple standalone privacy mechanism for the hotspot sensing task,
which adds some noise to the location information.

Figure 4. Data flow for standalone (solid lines) and collaborative privacy
mechanisms (dashed lines). Data processing at the level of the sensing task

(ST) and the privacy mechanism (PM) is denoted by the orange and blue
vertical bars, respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

The EasyHarvest Privacy Framework

19

Collaborative privacy mechanisms have to implement all the methods of the interface, depending on the desired functionality. More

specifically, handleAppData() is used to forward locally generated application data to other peers for further processing and

aggregation. Data arriving from one or more peers is processed via the handlePeerData() method. Note that it is again possible

for the returned data to be sent to another peer or the server, depending on the destination of the PMData object. A typical infor-

mation flow pattern is for every peer to process the application data, and then forward it to a designated peer, which can further

process the data before sending it to the server, as illustrated in Figure 4 (dashed lines). An indicative implementation that works

along this line is given in Listing 3, for the same application sensing task as above. In this example, the peer with the smallest identifier

performs a simple form of anonymization, by bundling locally produced data with the data that is received from other peers, and

sending the entire bundle to the server. As a result, the server does not know the original producer(s) of this data.

public class SimpleCollaborativePM {
 List<PMData> buf1,buf2;
 int aggrID, level;

 public void onStart(Context c, int privLevel, InputStream s) {
 buf1 = new ArrayList<>();
 buf2 = new ArrayList<>();
 aggrID = 0; level = privLevel;
 }

public void onStop (OutputStream s) {}

public List<PMData> handleAppData(List<Object> data) {

 buf1.get(0).destID = aggrID; // send to aggregator peer
 buf1.get(0).data = data;
 List<PMData> tmp = buf1;
 buf1.clear();
 return tmp;
 }

public List<PMData> handlePeerData(List<PMData> data) {
 buf2.addAll(data);

 if (buf2.size() < level) return null;
 else {
 List<PMData> tmp = buf2;
 buf2.clear();
 return tmp;
 }
 }

public void onLevelUpdate (int privLevel) {

 level = privLevel;
}

public void onPeerGroupUpdate(List<PeerInfo> peers) {
 aggrID = smallestPeerID(peers);

 }
}

Listing 3. Simple collaborative privacy mechanism for the hotspot sensing task,
which anonymizes the application data.

It is important to stress the fact that a collaborative privacy mechanism can adapt its operation as a function of the current peer

group configuration. The respective updates are handled via the onPeerGroupUpdate() method. In our prototype, the infor-

mation that is passed to the privacy mechanism is really minimal, consisting of the identifier and current privacy level of each peer

that is in rage of the local device. But it is straightforward to extend the implementation in order to include additional information

about each peer.

4.4 Peer-to-peer interaction support

The peer-to-peer group formation and message passing used for the collaborative privacy mechanisms is based on Android’s Wi-Fi

Peer-to-Peer4 (WiFiP2P) subsystem, which complies with the Wi-Fi Direct™ certification of the Wi-Fi Alliance. Using these APIs, de-

vices that are close to each other can discover, identify and connect to each other without requiring an intermediate access point or

going on the Internet. The first time a connection is attempted between two devices, the owner of the target device is prompted to

accept (or decline) the connection, so the user is in control of the peer group formation. Once a pairing is successfully established,

subsequent interactions can occur in the background, without asking for user permission.

