
Department of Computer Science

Professor: George Stamoulis

PhD Thesis

Agricultural Robotics and Automation
Robot Collaboration for Precision Agriculture

by

Emmanouil G. Fragkoulopoulos
MSc Computer Science, ESSEX Un, UK

November 18, 2017

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Abstract

The need for an increasing agricultural production and a simultaneous decrease in
pesticide and other resource usage has led to demand for new methods in agriculture.
At the same time, the latest advances in robotics have popularized small autonomous
systems, such as Unmanned Aerial Vehicles (UAVs) and robotic rovers. These two
seemingly parallel events have contributed in the creation of a new scientific field:
precision agriculture.

The combination of knowledge from the fields of agriculture, geology, optics, radio
communications and robotics has led to new approaches in cultivation, inspection
and gathering in farmlands. The most prominent aspect of precision agriculture is
the use of automated systems to gather large amounts of data, process them and
proceed to localized action.

In this work, the problem of resources overuse, in the form of water and pesticides,
is tackled. Image processing methods are used to evaluate the health status of veg-
etation in great resolution, by means of multi-spectral aerial imaging, captured by
a UAV. Health information is combined with positional data from the UAV to pro-
duce specific points in the field which need intervention. Path planning and obstacle
avoidance methodologies are constructed, which allow a robotic rover, suitable for
rough surfaces, to access these points automatically and apply the demanded re-
source in a localized and economical fashion.

The resulting procedure is tested in the form of a combined system, consisting of a
UAV carrying a multi-spectral camera, a robotic rover and a ground control station.
Experimental results are presented and discussed upon.

Emmanouil Fragkoulopoulos i

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Acknowledgment

Firstly, I would like to express my sincere gratitude to my advisor Prof. Georgios
Stamoulis for the continuous support of my Ph.D study and related research, for
his patience, motivation, and immense knowledge. His guidance helped me in all
the time of research and writing of this thesis. I could not have imagined having a
better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank Mr. Stefanakis Dimitrios, CEO of UCAN-
DONE for helping me and supporting me with the needed hardware to complete my
experiments, also Mr. George Zogopoulos Papaliakos, for helping me with software
issues, understanding ROS and the messaging protocols between drones and ground
station.

Last but not the least, I would like to thank my family: my wife Aspasia Kotrot-
siou, my daugther Sofia-Despina and my son Georgios for supporting me spiritually
throughout writing this thesis and my life in general.

Emmanouil Fragkoulopoulos iii

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Glossary

C++ A modern programming language, characteristic for its low level of abstrac-
tion. Due to its very efficient compilers, it can produce very optimized code
with fast runtimes, ideal for small-latency environments. 64, 70, 100

GIS A Geographic Information System, commonly referring to software which are
able to store, manipulate, analyze and present spatial and geographical data.
Commonly used to stitch together aerial photographs of an area, aligning them
and referencing them to the coordinate frame. 139

I2C Shorthand for Inter-Integrated Circuit. It is a hardware and software specifi-
cation for multi-master, multi-slave bus communcation. 29

laser scanner A sensor which is capable of measuring the distance of the nearest
obstacle in a range of directions in a 2-dimensional plane. It uses a rotating
laser reflected to obstacle surfaces to measure its travel time and estimate said
distance. It may be able to identify objects in a full-circle around it, or in a
constrained arc. It has a minimum and a maximum measurement range. 16,
79

LiPo Shorthand for Lithium-Polymer battery. An interchangable term with Lithium-
Ion (LiIon) batteries, which are the modern choice for storage of electrical
energy, thanks to their high power density and high discharge rates, albeit in
a more chemically unstable container. 29, 39

MEMS Shorthand for microelectromechanical systems. This is an umbrella term
for all modern, sensor and actuator devices of very small size, primarily com-
prised of semiconductor parts. 29

Mission Planner A Ground Control Station software, suitable for communication
and control in systems which use the MAVLink communication protocol. Runs
on Windows. 80, 124

multicopter A flying vehicle which uses multiple rotating propellers to produce
lift. 21

Emmanouil Fragkoulopoulos v

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Multispek A commercial, near-infrared camera model, used in agricultural appli-
cations. It consists of a modified GoPro 4 Silver camera, with proprietary
firmware and lens. 79

