Department of Electrical & Computer
Engineering, University of Thessaly, Volos,

Greece.

Implementation of Optimizing Transformations
in a High Level Synthesis Compiler

Ylonoinon Beitiotomomtik®v
Metaoymuotiop®@v Koowka o MeTayAOTTIOT)
20vleong Yyniov Emmédov

Thesis by

Georgios Chatzianastasiou

Supervisor: Georgios Stamoulis
Co-Supervisor: Nestoras Evmorfopoulos

Evyoaprotieg

Me v mepdtmon g mapovoac epyacioc, 0o oela va gvyapiotiom Oepud tov K.
I'edpylo Anuntpiov yio tov TOAVTIHO ¥POVO OV O1E0ECE, Yo TV EUTICTOGVVI] TOV
£0€1Ee 6T0 TPOGMOTO OV, TNV APLOTY GLVEPYAGia, TNV cuveyn Kabodnynomn kot Tig
0VGLMOEIS LITOJEIEEIS Kot TaPEUPACELS, TOL HEVKOALVAY TNV EKTOVOT| TNG TTUYLOKTG
epyoociog, KaODG kol Tovg eMPAETOVIES TNG OUTAMUATIKAG EPYOCING K. ZTOHOVAN
I'edpylo ko k. Néotmpa Evpopeodmovro, yia Tig TOAOTILEG Kot €06TOYES GUUPBOVAES
Yo TV GTOO100popial Lov.

TéNog, opeilm éva PeydAo EVYAPIGT® GTNV OIKOYEVELYL LOV KOl GTOVS GIAOVE OV Yia
™V apéplotn vrootpin kot v avektiunm Pondeia mov pov mapeiyav 1060 KaTo
NV SIPKEW TOV GTOLOMV OV, 0G0 KOl KOTO TNV EKTOVNON TNG OUTAMUOTIKTG
gpyaciag.

Xatinavaoctaciov 'emdpyrog
Boloc, 2016

Contents

ADSErACT ..o 4
1o INtroductiono oo 5
2. Background and Existing Work i, 6
3. CLanguage Front End 8
-3.1 Translating Cinto ADA e 8
-3.2 Expression Translation i, 9
-3.3 Statement Translation 11
4. Compiler Optimizations & Experimentsooi 13
4.1 Loop Unrolling ..o e 13
-4.2 Function Inlining, 14
=43 Code MOLION ...ttt 14
4.4 EXPerimentsoooiiuiiiiiititiii i e e 15
-4.4.1 Benchmark Description and Analysis 15
-4.4.2 Application of Compiler Optimizations 15
-4.4.3 HLS: Performance Measurements & Comparisons 18
5. Automatic CCC Tool’s Loop Unrolling Processooeai 21
6. Conclusions and Future Work 29
ToREEIeIMCES ... 32

Abstract — High-level synthesis is the technique that translates high-level
programming language programs into equivalent hardware descriptions. The use
of conventional programming languages as input to high-level synthesis is
challenging, due to the conceptual differences between software programs and
hardware descriptions, but is nonetheless becoming the preferred input to
high-level synthesis tools. Compilers play an important role in this process, since
they can bridge such differences, thus making high-level synthesis tools better
accepted by the scientific community, but they can also apply code
transformations that target an optimized hardware output. In this work, we
firstly discuss a number of transformations that were implemented in the C
language front end of the CCC high-level synthesis tool and present experiments
of such transformations executed by hand, using as benchmark the Mpeg2
open-source C language code. These experiments prove that compiler
optimizations can have a significant positive impact in high-level synthesis tools.
Furthermore, the main purpose of this thesis work is to automatically apply loop
unrolling technique in order to optimize the C language CCC high-level synthesis
tool front end and provide better hardware output. Finally, we present the
results of this automatic process and explain our modifications in the front end of
the tool.

Keywords—high-level synthesis; formal hardware synthesis; compilers; compiler
optimizations; programming languages; hardware description languages; RTL
design; loop unrolling; code motion;

1. Introduction

High-level synthesis (HLS) is a hardware design technique that allows architecture
specification as a high-level language program. Instead of using hardware description
language (HDL) code, high-level programming languages are used to realize abstract
algorithmic executable specifications. Most HLS tools apply severe restrictions on the
input language, limiting the tools’ capabilities and making them less attractive to
designers. However, compiler techniques can be employed, in order to relax such
restrictions, give programming flexibility to HLS tools, and also optimize output
hardware.

In the this work, we are dealing with a C language compiler front-end, which accepts
C language programs as input, and feeds the CCC high-level synthesis tool with an
equivalent ADA code. The CCC tool translates programs written in the ADA
language into VHDL and Verilog [4]. Except for direct C to ADA translation, the tool
uses several compilation techniques that subsequently direct CCC to produce better
HDL output.

This thesis work is being categorized in six sections, except for the introduction
(Section 1), we describe the problem of high-level synthesis and compiler techniques
for high-level synthesis, reviewing similar work, in Section 2. We then give a closer
look to the C-To-ADA translator, giving some examples that illustrate the way the
translation takes place, in Section 3. In Section 4. we discuss compiler transformations
that we perform in order to obtain a better final code. Also, in this section we present
experimentation with the tool and such transformations, commenting on the results.
Then, in Section 5 we explain the automatic loop unrolling process and the
modifications that implemented in the front end of the tool, while in Section 6 we give
our conclusions, summarizing the whole work and specifying our future work.

2. Background and Existing Work

The most understood and explored HLS tasks are high-level optimizations,
scheduling, allocation and binding [1-6]. High-Level Synthesis research commenced
in the 80s, with the first academic and industrial, linear processing HLS tools
appearing in the early 90s.

HLS tools are still not widely accepted in industry because of their low quality of
results, particularly for real applications with complex module/control-flow hierarchy.
Most of the available HLS tools impose severe extensions or restrictions on the
programming semantic model of the subset that they accept as specification. The most
well-known academic or research- based HLS efforts are the SPARK tool [2] which
accepts as input a small subset of the ANSI-C language (e.g. while loops are not
accepted), and a conditional guard based optimization method [6]. The latter set the
basis for optimizing conditional source code at the beginning of the previous decade.