4 developer.android.com/guide/topics/connectivity/wifip2p.html

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

http://developer.android.com/guide/topics/connectivity/wifip2p.html

The EasyHarvest Privacy Framework

20

When the EasyHarvest client instantiates a collaborative privacy mechanism, it registers with WiFiP2P a corresponding service with

the client’s identifier, the identifier of the privacy mechanism, and the privacy level. From that point onwards, the client is

automatically notified about the presence of other peers, and in turn informs the local privacy mechanisms, via the

onPeerGroupUpdate() method, each time a compatible peer (one that runs the same privacy mechanism) is discovered or

disappears. When a privacy mechanism requests data to be sent to a peer (instead of the server), the client performs the data transfer

using the WiFiP2P primitives; at the destination, the client calls the handlePeerData() method of the local privacy mechanism

component.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

21

 Evaluation
We evaluate the overhead of our implementation using Android devices that run the EasyHarvest client software. The

EasyHarvest server runs on a PC. Client-server communication is over a commodity Wi-Fi access point. Measurements are taken via

the Dalvik Debug Monitor Server5 and the GSam Battery Monitor6, on an eSTAR tablet with a 1.2 GHz Allwinner A33 Quad-core ARM

Cortex-A7 CPU, 512 MB RAM, 2500 mAh Li-Po battery, running Android 4.2.2. To capture the resource consumption of the privacy

framework, we study the following configurations:

 No privacy (No-Priv): The client runs a sensing task without using a privacy mechanism for it, so the data that is produced

by the task is sent directly to the server.

 Standalone privacy (S-Priv): The client runs a sensing task with a “null” privacy mechanism, which simply forwards the data

produced by the task to the server.

 Collaborative privacy (C-Priv): The client runs a sensing task with a “null” privacy mechanism, where the data that is

produced by the sensing task is sent to a distinguished peer, which then forwards it to the server.

The No-Priv configuration serves as a baseline for S-Priv and C-Priv. In all cases, we use a simple sensing task that periodically reads

the GPS and returns a location/time data item. In the spirit of a “null” function, the privacy mechanisms used in S-Priv and C-Priv

merely copy but do not inspect or process the data of the sensing task. The client is configured to send data over the network (to the

server or a peer) at the same rate at which it is produced by the sensing task.

The No-Priv and S-Priv configurations are tested using a single device. For C-Priv, two devices are used, one of them acting as the

data forwarder towards the server. We run our experiments for a data production/upload period of 10 seconds. This rather aggressive

period is chosen to accentuate the differences – most applications would work at a much more infrequent interaction. In S-Priv, each

upload involves the transfer of a single data item, whereas in C-Priv the forwarder sends to the server two data items at a time (the

one produced locally, and the one produced by the other peer). In all configurations, the client checks the server for task status and

parameter updates, at the same period. Every experiment runs for 1 hour, with the screen and Wi-Fi of the tablet turned on all the

time.

The results are shown in Figure 5. S-Priv produces the same network traffic as No-Priv, but has an increased CPU load, attributed to

the data copying performed by the privacy mechanism. This in turn leads to a higher battery consumption. In C-Priv, the overhead

for the ordinary peer is actually lower than that of S-Priv, even though the data produced by the sensing task is the same in both

cases. This is because in S-Priv this data is sent to the server via heavyweight REST-based interactions, while in C-Priv data is sent to

the forwarder peer via WiFiP2P in more efficient way, leading to less networking and CPU activity. However, the overhead for the

forwarder in C-Priv is significantly higher than S-Priv, as the forwarder receives the data of the ordinary peer over WiFiP2P and uploads

it to the server, along with the data that is produced locally. This leads to an increased network activity, stronger CPU usage, and

5 developer.android.com/tools/debugging/ddms.html
6 play.google.com/store/apps/details?id=com.gsamlabs.bbm

Figure 5. CPU, network and battery usage, at a data production and upload period of 10 seconds, for 1 hour of continuous operation.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

http://developer.android.com/tools/debugging/ddms.html
https://play.google.com/store/apps/details?id=com.gsamlabs.bbm

Evaluation

22

higher battery consumption. Memory consumption remained stable, at 3.4-3.5 MB, with negligible differences and variations

between the different configurations. We conducted additional experiments for larger data production and upload periods. The

results follow similar trends, while the absolute resource consumption drops in all cases as the period increases.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

23

 Related Work & Discussion
There has been some related work on privacy and sensor-data access-control frameworks for smartphone applications.