NED The North-East-Down refernce frame. It is a Cartesian 3-dimensional coor-
dinate frame which is used for local navigation near the surface of the Earth.
Its x-y plane is tangent to the Earth’s surface at the location of interest. 49,
108, 117

Odroid A series of modern, small-size, low-cost, embedded, single-board comput-
ers, capable of fast CPU and GPU calculations. 80

OpenCV A modern and popular image processing software library, available in
C++ and Python. 86, 95

Pixhawk A flight controller board, designed to host the ArduPilot and PX4 au-
topilot firmwares. It was designed by Phillip Rowse, in collaboration with
3DRobotics. It is an open-hardware product. When accompanied with suitable
peripherals, can serve as an autopilot system for aerial and ground unmanned
vehicles. 25, 26, 79

PPM An acronym for Pulse Position Modulation. This is a type of encoding, which
allows for multiple PWM channels to be transmitted over one conductor. 27

PWM An acronym for Pulse Width Modulation. This is a type of modulation,
which is primarily used by servo motors and Electronic Speed Controllers
(ESCs). It carries a single value information, encoded as the high-time of a
fixed-frequency pulsetrain. Commonly, the frequency of the pulsetrain is 50Hz
and the range of the high-time interval is [1000-2000] milliseconds. vi, 27

Python A modern programming language, with high abstraction level and a re-
markably large collection of available libraries. 64, 70, 71, 100, 109

rover An autonomous robotic ground vehicle, which uses wheels or continuous
tracks for locomotion. 16, 39, 79

UTM The Universal Transverse Mercator (UTM) is a projection which uses an
array of localized 2-dimensional Cartesian coordinate systems to represent
locations on the Earth. 49, 109, 117

WGS84 A mathematical representation of the surface of the Earth, in the form
of an ellipsoid. Its surface spherical coordinates are the most common format
used by GPS systems. 49, 108, 109, 117

PhD Thesis vi

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Acronyms

ANN Artificial Neural Networks. 3, 4

API Application Programming Interface. 23, 65, 73, 107

CIR Colour Infared. 6

CNC Computer Numberical Control. 42

COTS Commercial Off-The-Shelf. 19, 22, 30, 39

DIY Do-It-Yourself. 26

DSM Digital Surface Model. xii, 6

DSS Decision Support System. 1

ERT Electrical Resistivity Tomography. 2

ESC Electronic Speed Controller. vi, 39

GCS Ground Control Station. 15, 16, 23, 25, 30, 37, 71, 74, 79, 81, 125

GPR Ground Penetrating Radar. 2

GPS Global Positioning System. 1, 29, 42, 72

GUI Graphic User Interface. 125

LAN Local Area Network. 75, 80, 110, 139

LIDAR Light Radar. 6

NDVI Normalized Differential Vegetation Index. ix, 9, 15, 34, 70, 86, 95, 139

NIR Near InfraRed. xii, 4, 9, 34, 70, 100, 127

OS Operating System. 63

Emmanouil Fragkoulopoulos vii

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

PA Precision Agriculture. 1, 2, 6, 8, 9, 10

RC Radio Controlled. 27

ROS Robotics Operating System. 15, 47, 63, 109

RX Receiver. 27, 29

SSCM Site Specific Crop Management. 1

TX Transmitter. 27, 29

UAS Unmanned Aerial System. 139

UAV Unmanned Aerial Vehicle. xii, 1, 2, 6, 8, 9, 10, 12, 15, 16, 19, 39, 79, 123

UGV Unmanned Ground Vechicles. xii, 2, 8, 9, 10

UUV Unmanned Underwater Vechicles. 9

WLAN Wireless Local Area Network. 80

PhD Thesis viii

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Contents

Abstract i

Acknowledgment iii

Glossary v

Acronyms vii

Contents ix

List of Figures xii

1 Precision Agriculture 1
1.1 Precision Agriculture . 1
1.2 Collaboration between UAVs and UGVs 8

2 Robotics Applications on Agriculture 11

3 Overview of the Proposed System 15

4 The Unmanned Aerial Vehicle 19
4.1 On the Choice of the Most Suitable UAV 19
4.2 On the Choice of the Autopilot Module 23
4.3 The ArduPilot Ecosystem . 26
4.4 The Pixhawk Hardware and its Peripherals 27
4.5 The IRIS+ Platform . 31