Recent research efforts on HLS include a multi- speculative approach to synthesize
complex adders during datapath synthesis, which again contributes only towards
linear flow oriented designs [7], a fixed-point accuracy analysis and optimization of
polynomial data-flow graphs with respect to a reference model that is found in many
DSP applications [8], a technique to improve nested loop pipelining for HLS, called
Polyhedral Bubble Insertion [9], an equivalence checking method of FSMs with
datapaths based on value propagation over model paths, for validation code motion,
usually applied during the HLS scheduling phase [10], a formal method for accurate
high-level casting of optimal adders and subtractors [11], and an exploration
approach, called Spectral-aware Pareto Iterative Refinement, that uses response
surface models (RSMs) and spectral analysis to predict the design quality without
costly architectural synthesis procedures [12].

Compiler optimizations have been considered in high-level synthesis for more than a
decade. Loop transformations have been studied for the Spark tool, where loop
shifting was tested on the Mpegl code [13]. Polyhedral loop transformations for
high-level synthesis were studied in [14]. A survey of compilation for reconfigurable
computing shows that well- understood techniques of loop unrolling and function

inlining have renewed interest and are in the focus of research on high-level synthesis
for that field [15].

The most popular industrial HLS tools include the Catapult-C from Calypto
(previously developed by Mentor Graphics), Cynthesizer from Forte Design Systems.
They all accept as input a small subset of the System-C and C++ languages. These
tools [17], have very complicated for the average user interfaces, and they are the
most expensive of their class. So, these E-CAD systems are inaccessible for most of
the small and medium sized ASIC/FPGA design SME:s.

Other commercial or industrial HLS tools [17], are the Symfony C compiler from
Synopsys, the Impulse-C from Impulse Accelerated Technologies, the
CyberWorkBench from NEC and finally the C-to-silicon from Cadence. These tools
are either used only internally by the producing organization, and they are otherwise
not well-known amongst the engineering community.

3. C Language Front End

The C-To-ADA translator is based on the front end of a C compiler. Thus, it performs
all early stages of a compiler, including lexical, syntactic and semantic analyses. It
then produces an intermediate representation in the form of an abstract syntax tree
(ast). In order to produce ADA code, the translator traverses the ast and emits ADA
statements for each node of the tree.

The translator output language is a rich subset of the ADA programming language. All
details of the ADA language requirements and restrictions for the CCC tool are
invisible to the C programmer. The translator obeys all such restrictions, when
producing the ADA code, but the C programmer is free from those restrictions. Thus,
the gap between the actual input specification language and the high-level language
that the former is supposed to be, is very narrow in the tool.

Details on the C-To-ADA translator for the CCC tool can be found in [16]. A short
description follows in this section.

3.1 Translating C into ADA

The ADA code produced by the C-To-ADA translator is placed within an ADA
package. The declaration part of the package contains type and subprogram
declarations, whereas the body part of the package contains all subprogram code.

The types and functions that appear in the ADA code correspond to the types and
functions of the C source code. The translator creates type names for all non-standard
variable types, keeping original names for any named data types, as well as for all
functions. Types produced are the ADA universal integer and the ADA boolean for all
C integral types, the ADA range for all C enum types, the ADA arrays for all C array
types and the ADA records for all C named struct types. Multidimensional arrays are
single-dimensional arrays of arrays. Arrays of records are also supported.

In particular, ADA boolean types are optionally produced by the translator after
traversing code to determine if a C integral type is used as a boolean rather than an
integer.

Subprograms are declared after type declarations. C functions returning void become
ADA procedures, the rest become ADA functions. Subprogram parameters are passed
either by value or by reference. Since the default passing mode in the C programming
language is by-value, the translator optionally uses a specialized algorithm to detect

C-level parameters that are intended to be reference parameters. Depending on the
usage of such parameters, they may be declared at the ADA level as in, out or in out
parameters. All parameters retain their C names in the ADA code.

For each ADA subprogram, the package body contains the declaration of local
variables and the subprogram body code. The translator keeps the original variable
names in the output ADA code. The subprogram body code is a sequence of
statements. C expression statements are translated into ADA assignment statements.
Control statements are translated accordingly.

3.2 Expression Translation

The translator breaks C expressions into subexpressions, to produce simple ADA
expressions. Thus, a single C expression is translated into a sequence of ADA
assignments. Unless there is a write on a program variable, each assignment writes its
output into a temporary variable, to be used in a subexpression that is higher in the ast.
Temporaries are named appropriately.

A subexpression involves the application of a single operator on a number of
operands. The translation of most such subexpressions is straightforward.

Nevertheless, some exceptional cases are worth to discuss:

- Boolean operators: Binary boolean operators (‘&&’, ||’) are always short-circuited
in C. Therefore, for each such operator the translator produces code to evaluate the
left operand, and an ADA if statement, to evaluate the right operand only if the left
operand is not sufficient for the evaluation of the expression. In order to produce
simple expressions involving binary boolean operators, the translator optionally
suppresses short-circuit evaluation, allowing full evaluation of logical expressions.

C"

The unary ‘!” operator is translated into a not logical subexpression.
- Pointer operators (‘*’, ‘&’): The only actual support for such operators is for the use
of pointers for reference parameters.

- Array operator (‘[]’): An array operator can have only a single index expression.
The left operand of an array operator must be an array object. The ADA code to
evaluate the array index expression will come first, with the actual array access
following afterwards.

9

[¢

- Struct field operators (*.’, ©->"): In ADA, references to record fields are identical for
both records and pointers to records. Therefore, the two struct field operators of C are
translated in exactly the same ADA expressions. The left operand of a ‘.” operator
must be a struct object, whereas the left operand of a *->’ operator must be a pointer-
to-struct object. The right operand of the operator will be a field of the corresponding
struct object.