In the sequel, we provide an overview of indicative approaches and compare them with our privacy mechanism framework.

BlurSense [2] is a dynamic fine-graned access control mechanism that provides secure and customizable access to the sensors on

mobile devices, and allows the definition and installation of privacy filters. BlurSense runs in an isolated sandbox and employs

Sensorium, a unified sensor interface, to access sensor data. However, the approach of BlurSense requires specific hooks to be

developed so that sensor data requests from generic apps to be sent through BlurSense with XMLRPC, as opposed to our simple

sensor data interface. Privacy filters are supposed to be developed by security vendors in BlurSense. These filters do not take into

account the context of the user device, while collaborative privacy among different smartphones is not considered.

CRePE [5] allows the definition of context-related policies either by users or by trusted third parties. Third parties can set on a device

context independent policies that apply for any moment or dynamic rules adaptive to context alternations. The main novelty of

CRePE is the introduction of context awareness into the access control mechanism. However, its focus is quite different from ours:

in effect, the aim is to change Android’s permissions dynamically according to context.

Aurasium [17] is a policy enforcement framework for Android applications that automatically repackages arbitrary applications to

attach user-level sandboxing and policy enforcement code. Thus, Aurasium monitors applications' behavior for security and privacy

violations (e.g. sensitive information disclosure, SMS covertly charging, malicious URL access, etc.) and is able to detect and prevent

cases of privilege escalation attacks. MPdroid [11] is a security framework for Android which supports the enforcing of multiple

security policies. It allows users to define their own security policy and provides fine-grained access control to (untrusted)

applications. Both Aurasium and MPdroid are of the on-off type (which is what most access control software does).

Secure Application INTeraction (Saint) [14] is an install and run-time application management system for Android. It allows to enforce

policies that enable applications to define which other applications can access their interfaces, how those interfaces are used, and

select at runtime which of the application's interfaces to use. Unlike our work, Saint focuses on protecting an application from other

applications running on the same device, rather than on transforming the data that is uploaded to the Internet by mobile

crowdsensing scenario in order to protect user privacy.

AnonySense [6] is a system for enabling opportunistic sensing applications, while hiding a user’s location among k users, on average.

In addition, attribute values that are reported by users may be either generalized (i.e. made less specific) or suppressed altogether

so as to make each user’s report identical to l other reports. However, these privacy objectives, as well as the values of k and l, are

fixed and cannot be chosen by users. As such, AnonySense is not a privacy framework, but rather one (of many other possible) privacy

mechanisms that can be accommodated via our framework. PEPSI [8] takes an Identity-Based Encryption approach to provide

unlinkability for the mobile nodes and for the queries in a participatory sensing context with minimal trust to third parties. However,

the sensor-related data itself does not undergo any privacy-enhancing transformation.

The PRISM platform [7] controls access to the sensors of the smartphone, either in a coarse-grained manner or by means of

application-specific energy-usage and bandwidth-usage limits. To prevent sensor data accumulation, PRISM employs “forced

amnesia”, periodically clearing the application state. TaintDroid [9], similarly to PRISM, tracks sensor data access and usage by various

smartphone applications, in order to increase user awareness on privacy leakage and sensor data misuse.

SemaDroid [18] is a framework for controlling access and usage of sensors through hooks in Android for intercepting sensor data

requests from the various applications. SemaDroid supports user-defined privacy policies for the various sensor-application pairs. It

mocks the generation of sensor data, when access to this data is restricted, in order this restriction to go unnoticed by the application.

However, SemaDroid does not consider privacy-enhancing transformations of sensor data or collaborative privacy schemes. Also,

mock-up data may harm application utility.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

Related Work & Discussion

24

Finally, ipShield [3] tracks the usage of every sensor employed by an app and it performs a privacy-risk assessment and presents this

information to the user. ipShield recommends possible privacy actions based on user preferences, and allows users to define context-

aware fine-grained privacy rules, through which one can suppress, constant, perturb and playback sensor data.