5 The Image Capture System 33
5.1 Multispectral Imaging . 33
5.2 The Normalized Differential Vegetation Index (NDVI) 34
5.3 The Multispek Camera . 36
5.4 Connection with Pixhawk . 37
5.5 Communication and Image Transmission 37

6 The Rover 39

Emmanouil Fragkoulopoulos ix

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

6.1 The Rover Platform . 39
6.2 The Autopilot . 43
6.3 The Laser Scanner . 44
6.4 The Embedded Computer . 46

7 Elements of Theory 49
7.1 Coordinate Frames . 49
7.2 Rover Path Generation . 53
7.3 Obstacle Avoidance . 57

8 Software Components 63
8.1 The Robotics Operating System (ROS) 63
8.2 ROS Node/Topic Example Network 65
8.3 The multimaster-fkie Package . 67
8.4 The Image Transport Package . 68
8.5 The Image_Proc Package and Image Rectification 68
8.6 The OpenCV Library . 70
8.7 The MAVLink Protocol . 70
8.8 The mavros Package . 72
8.9 The dronekit Library . 73
8.10 The MAVProxy GCS . 74
8.11 The wget Program . 75
8.12 k-means Algorithm and Library . 76

9 System Integration 79
9.1 Network Configuration . 79
9.2 Flow Diagram . 82
9.3 Launch Files . 85
9.4 File Monitoring . 86
9.5 Publishing the Image Topic . 90
9.6 Image Processing for NDVI Extraction 96
9.7 Point of Interest Geolocation . 100
9.8 Generation of Rover Path . 109
9.9 Interfacing with the Laser Scanner and Obstacle Avoidance 118

10 Results 123
10.1 Typical Mission Description . 123
10.2 UAV Mission Setup . 124
10.3 Image rectification . 125
10.4 NDVI Extraction . 127
10.5 Points of Interest Geolocation and Aggregation 130
10.6 Rover Trajectory Generation . 132
10.7 Obstacle Avoidance . 136

PhD Thesis x

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

10.8 Discussion and Future Work . 139

11 Conclusions 141

Bibliography 143

Emmanouil Fragkoulopoulos xi

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

List of Figures

1.1 Probability of three different colour indexes for steam (weeds), leaf and
soil [49]. 3

1.2 Reflectivity of leafs at visible and Near InfraRed (NIR) spectrum (http://www.satpalda.com).
. 4

1.3 The framework suggested by [13] to isolate weeds from crops [13]. 5
1.4 The Digital Surface Model (DSM) constructed by the approach suggested

by [88]. 6
1.5 Comparison between actual and estimated tree heights using 3D au-

tomatic reconstruction techniques on images obtained from Unmanned
Aerial Vehicle (UAV)s [88]. 7

1.6 A. powered glider, B. powered parachute, C. helicopter, D. fixed wing
aircraft, E. Draganflyer X8 quadracopter, F. Aeryon Scout quadracopter
[89]. 8

1.7 A swarm architecture designed for Unmanned Ground Vechicles (UGV)s
obstacle avoidance based on aerial observations using UAVs [80]. 9

2.1 An automated tractor . 12
2.2 The RMAX helicopter . 13

3.1 Abstract system diagram . 17

4.1 A multirotor UAV . 21
4.2 A hybrid UAV . 22
4.3 The Pixhawk flight controller . 26
4.4 Hardware interface of the Pixhawk hardware, top 28
4.5 Hardware interface of the Pixhawk hardware, side 28
4.6 The IRIS+ quadrotor . 32

5.1 NDVI of vegetation in Summer . 35
5.2 NDVI of vegetation in Winter . 35
5.3 The Multispek Camera . 36

6.1 The rover built for this work . 40
6.2 Electronics installation inside the rover 41

PhD Thesis xii

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

6.3 Electronics installation on top of the rover 43
6.4 A typical laser scan frame . 45
6.5 The SICK LMS1110 laser scanner . 46
6.6 The Odroid XU3 Embedded Computer 47