- Function calls: All calls are made to named subprograms. Functions are called
within expressions, in which case the result is placed into a temporary. Procedures are
called within expression statements, in which the call is the top-level expression, i.e.
there is no assignment or other operator outside the call. For each call, the translator
will first produce ADA code to evaluate the actual arguments, if any, in order from
left to right, and then the actual call.

- Assignments: All assignments write a value into a variable. The translator will
produce ADA code for the evaluation of the right operand, writing it into a temporary.
In the case of compound assignments, the translator will also produce code for the
operation to be performed before the actual assignment.

- Aggregates: Aggregate expressions are only allowed at array and record
initialization.

The expression translation is shown in the following example. Given the following C
source expression statement:

x = a[0]?f1(99*c[f1(2)]):88;

the corresponding ADA code produced by the C-To-ADA translator will be:

TEMPORARY001 := a(0);
if TEMPORARYO001 /= 0 then

TEMPORARY002 := fl(z);
TEMPORARY003 := c (TEMPORARYO002) ;
TEMPORARY004 := 99 * TEMPORARYO003;
TEMPORARY005 := f1 (TEMPORARY004) ;
TEMPORARY000 := TEMPORARYO005;

else
TEMPORARY000 := 88;

10

end 1f;
x := TEMPORARYO0O0O0;

assuming all types and variables are properly declared.

3.3 Statement Translation

The translation of C statements other than expression statements into ADA statements,
obeys the following rules:

- If statements: In the translation of an if statement, the condition expression is
translated as an independent expression statement, with the top-level form of the
expression incorporated in the if statement.

For example, the C code:
if (x >y + z) a=Db;
1s translated into the ADA code:

TEMPORARY(001 := y + z;
if x > TEMPORARYO001l then a := b;
end if;

Any possible nested if statements within an else part are not translated
into a unified ifelse part, but rather into a truly nested if statement.

- While loops: The condition expression is translated into an independent
expression statement, with the resulting top-level form of the expression
incorporated in the while statement.

- Do loops: a C do loop is translated as a while loop, by replicating the
loop body code before the loop, in order to make the loop execute its first
iteration.

- For loops: ADA supports for loops, but in way quite different from the
C for loops. Since there is no straightforward translation of a C for loop
into an ADA for loop, the translator transforms a C for loop into a while
loop. Optionally, the C-To-ADA translator may attempt to translate a C
for loop into an ADA for loop, by checking the following properties of a
for loop.

1) The first expression must be a simple assignment into an integer
variable.

11

11) The second expression must be a simple comparison for less,
less-equal, greater or greater-equal of the same integer variable against an
integer expression, which must not change value during loop execution.
ii1) The third expression must be an increment or decrement of the same
integer variable, depending on the comparison of the second expression.
If the increment or decrement is coded as a compound assignment, then
the right operand must be an integer expression that does not change
value during loop execution.

Currently, the translator does not check whether the integer expressions
involved in the second and the third expressions change their values
within the loop body. The programmer must ensure such a property.

- Switch statements: A C switch statement is transformed into an ADA
case statement. The selection value is integer, and the expression
producing that value is translated into an independent expression
statement, writing its output into a special integer temporary named
TEMPINT. The ADA case statement is then produced, beginning with
the line:
case TEMPINT is
All C case codes are translated into ADA when codes.

- Return statements: If there is a return expression, the translator produces
ADA code to evaluate that expression, writing the output value into a
temporary. It then produces an ADA return statement, returning that
value. Return statements are only allowed at the end of a C function, and
each non-void returning function must end with a return statement.

Other C statements are not supported by the translator.

12

4. Compiler Optimizations & Experiments

Most of the optimizing transformations that have been proposed over the
years in the area of HLS are operation level transformations. In contrast,
language level optimizations refer to transformations that change the
circuit description at the source level, for example, loop unrolling and
code motion. Furthermore, other compiler optimizations, such as function
inlining, help to reduce latency. Language-level optimizations can be
combined, to produce even greater results. In this section we concentrated
on loop unrolling, function inlining, as well as code motion.

4.1 Loop Unrolling

Loop unrolling is the process of placing a duplicate of one or more
iterations of the loop body at the end of the current loop body. The loop
index variable increment (or decrement) is updated as necessary. The
goal of loop unrolling is to extract ILP (Instruction Level Parallelism) by
reducing the number of loop iterations, thus eliminating the overhead of
end of loop tests on each iteration.

Here is a simple example of two-times loop unrolling. Given the initial C
code:

for { 1= 0; i< W; i++)} {
x[1] =g[i] +1;

we get the following code after unrolling two times:

for (i = 0; i< WN; 3+= 2)
x[i] = y[i] +1;
H[i—;] = :r_i+l] +1;

We can highlight that, as the index variable increments by two (the unroll
factor) in each iteration, the number of iterations executed is being
decreased (divided by the unroll factor). For instance, let us assume N =
100, and unroll factor = 2, it is clear that the number of iterations that will
be executed is 100/2 = 50 iterations.

13

4.2 Function Inlining
The overhead associated with calling and returning from a function can
be eliminated by expanding the body of the function inline, and additional

opportunities for optimization may be exposed as well.

Here is an illustrative example for inlining. Given the initial C code:

vold main () {
double £, c;
for (£f=0.0;f<=300.0:£+=20_.0) {
c = ftoe(f);
}
static double ftoc({double f£)
return (5.0/9.0)y* (£f-32.0) ;

We get the following code after inlining:

wvold main ()
double £, c;
for (£f=0.0;£f<=300.0;£+=20.0) {
9.0)

ei= [9aRE

4.3 Code Motion

In some cases, it may be necessary to move instructions inside of a loop
body in order to eliminate false dependencies. Code motion except for
identifying dependencies, use the technique of renaming variables in
order to handle WAW and WAR, avoiding them at the end. In our work,
we combine code motion with loop unrolling to increase parallelism.