The main advantage of our approach compared to on-off access control mechanisms is that it becomes possible to design and implement

flexible privacy mechanisms that explicitly consider the utility of the data items that are produced by the mobile part of the

crowdsensing application, and apply the transformations that are required to protect specific user privacy aspects. Moreover, low-level

on-off mechanisms cannot work in a collaborative way, as this needs to be done at a higher level, taking into account the type of data

that is produced by the mobile application as well as its semantics. Note that in our framework, if desired, it is still possible to emulate

an on-off approach, using a privacy mechanism that completely blocks a given type of sensor data (instead of trying to transform it).

Last but not least, the idea of dynamically pluggable data filtering/transformation logic can be applied at the lower-level sensor interface

of the runtime / operating system as well.

One potential issue with the proposed framework is that the application might attempt to bypass the privacy mechanism, and covertly

send privacy-sensitive information via a hidden application-internal encoding, in the value and/or time domain. But the framework

also provides the means for introducing effective countermeasures. As mentioned, the values of application data can be formally

defined – and constrained – as part of the data model that can be safely checked at compile and run time. Moreover, value-based

encodings are cancelled by privacy mechanisms that distort the data values, while time-based encodings are invalidated if the data

is buffered locally for some random amount of time before sending it to the server. While hidden signals cannot be prevented if the

application’s utility model does not allow such interventions, it is also doubtful that such an application would work in an acceptable

way on top of low-level privacy mechanisms, which completely block one or more data feeds or silently distort data under the hood

before this is even read by the application.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

25

 Conclusion & Outlook
We have presented a conceptual framework for separating privacy mechanisms from the sensing part of crowdsensing

applications that run on personal devices, and developing such mechanisms as pluggable software components that can be dynami-

cally downloaded and bound to the application at runtime. Our design achieves more flexibility compared to current low-level access

control and data filtering approaches, which can unintentionally harm application utility and cannot support collaborative privacy

schemes. We have also discussed a proof-of-concept implementation of the privacy framework for an existing crowdsensing system

targeting Android devices, and have shown that the respective overhead is small for standalone mechanisms but can grow quite

significantly for collaborative schemes where all the data that is produced by the application is aggregated on a single device.

An interesting research direction, from a data engineering perspective, would be to come up with suitable standards for application-

generated data types and the corresponding utility functions for typical privacy-preserving transformations that can be applied to

such data. Based on such standardized data models, one could engineer more generic privacy mechanisms, which can be re-used for

different applications, adapting their operation accordingly.

Our prototype could also be extended to provide more advanced functionality. For instance, the client runtime could adjust the level

of the current privacy mechanism or even switch to another mechanism that will lead to better privacy, based on contextual

information, such as the user’s location or activity, and the presence of other peers. Such an adaptive operation could be driven by

explicit as well as learned user preferences. Further, historical evidence on prior interaction and trust relationships among users, e.g.,

via some online social network, could be exploited for defining more reliable/trusted peer groups. With rather surgical modifications

on the server, it would also be possible for the client to engage known/trusted peers even if these are in remote locations.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

26

References

[1] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan, A. Krishnamurthy, T. Anderson. Retaining sandbox contain-

ment despite bugs in privileged memory-safe code. 17th ACM Conference on Computer and Communications Security, 2010.

[2] J. Cappos, Wang Lai, R. Weiss, Yang Yi, Zhuang Yanyan. BlurSense: Dynamic fine-grained access control for smartphone privacy.

IEEE Sensors Applications Symposium (SAS), 2014.

[3] S. Chakraborty, C. Shen, K.R. Raghavan, Y. Shoukry, M. Millar, M.Srivastava. ipShield: A Framework For Enforcing Context-Aware

Privacy, 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2014.