7.1 The NED, carried and body frames . 51
7.2 The camera and image frames . 53
7.3 A Typical Crop Field Geometry . 54
7.4 The Proposed Path Geometry . 55
7.5 The obstacle avoidance and navigation problem geometry 59
7.6 An example vector field . 61
7.7 Vector field synthesis . 62

8.1 A simple ROS node and topic network 66
8.2 A demonstration of lens distortion . 69
8.3 The lens calibration chess pattern . 69
8.4 The components of a MAVLink packet 72
8.5 Clustering with the k-means algorithm 77

9.1 System network configuration . 80
9.2 System software flow diagram . 84

10.1 The vineyard under survey . 124
10.2 The mission planning screen of Mission Planner 125
10.3 A multispectral image, captured during the UAV mission 126
10.4 The rectified image . 127
10.5 The original image and its three colour components 128
10.6 The NDVI operation applied on the sample image 129
10.7 The corresponding thresholded NDVI index image 129
10.8 Points in need of intervention and the corresponding centroids 131
10.9 The location of the rover pathing test and its outline points 133
10.10Intermediate corners to waypoint 1 . 133
10.11Intermediate corners to waypoint 2 . 134
10.12Intermediate corners to waypoint 3 . 134
10.13Rover trajectory for intermediate path 1 135
10.14Rover trajectory for intermediate path 2 135
10.15Rover trajectory for intermediate path 3 136
10.16Attractor vector dominating the desired heading 137
10.17Repulsor vector dominating the desired heading 138
10.18Nearest obstacle dominating the repuslor vector 138

Emmanouil Fragkoulopoulos xiii

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 1

Precision Agriculture

Agriculture is a universal and inclusive term which defines the cultivation of plants,
animals and fungi’s in order to provide resources to asses human needs. Although
agriculture is a basic requirement for civilization, nonetheless, non-optimized and
brute-force practices can negatively affect the surrounding environment and con-
sequently lead to ecological disasters. In addition, the quadratic growth of human
population give rise to an increasing need for more intense and massive farming
while repressing the ecological affects of the latter. In order to address this highly
important issue, modern technology combined with known mathematical concepts
are employed in an effort to optimize and further maximize agricultural production
while repressing its ecological effects to a minimum.

The present chapter provides an introduction to the so called Precision Agriculture
(PA). Different applications using different platforms and methodologies are outlined
in an effort to highlight the effectiveness and the importance of incorporating modern
sensing technologies for a better and more efficient agricultural scheme.

1.1 Precision Agriculture
PA, also known as Site Specific Crop Management (SSCM), is a recently developed
framework within which, quality factors related to agriculture are precisely observed
and analyzed in an effort to maximize productivity while repressing the required
resources and the negative ecological outcomes [89]. PA is an inclusive term which
holds as special case any technology which aims to observe and accurately map
field’s parameters in order to allow a site-specific farming strategy.

PA was triggered with the advent of Global Positioning System (GPS) and the triv-
ial access to satellite images. Through these, the spatial variability of field’s factors
(such as crop yield, topography, organic matter, moisture content) can be accurately
mapped and incorporated in a Decision Support System (DSS) specifically defined
for an individual field [89]. Moreover, the rapid advancements of UAV led PA to a

Emmanouil Fragkoulopoulos 1

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

new Ira in which high resolution observations can be obtained in a time efficient
manner using (relatively) low cost equipment. Fully automatic site-specific robotic
swarms, which are designed to optimize the production based on some given con-
strains (related to logistics and ecology), can potentially revolutionize agriculture
and make the latter capable to address the increasing global challenges.

In the following sections, popular applications of PA are briefly outlined and a short
introduction is given regarding swarm architectures and real-time collaboration be-
tween UAVs and UGVs.