Let us consider an example from the Mpeg2 open-source code suite that
we consider late in this section, specifically in our experiments. The
initial code without unrolling and code motion is:

for (i=0; di<w; 1i++) {
v = dst[d+1] + srcs+i];
dst[d+i] = (wv+(+>=071:0)1)/2;

}

The final code after unrolling two-times and code motion is:

14

i 1<w; 1+=2)

I
o
I e

dst [d+i]+srec[s+1];
dst [d+i+1l]+src[s+i+1];

vl

w2

templ = wl>=0;

temp2 = v2>=0;

dst[d+i] = (vl+templ)/2;
dst[d+i+1] = (v2+templ)/2;

}

Except for unrolling and code motion for dependence elimination, we
used two temporary variables to replace the comparison expression, in
order to further increase ILP. Note how in the above code the two
assignments to vl and v2, the two assignments to templ and temp2, as
well as the two final assignments to dst[d+i] and dst[d+i+1] can be
performed in parallel, something that can be easily detected by the CCC
back-end optimizer. Without code motion after unrolling, such
parallelism would be impossible to detect in the back-end of the HLS
tool.

4.4 Experiments

We can now describe a set of experiments we performed with
open-source Mpeg2 C code. In particular, we located code segments that
were well-suited for the application of our transformations, and we
applied the transformations by hand, evaluating the resulting HDL codes.

4.4.1 Benchmark Description and Analysis

As a benchmark for testing the HDL code performance, we used the
Mpeg2 decoder. We divided the code into small pieces (idct.c , recon.c ,
spatscal.c , getpic.c) in order to analyze more specifically the features of
the code. Briefly, the idct.c was used to implement inlining technique,
recon.c and spatscal.c was used for loop unrolling because they include
suitable loops. In addition, in recon.c except for loop unrolling we used
code motion inside the loops in order to further increase parallelism.

4.4.2 Application of Compiler Optimizations

As it was mentioned above, idct.c was the segment of mpeg 2 decoder for
inlining implementation. Here we eliminated the overhead of function
call and return, by expanding the body of functions: void idctrow
(macroblock blk, int ptr) and void idctcol (macroblock blk, int ptr, int
iclp[1024]). These functions are being called from void Fast IDCT

15

(macroblock, int[1024]), where macroblock is an array type of the Mpeg?2
code suite.

Snapshots of the Code:: Blocks platform used for handling the C source
of function Fast IDCT() before and after function inlining are shown in
Figures 1 and 2, respectively. Similarly, snapshots for the loop spatscal of
file spatscal.c that was chosen for unrolling, first the original loop, then
the two-times unrolled version are shown in Figures 3 and 4, respectively.
Finally, the combination of loop unrolling with code motion, which is the
most efficient version of our work, is depicted in loop recon of file
recon.c. The corresponding snapshots of the original loop and then
the four-times unrolled and scheduled loop are shown in Figures 5 and
6, respectively.

/% two dimensional inverse discrete cosine transform *
wvoid Fast IDCT {macroblock block,int iclip| 1)
{

b 17 T B

for (i=0: i<3: i++)
idctrow{block,2¥*i) ;

For (i=0: i<3: i44)
idetcol {block, i, iclip) .}

h
Figure 1. Fast IDCT() before inlining.
/* two dimensional imverse discrete cosipe cransform */
vold Fast IDCT (macroblock block,int iclip[lfz4])
‘ int i;
for (i=0; i<f: i+4)

int =0, x1, x2, %3, x4, x5, X6, =7, x8;

int k=3#%i;
if (M({x1l = block[k+s]*2 } | (%2 = block[k+£]) | (23 = block[X+2]) |
(x¢ = block[k+.]) | (%5 = block[k+7]) | (%€ = block[k+:]) | (x7 = bBlock[k+2]))}
block[k+l]=block[k+l]=block[k+i]=block[k+:]=block([kti]=block[k+:]=block[kti]=block[k+7]=block[k+ 2]*:2;
else
i
xl = (block[0]*2048) + 122; /*® for proper rounding in the fourth stage */

Figure 2. Fast IDCT() after inlining (begin of inlined code).

16

for (i=0; i<1x; i++)

i
v = E%(£1d0[pOml+i]+f1d0[pOpl+il) + 2%fldl[pl+i] - £ldl[plm2+i] - £1dl[plp2+i]:
£1d0[p0+i] = Clip[{v + ((v>=0) 2 2 : 7)) /161;
}
Figure 3. Loop spatscal before unrolling.
for (i=0: i<lx; i+=2)
{

17

v = 2% (f1d0 [pOml+i]+£1d0 [p0pl+i]) + 2+fldl[pl+i] - fldl[pilm2+i] - £1d1[plp2+i]:
£1d0[p0+i] = Clip[{v + {(vs=0) 2 2 : 7)}/16]:

v = 2% (£1d0 [pOml+i+1]+£1d0[pOpl+i+l]) + 2#£f1dl[pl+i+l] - fldi[plm2+i+l] - fldl[plp2+i+l];
£140[p0+i+l] = Clip[(v + ({v>=0) 2 & : 7))/16]:

Figure 4. Loop spatscal after 2 x unrolling.

for {(i=0: i<w; id4+)

{
v = dat[d+il+src[a+i]
deac[d+i] = (wh{ve=021:0))/2;

Figure 5. Loop recon before unrolling.

for (3j=C; j=h: Jj++)
i
Fer {(i=-0; i<w; id4=—4}
i
vl = dst[d+i]d=src[=+i];
v2 = det[d+it+l]4=rc[=+4i+l]

v3 det[d+i+Z]+=rc[s+i+l]
wd = det[d+i4-]+=ro[=+i+-]:

tenpl=vls=0;
temp2=v2s=0
temp3=v3s=01
tempd=vwds=0

dst [d+i] = (vi+templ) /2

dst [d+i+l] = (vZ+cemp2) f2;

dst [d+i+Z] = (v3+temp3) f2:
]

dst[d+i+3i] = (vétcempd) f2:
H
a4=— 1rad;
di= 1x2;

}
Figure 6. Loop recon after 4 x unrolling and code motion.