[4] D. Christin, A. Reinhardt, S.S. Kanhere, M. Hollick. A survey on privacy in mobile participatory sensing applications, Journal of

Systems and Software, (84)11, Elsevier, November 2011.

[5] M. Conti, V. Nguyen, B. Crispo. CRePE: Context-related policy enforcement for Android. Information Security, Lecture Notes in

Computer Science, Vol. 6531, Springer, 2011.

[6] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, N.Triandopoulos. Anonysense: privacy-aware people-centric sensing. 6th

International Conference on Mobile Systems, Applications, and Services (MobiSys), 2008.

[7] T. Das, P. Mohan, V.N. Padmanabhan, R. Ramjee, A. Sharma. PRISM: platform for remote sensing using smartphones. 8th Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys), 2010.

[8] E. De Cristofaro, C. Soriente. PEPSI---privacy-enhanced participatory sensing infrastructure. 4th ACM Conference on Wireless

Network Security (WiSec), 2011.

[9] W. Enck, P. Gilbert, B.-G. Chun, L.P. Cox, J. Jung, P. McDaniel, A.N.Sheth. TaintDroid: an information-flow tracking system for

realtime privacy monitoring on smartphones. 9th USENIX Conference on Operating Systems Design and Implementation (OSDI),

2010.

[10] Gartner’s press release on smartphone sales for 2014, electronically available at www.gartner.com/newsroom/id/2996817.

[11] T. Guo, Z. Puhan, L. Hongliang, S. Shuai. Enforcing Multiple Security Policies for Android System. 2nd International Symposium

on Computer, Communication, Control and Automation, 2013.

[12] M. Katsomallos, S. Lalis. EasyHarvest: Supporting the Deployment and Management of Sensing Applications on Smartphones,

1st International Workshop on Crowdsensing Methods, Techniques and Applications, in conjunction with 12th IEEE International

Conference on Pervasive Computing and Communications (PerCom), 2014.

[13] G. Kazdaridis, D. Stavropoulos, V. Maglogiannis, T. Korakis, S. Lalis, L. Tassiulas. NITOS BikesNet: Enabling Mobile Sensing Exper-

iments through the OMF Framework in a City-wide Environment, 15th IEEE International Conference on Mobile Data Manage-

ment (MDM), 2014.

[14] M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel. Semantically rich application-centric security in Android. Security and Com-

munication Networks, 5(6), June 2012.

[15] A. Pantelopoulos and N.G. Bourbakis, A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis, IEEE

Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, 10(1), January 2010.

[16] D. P. Rose, M. Ratterman, D. K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky and J. Heikenfeld, Adhe-

sive RFID Sensor Patch for Monitoring of Sweat Electrolytes, IEEE Transactions on Biomedical Engineering, 62(6), June 2015.

[17] R. Xu, H. Saïdi, R. Anderson. Aurasium: Practical Policy Enforcement for Android Applications, USENIX Security Symposium, 2012.

[18] Z. Xu, S. Zhu. SemaDroid: A Privacy-Aware Sensor Management Framework for Smartphones. 5th ACM Conference on Data and

Application Security and Privacy (CODASPY), 2015.

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 17:12:16 EEST - 18.207.232.152

http://www.gartner.com/newsroom/id/2996817

	Acknowledgements
	Περίληψη
	Abstract
	List of Figures
	List of Tables
	List of Listings
	Chapter 1 Introduction
	Chapter 2 Conceptual Approach
	Chapter 3 Overview of the EasyHarverst System
	Chapter 4 The EasyHarvest Privacy Framework
	4.1 Privacy mechanism registration and installation
	4.2 Interface of privacy mechanism components
	4.3 Flexible privacy schemes
	4.4 Peer-to-peer interaction support

	Chapter 5 Evaluation
	Chapter 6 Related Work & Discussion
	Chapter 7 Conclusion & Outlook
	References