Moisture content estimation
Early work related to PA includes using frequency domain sensors in order to es-
timate soil’s impedance [30]. Subsequently, soil’s impedance is correlated with its
moisture content and humidity maps are drawn. Apart from frequency domain sen-
sors, the water content can be indirectly estimated using various techniques, among
others are, fiber optic sensors [41, 40], ceramic sensor [68] and neutron scattering
[77]. As it is mentioned by [77], the methods above are either too expensive or non-
practical for usage in the field. To overcome this, a micro controller system which
monitors the temperature and the water content of the field is suggested by [77].
In their proposed scheme, the water content is estimated based on the electrical
resistivity of the soil which is directly related to its moisture as well as the salin-
ity of the water. Based on these two parameters (i.e. moisture and temperature) a
selective irrigation procedure was applied when moisture and temperature reached
a predefined threshold [77]. A similar system was designed by [51] in an effort to
introduce an optimized framework for farming in India.

Estimated the water distribution within the soil (both horizontally as well as ver-
tically) is a primary goal of the so called near-surface geophysics [26], [64]. Electri-
cal Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) are two
widely used geophysical methods which can indirectly map the subsurface distribu-
tion of soil’s dielectric properties. In particular, ERT maps soil’s electric resistivity
[26] while GPR is traditionally used to estimate soil’s electric permittivity [18]. Both
electric permittivity and electric resistivity are directly related to the moisture con-
tent of the soil [22], [33]. Thus, mapping soil’s dielectric properties is equivalent to
mapping its water content.

Discrimination between weeds and crops
PA has been also successfully applied for separating weeds from crops. Traditionally,
weeds can be repressed using herbicides. Although the quality of the latter have been
substantially improved over the years, still herbicides can be very costly and in some
cases even more expensive than cultivation itself. In addition, herbicides should be
used with caution since they are widely considered as dangerous and potentially

PhD Thesis 2

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.1: Probability of three different colour indexes for steam (weeds), leaf and
soil [49].

ecological hazardous materials [27]. From the above, it is evident that separating
weeds from crops and applying herbicides accordingly is of a great importance for
both ecological and financial reasons.

An early approach for weed detection was suggested by [35]. The main principle of
their idea is to detect weeds from aerial pictures based on shape, color and texture
features. The main drawback of this approach lies to the fact that different weed
species vastly varies in both shape and texture. Cassady et. al. [15] highlighted the
importance of color for separating weeds from crops. Zhang et. al.[91] suggested
a monochrome based machine vision algorithm in an effort to capture color fea-
tures associated with weeds. Although laboratory experiments were successful, in
real conditions the suggested technique was proven to be unpractical for real-time
estimations [49]. In order to reduce the illumination effects and increase the discrim-
ination rate, Mozib et. al. [49] suggested a machine vision framework which is based
on a combination of the Red (R), Green (G) and Blue (B) indexes of a picture.
They suggested a hybrid color index which is related to R and G

F = R−G
R +G

. (1.1)

The color index described in 1.1, as it is clearly shown in Fig. 1.1, surpasses the

Emmanouil Fragkoulopoulos 3

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.2: Reflectivity of leafs at visible and NIR spectrum
(http://www.satpalda.com).

individual R, G, B indices as a parameter for classifying weeds from crops. In the
same context, Perez et. al. [57] applied (1.1) and subsequently used classifiers such
as k-nearest neighborhood and Bayesian rule in an effort to discriminate weeds
from crops based on both their shape and color indexes. The applied classifiers were
trained to detect a specific type of weed, namely, dicots. Yang et. al. [87] used a more
straight forward approach in which 80 images of weeds and crops were used in order
to train an Artificial Neural Networks (ANN). Furthermore the capabilities of the
resulting ANN were validated in 30 pictures which they were not part of the training
set. Although their results seem promising, nonetheless the method was tested in
specimens similar to the ones used during the training process (both training and
testing sets were taken from the same field). Thus, this technique should be further
tested in different fields and under different conditions in order to further clarify its
applicability and limitations.

The previous techniques used aerial pictures taken from commercial cameras based
on the R, G, B colour indexes. Apart from that, NIR cameras have been widely
used to observe vegetation, since chlorophyll shows a distinctive reflectivity to wave-
lengths varying from 0.8-1.4 µm (see Fig. 1.2). Gerhards et. al. [31], [32] combined
the information from typical RGB and NIR cameras to find distinctive patterns in
weed’s and crop’s spectrum. Furthermore, Tang et. al. [74] and Voix et. al. [78] used
NIR images which were subsequently processed in frequency domain using Gabor
filters. The resulted images were used to train an ANN designed to discriminate
between weeds and crops.