4.4.3 HLS: Performance Measurements & Comparisons

The CCC backend provides two versions of HDL code. The first is a
non-optimized, whereas the second is an optimized version, produced by
the PARCS optimizer of the CCC HLS tool. The PARCS optimizer
includes optimizations like code motion, code scheduling, detection and
elimination of WAW, WAR dependencies. However, it performs such
optimizations at the hardware level, succeeding to exploit ILP at that
level, but it cannot deal with source-level dependencies. A compiler-level
optimizer can analyze arrays, detect array- access dependencies and
optimize code at a high-level, exploiting ILP that PARCS cannot detect.

It 1s clear that the two tools, the source-level optimizer and PARCS,
complement one-another, building a tool that can optimize hardware at
the level of state-of-the- art.

In this section, we first show the states of FSM for each code, comparing
the first (NOOPT) version with the PARCS version. Table I gives the
results obtained, verifying that PARCS gives a significant reduction in the
number of states.

File Name (.c) NOOPT | PARCS | States Profit
idet 326 220 106 (33%)
idet inline 204 185 109 (37%)
recon 507 362 145 (29%)
recon 2k 679 483 196 (29%)
recon 2k 1 (with code motiom} 613 428 183 (30%%)
recon 4k 1 (with code motion) 868 602 266 (31%)
spatscal 475 370 105 (22%)
spatscal Tk 523 409 114 (22%)

Table I. Number of States in the VHDL codes.

Next, we compare the coupling of source-level optimized codes with the
PARCS optimizer against the plain PARCS optimized codes. For

18

function inlining, we can figure that our profit is the difference in the
number of FSM states between idct.c and idct_inline.c, i.e 220-185 = 35
fewer states. For loop unrolling, we made the conservative assumption
that in each run, all states are being executed. More specifically, if we
suppose N iterations, Mk states after and M states before unrolling, our
profit is Mk / (k*M). This number illustrates the reduction of state
number in the fully optimized code. Table II gives the profit in state
numbers that we obtained. We must note that in actual execution not all
states will be executed in each run. However, when using code motion,
we will expect that the average Mk against the average M will bring even
higher reduction in state number.

File Name Comparison (.c) ME / (E*M) States Profit
(k*M - M)
recon VS recon Jk 483/2*362)=0.67 241 (33%)

recon VS recon 4k 1(with G02/0362% =0.42 346 (58%)
code motion)

recon 2k VS recon Jk 1 428/483=02189 35 (11%)
{with code motion)

recon 2k 1 VSrecon 4k 1 | 602/(428%2)=0.70 754 (30%)

spatscal V5 spatscal 2k 409/(370*2) =0.55 331 (45%)

Table II. State profit when comparing results.

We must clarify that recon 2k is the recon.c file unrolled two times,
while spatscal 2k is the spatscal.c file unrolled two times. Also,
recon 2k 1 and recon 4k 1 are unrolled two and four times,
respectively, and each of them includes code motion optimization. Let us
use the second line of Table II to present an example, these figures
illustrate a great number of states profit, approximately 60 percent less
than the initial number of states for recon.c file. The states before
unrolling for recon was M = 362 states, while the number of states after
four times unrolling and code motion 1s Mk = 602 states. The reduction of
state number in fully optimized code is Mk /(k * M), where k is the unroll
factor, so 602/(362*4) = 0.42. The figure of states profit is being
calculated with the mathematical type: (k*M) - Mk, so in our example we
have (4*362) - 602 = 846 states profit or 58% improved state number!

Figure 8 gives in graphical form the number of states for the original
codes (NOOPT), the PARCS only optimized code, and the combined
optimized code (source-level coupled with PARCS).

19

It is clear, as shown in Table I, that PARCS delivers highly optimized
hardware description. It is also clear, as shown further in Table II and
Figure 7, that source-level optimizations boost CCC performance, at least
in codes where such optimizations are meaningful.

Concerning the optimizations per se, the most significant conclusion is
that as the number of k increases, the number of state profit increases too.
Thus, loop unrolling confirms its utility and justifies our research. Also,
we can figure that, on loop scheduling (recon 2k VS recon 2k 1) in
PARCS version, there is no so much difference between the states,
because PARCS already includes many optimizations and covers some of
the optimizations at source level.

600 -

500

400

300

200
100

W Unoptimized
B PARCS only

B Combined

Figure 7. State numbers comparison.

Because the results described in this section were very encouraging, we
started to think about finding ways to embed automatic dynamic loop
unrolling, enhanced with code motion in the front end of the CCC HLS
tool in order to provide better hardware output. This effort is being
described in detail in the following section.

20

5. Automatic CCC Tool’s Loop Unrolling Process

In this section we will describe the whole process and the actions which
were necessary in order to implement loop unrolling. To achieve this, we
have created the appropriate C language code and embedded it into the
front end of the CCC tool. It is important to understand that loop
unrolling optimization is a source code transformation, as a consequence,
the ADA code which is provided by the tool will be updated with the
inclusion of the unrolled loops.

First of all, let’s give a short description of the tool’s intermediate
representation (ir). This ir is based on two different types of nodes, the
instruction nodes and the expression nodes. The instruction nodes of each
subprogram form is a linked list, with arbitrary nested lists for compound
statements such as ifs, loops and switches. An instruction node contains
among others a ‘type’ attribute, to define the statement, an ‘expression’
attribute, to connect to an expression tree associated with the instruction,
an ‘expr_list’ attribute, for statements connected to a list of expression
trees rather than a single expression tree, an ‘instruction’ attribute, to
connect to an associated nested instruction node, a ‘tail instruction’
attribute, to connect to an alternate nested instruction node, and a ‘next’
attribute, to connect to the next instruction. An expression node contains
among others an ‘operator’ attribute, to define the expression operation, a
‘left’ and a ‘right’ attribute, to connect to two descendants of the node, an
‘expr_list’ attribute, to connect to a list of expression trees, if the
operation has more than two operands, a ‘parent’ attribute, to connect to
the parent node, and an ‘instruction’ attribute, to connect to the
instruction that contains the expression tree.