Lee et. al. [42] designed an automatic system for both classification and focused
spraying. Their proposed framework can be applied in real time and it is specifically
designed for tomato crops. Their method is based on an RGB picture taken from

PhD Thesis 4

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.3: The framework suggested by [13] to isolate weeds from crops [13].

a commercial camera that was placed a few meters high from the ground. The
subsequent image processing, involves segmentation, binarization and a detection
scheme based on structural characteristics, namely, the ratio between heigh and
width, main axis of area, perimeter and so on. Burgos-Artizzu et. al. [13] proposed
a discrimination scheme based on an RGB camera mounted on the roof of a tractor.
The obtained image is firstly transformed using a linear filter (r = −0.884, g = 1.262,
b = 0.311) which was proven to perform better compared to the Excess Green
coefficients [84, 14]. Subsequently the image is segmented using as threshold the
mean value of the intensity of the pixels. From the processed images, the crop rows
are specified by using an AND technique combining 8 frames. Due to the movement
of the camera, the crop rows are further enhanced in comparison to weeds and
secondary features. Lastly, the pixels identified as plants which are not laid within
the crop rows are classified as weeds.

Burgos-Artizzu et. al. [14] and Xuewen et. al. [85] suggested a more sophisticated
processing scheme (not for real-time applications) to isolate weeds from crops. Their
method can be divided into the following steps

• Transformed the picture through a linear filter.

• Using a mean threshold to segmented the resulting figure.

• Apply an erosion filter to eliminate isolated black pixels within the crop lines.

Emmanouil Fragkoulopoulos 5

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.4: The DSM constructed by the approach suggested by [88].

• The center of the crop rows is estimated as the column of the figure in which
the summation of the pixels intensity reaches a peak maximum.

• An edge detection is applied.

• For every row of the figure, the pixels from the main axis of the crop line till
the first edge are defined as crops. The rest are considered to be weeds.

Figure 1.3 illustrates the different steps of the method described above. It is evident
that the present technique can not be applied to irregular fields in which crop rows
are not trivially identified.

Tree heigh estimation
The height of trees and canopies is of great importance since it can provide essential
information regarding ecological, hydro-logical and biophysical processes [69]. It
is evident that a direct height measurement for every individual tree would be
unpractical and time consuming. To overcome this obstacle, PA approaches have
been employed in an effort to measure the heigh of canopies with in a fast and
automatic manner. Several examples can be found in the literature of approaches
based on photogramic methods, Light Radar (LIDAR), laser scanners and so on
[69, 79, 73]. As it is stated by [88], the above techniques require expensive equipment
combined with well trained personnel. Zarco-Tejada et. al. [88] used UAVs equipped
with a commercial camera modified for Colour Infared (CIR) photography [88].
Using automatic 3D reconstruction techniques, they manage to accurate reconstruct

PhD Thesis 6

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.5: Comparison between actual and estimated tree heights using 3D auto-
matic reconstruction techniques on images obtained from UAVs [88].

a DSM of an area planted with olive trees in southern Spain (see Fig. 1.4). In order
to validate their results, heights gathered manually from 152 trees were compared
with the heights obtained using the automatic 3D reconstruction technique. The
actual and the predicted heights are in very good agreement (see Fig. 1.5) which
indicates the validity and reliability of their suggested technique [88].

Emmanouil Fragkoulopoulos 7

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.6: A. powered glider, B. powered parachute, C. helicopter, D. fixed wing
aircraft, E. Draganflyer X8 quadracopter, F. Aeryon Scout quadracopter [89].