For instance, the expression:

X=y+t5;

1s an expression that can be divided into sub-expressions in the way of an
abstract syntax tree (ast). The most important of them are the left
descendant (the variable x) and the right descendant (y + 5). The left and
the right descendants have the same predecessor, the parent node “=".
Each expression of an instruction is a part of the ast that can be analyzed
further, so as to become leaf of the tree. In our example, the variable x
ends up as an identifier leaf, while the right descendant must be analyzed
more. So, a graphical representation of our example would be the
following:

21

identifiers /\

constant

Figure 8. Ast graph of ‘x =y +5°.

Returning to loop unrolling, we have to clarify that we apply loop
unrolling only for loops whose instruction type is FOR_LOOP. So, in
order to be able to identify the instruction type, we use the struct
“instr_node”. Depending on the instruction type, the attributes of the
struct “instr node” have different values. The most significant attributes
for the FOR_LOOP instruction type are ‘expr_list’ and ‘tail_instruction’,
the first one illustrates the sequence of the three expressions of the for
statement header, while the second one is a pointer that shows the address
of the first instruction into the body of the FOR LOOP.

After identifying the suitable FOR_LOOP, for each loop we have to
recognize the index variable (the integer which is being incremented on
each iteration), and then to store it. In addition, the division of the start
limit N of the loop over the unroll factor may give us a remainder.
Because of this, we store this number into a variable to help us with the
remaining iterations that may still exist after the completion of loop
unrolling execution. For the same reason, we change the start limit N into
N —remainder . Finally, we replace the POSTINC expression (i++) into
the ASSIGNADD expression by adding the unroll factor with index
variable (i += unroll factor). The pseudocode of these steps is being
presented in Figure 9.

22

for(i=0; i<loop_candidates; i++)
{
index_wariable = identifier // recognition of 1
if (expression-»operator == CONSTANT)

{
remainder = expression-»ivalue ¥ unroll_factor; //remainder
start_limit = expression-»ivalue; // store start limit N
expression-»ivalue = start_limit - remainder; //new limit

}

if(expression-»next-»operator == POSTINC) // i++ transformed into i+=unroll factor

i
expression-»>next->operator = ASSIGNADD;
expression-»>next-»>right->ivalue = unroll factor;
expression-»next->right->operator = CONSTANT;
expression-»next-»>right-»>parent = expression;

}

Figure 9. Pseudocode that transforms the header of a FOR_LOOP.

Let us give an example for the above operation. The first code illustrates
the initial header of the loop, while the second shows the transformed:

for{(i=0; i<N; i++)}{

for(i=0; i< (N-remainder); i+=unroll factor){

We develop the process of automatic loop unrolling by creating the void
function; unroll. The operation of this function is to produce duplicates
for each instruction of the loop body and place them at the end of the loop
body. More specifically, we have built an interconnected list which starts
from the end of the initial loop body and creates instr nodes in order to
expand the body by copying the same instructions with the same order.
The number of how many times the unroll function is being called,
depends on the unroll factor. The latter, can be given by user’s
preference and experiments have shown that this number affects the
performance gain. We cannot claim that as the unroll factor increases, we
will get better hardware output. Basically, you can unroll a loop as long
as you can put more resources to work and you stop when you no longer
can measure any performance gains. Memory issues and register pressure
are the most popular problems that you may face. In our experiments with
loop unrolling, we found that — as is the case with software — the code
explosion caused by loop unrolling can be concern in hardware design as
well. This is because the larger number of operations in the design after

23

loop unrolling have to be mapped to the same number of resources as
before. This leads to more complex interconnect (multiplexers) and
associated control logic. The size of the FSM controller also increases
since more states are required to execute the loop body (even though the
number of iterations are fewer).

For each expression of every instruction (instr node), unroll function
calls another function; dup expression whose purpose is to expand the
initial loop body by recursively copying the expression of each
instruction. More specifically, depending on the operator of each
expression, this function recursively builds an abstract syntax tree. We
have included every C language operator, so as to cover all the possible
cases. In every case, we call again dup_expression setting as parameters
the left or the right descendant. The idea is to reach an identifier or a
constant case, so as to create a leaf. The pseudocode is being presented in
Figure 10, below, and we have to clarify that the unroll index is the
variable that increments by one, on each unrolled loop.

expr_node* dup_expression{expr node* expr)

{
expr_node* newnode;
if (lexpr) return NULL;
newnode = (expr_node*)malloc(sizeof(expr_node));
switch(operator) {
case OROP:
case GTOP:
case ARRAY:....
hewnode—}left = dup_expression(expr-»left);
newnode->right = dup expression{expr-»right);
return newnode;
case ASSIGN:
case ASSIGNADD:....
newnode->left = dup_expression(expr->left);
newnode->right = dup expression(expr-»right);
return newnode;
case PREINC:
case POSTINC:.....
newnode->left = dup expression(expr left);
return newnode;
case IDENTIFIER:
{
if(identifier == index_wvariable) // if i matches with an identifier
{
expr_node* newnode? = (expr_node*)malloc(sizeof(expr_node));
newnode2-»operator = PLUSOP; // create a new node " + "
newnode2->ivalue = unroll index; // set the right descendant of "+" as "i+unroll index"
return newnodel;
}
return newnode;
¥
case CONSTANT:
newnode->ivalue = constant;
return newnode;
¥

Figure 10. dup expression pseudocode.