1.2 Collaboration between UAVs and UGVs

UAVs have been widely and successfully applied to PA and manage within a short
period of time to revolutionize the field primarily by making high resolution aerial
images approachable. Their relatively low cost combined with the fact that UAVs
can be trivially equipped with sophisticated sensing tools, make them an attractive
choice for addressing problems related to PA. Satellite images, as it is stated by [48],
neither can be applied regularly nor meet with the expected resolution needed for
PA. Manned airborne platforms although effective, still they remain unpractical due
to the high cost of the equipment combined with the operational complexity and the
non-trivial delivering system [48, 71]. UAVs can overcome these obstacles by pro-
viding a practical and easily accessible platform for PA applications. A vast number
of different UAVs have been employed so far,among them are, blimbs [38], balloons
[67] and kites [7]. The most widely used UAVs are the remote controlled helicopters
and air-planes (see Fig. 1.4) which are recently reach the public domain with their
developers trying to appeal to general public as well as specialized scientists [37].

Apart from the applications described earlier in the present chapter, UAVs have
been further employed for

PhD Thesis 8

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 1.7: A swarm architecture designed for UGVs obstacle avoidance based on
aerial observations using UAVs [80].

• monitoring fertilizers trials. [90],

• conduct crop scouting and map field tile drainage (using NIR) cameras [90],

• mapping the crop yield variability employing NIR cameras combined with
unsupervised classification schemes and principal components analysis [86],

• parameter monitoring based on RGB cameras [24],

• vegetation monitoring and stock valuation [66],

• assessing water stress using various indices like NDVI. [28].

An interesting and more coherent review regarding the UAV systems used in PA
can be found in [89].

Collaboration between UAVs and UGVs creates a swarm architecture within which
UAVs and UGVs are cooperate in order to assist in situations where humans are

Emmanouil Fragkoulopoulos 9

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

unable to reach [80]. The individual unmanned vehicles are initially independent
from each other and can only interact through a cloud environment by exchanging
information wireless and in real time [80]. These swarms are called heterogeneous
since they consist of both UAVs and UGVs (this definition can be expanded to
Unmanned Underwater Vechicles (UUV) as well).

A simple example of heterogeneous architecture is described by [29]. In their work
a single UAV is used to map a specific area and detect possible obstacles in order to
navigate a UGV accordingly. Chaimowicz et. al. [17] designed a more sophisticated
heterogeneous architecture in which a blimp was used to navigate a group of UGVs
that was formed using pattern recognition approaches specifically modified to form
Gaussian distributions of UGVs on the ground. In the same context, Tanner et. al.
[75] proposed a decentralized navigation of UGVs based on information given in
real time by a swarm of UAVs. A similar approach was also used by [16] in order to
designed a heterogeneous robotic system specifically applied for urban applications
and generic localization. Localization as well as feature extraction using heteroge-
neous robotic swarms was also achieved by [34]. An inclusive and more complete
review of heterogeneous architectures can be found by [80] and [23].

The examples above, present (mostly) abstract applications of heterogeneous swarms,
and in particular joint navigation and obstacle avoidance [80] (see Fig. 1.7). In the
present thesis, a heterogeneous swarm is specifically designed and optimized for
PA applications. The two fields, namely heterogeneous robotic systems and PA are
merged in an effort to create a new PA framework capable for automatic actions
based on precise observations in a practical and trivial manner.

PhD Thesis 10

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 2

Robotics Applications on
Agriculture

In Chapter 1, the importance of precision agriculture was presented and the benefits
of its application on modern crops were laid out. At this point, one should consider
the highly technical nature of precision agriculture: Its methods involve the accu-
mulation of large amounts of data, at regular intervals as well as the timely and
consistent processing of said data.

Leaving this task to the farmer is against the purpose of this effort. Humans are not
reliable when called to perform repetitive tasks, nor are able to process large amount
of data with accuracy and speed. On the other hand, computers are known to excel
in those areas. Naturally, software might be able to handle the data processing, but
cannot go out in the field and collect data samples. This is where robotic platforms
can be used, to act as the physical extensions of computing systems.