24

Let us give an example of a loop in which we implement loop unrolling.
The code below is a C language input to the ADA translator. In particular,
it contains a loop with start limit of twelve iterations and three simple
loop instructions. In this example we have unrolled the loop twice, there
will be no remainder.

for(i=0;i<12;i++)

{

x=5;
afi] = i+x;
b = x;

The output ADA code proves our work, because it copies the body of the
loop, and each time the index variable is being detected, is incremented
by the unroll index (by one in each iteration). Finally, the step of the loop
is also increased by the unroll factor (by two in this case). Figure 11
illustrates the optimized ADA output code.

package body F _test new is

function main (
argc: in INTEGER;
argv: in TYPEBB3)
return INTEGER is

i: INTEGER;
x: INTEGER;
a: TYPE@@4,
b: IMNTEGER;

TEMPORARY®88 : INTEGER;
INDEX©8@ : INTEGER;
TEMPINT@®@ : INTEGER;
begin
i:=o;
TEMPINTG@@ := 5;
for INDEX@@8 in @..TEMPINTEEE loop

X o= 0
a(i) := i + x;
b := x;
X 1= 5;

TEMPORARY@EE := i + 1;
a(TEMPORARYBBB) := (i + 1) + x;
b := x;
i =448

end loop;

return @;

end main;
end F_test new;

Figure 11. Optimized ADA code.
25

As we have mentioned above, the division between the start limit N of the
loop with the unroll factor may give us a remainder. So, in this case we
have to create a new FOR LOOP, that will execute the remaining
iterations. The index variable of the new FOR LOOP must maintain its
previous value, i.e. the last value of the execution of the previous loop.
Therefore, the first expression of the header must be NULL. In addition,
the limit of the new FOR_LOOP, i.e. the second expression of the header,
will be the start limit N. Finally, a POSTINC node will be entered as
third expression. The body of the new FOR_LOOP is the same as the
initial body of the old FOR_LOOP, before the unrolling. As a result, we
call the copy function (similar with unroll), in order to duplicate all the
instructions. As a consequence, we have to call again dup expression so
as to get the corresponding expressions of these instructions.

In the pseudocode below we show a process of creating these nodes.

if (remainder!=0)
{

node for->type = FOR LOOFE;

node for->first expression = NULL:

node for->second expression->operator = {LTOP,GITOP..};

node for->»second expression->left = index wariable; ff step
node for-»second expression->right = N;

node for->third expression->operator = POSTINC:

node for->third expression->left = index wvariable;

node for->tail instruction = copy():

In the previous example, if we change the limit from twelve to eleven in
the C language input, we will have a remainder of one iteration. The
unrolled FOR_LOOP body will remain the same, but the only addition
would be the new FOR_LOOP related with the remaining iteration. The
new loop is being presented below and Figure 13 shows the ADA output
for the rest iteration.

for(; i<l11l; i++)

1
x=5;
a[i] = i+x;
b = x;

¥

As you can observe in Figure 12, the new FOR LOOP that we have
created it is being executed correctly, only once.

26

[

In conclusion, the final step of our work is to make experiments using as
benchmarks the same Mpeg?2 codes that have been used in Section 4. In
particular, only recon.c and spatscal.c have suitable loops for testing our
loop unrolling optimization. We will present the comparison (in FSM
states) of the PARCS version before and after implementing loop
unrolling. Table III summarizes the results of automatic-dynamic loop

unrolling in the way they have been analyzed in Table II.
package body F_test _new is

function main (
argc: in INTEGER,
argv: in TYPEGB3)
return INTEGER is

i: INTEGER;
x: INTEGER;
b: INTEGER;
a: TYPE@@4,

TEMPORARY@@@ : INTEGER;
INDEX@@@ : INTEGER;
TEMPINTGGEG : INTEGER,
begin
i:=8;
TEMPINTGEG := 4,
for INDEX@6@ in @..TEMPINTEE88 loop

Moo=
a(i) := i + x;
b := x;
2= e

TEMPORARYE®B8 := i + 1;
a(TEMPORARYBGO) := (i + 1) + x;

b = x;
L= A
end loop;

TEMPINTEEE := 18 - i,
for INDEXGE@ in @..TEMPINTEE8 loop

v G
a(i) := i + x;
b r=rac
2 I B
end loop;
return 8;
end main;

end F_test new;

Figure 12. Optimized ADA with remainder.

Table III not only does justify our work because we have profit in each
comparison, but also we can figure out that as the unroll factor increases,
we gain better hardware performance. Especially, the comparisons

27

between recon vs recon_4k (4 x unroll) and spatscal vs spatscal 4k (4
unroll) gave us obviously better results than comparing recon vs recon_2k
(2xunroll) and spatscal vs spatscal 2k (2 xunroll).

File name Comparison (.c) Mk / (k*M) States Profit

(k*M - MK)
recon vs recon_2k 619/ (2*362) =0.85 105
recon vs recon_4k 939/(4*362) = 0.65 509
recon_2k vs recon_4k 939/(619*2) =0.76 299
spatscal vs spatscal 2k 489/(2*370) = 0.66 251
spatscal vs spatscal 4k 618/(4*370) =0.42 862
spatscal 2k vs spatscal 4k 618/(2*489) = 0.50 309
Table II1. States profit when comparing results of automatic loop

unrolling.

Furthermore, we can advocate that the effectiveness of loop unrolling is
closely related with the size of a loop body. For instance, the number of
instructions in spatscal loop bodies is by far greater than the
corresponding number of recon loop bodies.

28

6. Conclusions and Future Work

In this thesis work, we have presented valuable optimizations in the source level of the
front end of the CCC high-level synthesis tool, such as loop unrolling, function
inlining and code motion that implemented firstly by hand. Subsequently, because of
the encouraging results that we have obtained, we tried to embed the most significant
of these optimizations (loop unrolling) into the front end of the tool. So the main
purpose of our thesis, was to successfully apply automatic loop unrolling in order to
increase performance and provide more efficient hardware output.

Comparing the results of Table III with Table II (only the unrolled files), the state
profit in Table II is better than the corresponding in Table III. There are two reasons
that explain this conclusion, firstly the optimizations that we did by hand, do not
include remaining iterations (that we get, if there is a remainder), so the state number
1s rationally less than the corresponding number on automatic loop unrolling process.
Secondly, the optimizations that we did by hand in recon and spatscal loops include
variables renaming that avoid RAW and WAW dependencies. Moreover, lines 2,3 and
4 in Table II compare loop unrolling optimization with loop unrolling enhanced with
code motion. Obviously, loop unrolling with code motion provide less states because
of the dependencies elimination and instructions reordering.

Our future work plan is to add code motion technique into the CCC HLS tool in order
to automatically provide far better state profit. We have begun this procedure and we
have as far achieved to reorder instructions of the unrolled loops. What is left is to
rename the reordered instructions in order to achieve greater parallelism. For instance
if we use the given example of C language code in section 5:

for(i=0;i<12;i++)

1
¥=5;
a[i] = i+x;
b /=g

¥

If we suppose unroll_factor equal to two, we have achieved to do the following:

29

for (i=0; i<l2; i+=2)
¥

X =rioin

X =rioin

a[i] = i+=;
al[i+l] = i+l1+4=;
b = =2

b ==

So, we intend in our future work to get the fully optimized following code:

for (i=0; i<l2; i+=2)
{
X1 =
x2 =
afi] i+xl;
al[i+l] = i+l+x2;
bl xl;

.5
b2 X2

I n
LTl LTl

Table IV summarizes the comparisons between automatic loop unrolling
files with the files that have been transformed by hand and include loop
unrolling enhanced with code motion. As we explained above, the latter
provide greater states results, but our goal is to automatically achieve

similar results.

(with code motion)

File name Comparison (.c) Mk /M) States Profit
M - Mk)
recon 2k vs recon 2k 1 (with code | 428 /619 =0.69 191
motion)
recon_4k vs recon_4k 1 602/ 939 = 0.64 337
(with code motion)
spatscal 2k vs spatscal 2k 1 409/618 = 0.66 209

Table IV. States profit when comparing results of automatic loop
unrolling with loop unrolling & code motion (transformed by hand).

On the whole, The contribution of the CCC tool is invaluable with the
combination of the C front end. In a matter of minutes large, real-life
applications such as MPEG2 engine are formally transformed into
provably-correct hardware implementations. The PARCS optimizer
delivers high-quality HDL code. Source-level optimizations like loop

30

unrolling, function inlining and compile-level code scheduling, coupled
with PARCS boost performance of the CCC tool significantly. Further, it
i1s clear that the two tools, the source-level optimizer and PARCS,
complement one-another, building an optimizing tool that can optimize
hardware at the level of state-of-the-art.

31

7. References

[1] Gal, B. L., Casseau, E., and Huet, S. Dynamic Memory Access Management for
High-Performance DSP Applications Using High-Level Synthesis. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. Vol. 16,
No. 11, pp.1454-1464 , November 2008.

[2] Gupta, S., Gupta, R. K., Dutt, N. D., and Nikolau, A. Coordinated Parallelizing
Compiler Optimizations and High-Level Synthesis. In ACM Transactions on Design
Automation of Electronic Systems. Vol. 9, No. 4, pp. 441-470 , 2004.

[3] Walker, R. A., and Chaudhuri, S. Introduction to the scheduling problem. In IEEE
Design & Test of Computers. Vol. 12, No. 2, pp. 60—69, 1995.

[4] Dossis, M. F. A Formal Design Framework to Generate Coprocessors with
Implementation Options. In International Journal of Research and Reviews in
Computer Science (IJRRCS, ISSN: 2079-2557). Science Academy Publisher,
UnitedKingdom, Vol.2, No.4,pp.929-936, August2011,
DOI=http://www.sciacademypublisher.com.

[5] Paulin, P. G., and Knight, J. P. Force-directed scheduling for the behavioral
synthesis of ASICs. In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. Vol. 8, No. 6, pp. 661-679, December 1989.

[6] Kountouris, A. A., and Wolinski, C. Efficient Scheduling of Conditional Behaviors
for High-Level Synthesis. In ACM Transactions on Design Automation of Electronic
Systems. Vol. 7, No. 3, pp. 380412, 2002.

[7] Del Barrio, A. A., Hermida, R., Memik, S. O., Mend1as, Jos’e M., and Molina,
Mar'ia C. Multispeculative Addition Applied to Datapath Synthesis. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. Vol. 31,
No. 12, pp. 1817-1830, December 2012.

[8] Sarbishei, O., and Radecka, K. On the Fixed-Point Accuracy Analysis and
Optimization of Polynomial Specifications. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. Vol. 32, No. 6, pp. 831-844, June 2013.

[9] Morvan, A., Derrien, S., and Quinton, P. Polyhedral Bubble Insertion: A Method to
Improve Nested Loop Pipelining for High-Level Synthesis. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. Vol. 32, No. 3, pp.
339-352, March 2013.

[10] Banerjee, K., Karfa, C., Sarkar, D., and Mandal, C. Verification of Code Motion
Techniques Using Value Propagation. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. Vol. 33, No. 8, pp. 1180-1193, August
2014.

32

http://www.sciacademypublisher.com/

[11] Sierra, R., Carreras, C., Caffarena, G., and Lopez Barrio, C. A. A Formal Method
for Optimal High-Level Casting of Heterogeneous Fixed-Point Adders and Subtractors.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
Vol. 34, No. 1, pp. 52-62, January 2015.

[12] Xydis, S., Palermo, G., Zaccaria, V., and Silvano, C. SPIRIT: Spectral-Aware
Pareto Iterative Refinement Optimization for Supervised High-Level Synthesis. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
Vol. 34, No. 1, pp. 155-159, January 2015.

[13] Gupta, S., Dutt, N., Gupta, R., and Nicolau, A. Loop Shifting and Compaction for
the High-Level Synthesis of Designs with Complex Control Flow. Center for
Embedded Computer Systems Technical Report #03-14, University of California at
Irvine, April 2003.

[14] Plesco, A., and Risset, T. Coupling Loop Transformations and High-Level
Synthesis. In RenPar’18 / SympA’2008 / CFSE’6, Fribourg, Switzerland, February
2008.

[15] Cardoso, J., Diniz P., and Weinhardt, M. Compiling for Reconfigurable
Computing: A Survey. In ACM Computing Surveys, Vol. 42, No. 4, June 2010.

[16] Dimitriou, G., and Dossis,M. Experimenting with a High-Level Synthesis System
Front End. In PACET 2015, loannina, May 2015; also in Journal of Engineering
Science and Technology Review 4 (1) (2013) pp. 68-73.

[17] Dossis, M. High-Level Synthesis and Practical Issues. In PACET 2015, loannina,
May 2015.

33