A robotic system with suitable design is able to carry out these required tasks,
complementing a precision agriculture system:

• Field traversing

• Data collection

• Data relay / storage

• Targeted application of treatment

• Constant level of repeat-ability of used methods

Robots have already been introduced in agriculture, in its traditional form. A well-
known example are the automated tractors and harvesting machines (Figure 2.1).
These robots are built upon a traditional form-factor, implementing an already avail-
able functionality, with the difference being that they don’t need a human operator

Emmanouil Fragkoulopoulos 11

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 2.1: An automated tractor

to be occupied with the task of commandeering them constantly which provides con-
siderable benefits. The human is no longer exposed to the danger of labor accidents,
predominant in agricultural workflows, and harsh environmental conditions. More-
over, the machine is guaranteed to carry out the harvesting procedure relentlessly
without pause with the same level of accuracy and precision. However, it should
be noted that usually robotic platforms still need some amount of supervision, to
prevent the consequences of malfunctions, mechanical failures and software bugs, as
well as periodic maintenance.

Another, more modern approach to introducing robots in agriculture is the use of
UAVs for spraying pesticide. Using an unmanned aerial platform for the application
of pesticide overcomes problems inherent to the traditional methods of applica-
tion. Its ability to hover above the crops protects the crops themselves from being
trampled by a ground vehicle but also allows the UAV to operate over rough or
inaccessible terrain. Moreover, the choice of the helicopter form factor allows it to
hover at very low height, ensuring a very focused application of pesticide, a known
problem when using airplanes to spray crops: it is difficult to enforce the spread of
pesticide withing a very restricted field area and that causes, among others, legal
problems with legislation regarding spraying. Finally, as it is to be expected, no
aircraft pilot is exposed to labor accidents.

Still, there are currently few to no robotic systems which implement the core tasks
of precision agriculture. This is to be expected, since precision agriculture itself is a
relatively new sector of research, finding gradually its way to the commercial sector.
As its methods are still being refined and tested, there is not a large user base yet to
justify investment towards large-scale robotics research and manufacturing for such

PhD Thesis 12

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 2.2: The RMAX helicopter spraying pesticide

applications. This is expected to change soon, as precision agriculture becomes the
de-facto approach for crops supervision and intervention, bringing especially large
savings in cost and effort in large-scale cultivation. With that prediction in mind,
in this work, an automated, proof-of-concept robotic system is presented, designed
to supervise crops, collect relevant data, process them and intervene accordingly.

Emmanouil Fragkoulopoulos 13

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 3

Overview of the Proposed System

In this chapter, the overall architecture of a proof-of-concept robotic system which
implements methods of precision agriculture is presented. The system is designed
to capture the health index of a pre-defined crop field, extract the least healthy
locations and intervene by applying water to those areas. At the same time, tight
constraints in size, cost and complexity were applied in order to ensure that the
system would be flexible and easily deployable, even by a single person.

In order to acquire data on the health status of the vegetation, a multi-spectral
camera is used to capture aerial images in the red and near infra-red bands. The
camera is carried by a UAV, programmed to fly a mission over the area of interest.
Details on multi-spectral imaging and the NDVI index are provided in Chapter 5.

The UAV which is selected for this application has the form of a quad-rotor. The
decision on the form of the UAV is well-thought and the reasoning behind it is
presented in Chapter 4. The open-source autopilot software Ardupilot and open-
hardware autopilot hardware Pixhawk were the enabling technologies behind the
UAV solution.

The captured images are downloaded wirelessly and in real-time in a laptop com-
puter in the Ground Control Station (GCS) where they are processed to extract
the NDVI of the vegetation under inspection. At the same time, a telemetry stream
generated by the UAV is recorded as well, containing position and attitude infor-
mation. The imaging information is combined with the telemetry stream from the
UAV for geolocation so that each data point can be georeferenced in the actual
world and addressed with geodetic coordinates. A discussion on frames on reference
can be found in Section 7.1.

At the core of the software running in the GCS is the Robotics Operating System
(ROS), allowing for the deployment of a modular software solution, spanning the
entire network of interconnected systems.

It is of interest to group the unhealthy points to form areas where intervention

Emmanouil Fragkoulopoulos 15

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

material should be applied. This not only prevents the unnecessary waste of excess
resources, but also minimizes the time required to apply the material. Thus, the
unhealthy points are grouped with clustering algorithms to allow for specific and
localized intervention and their coordinates are passed onto the robotic rover.

The rover has information on the crop row geometry in addition to distance mea-
surements from a laser scanner, which allow it to navigate the field safely, avoiding
crop rows and other obstacles. This topic is expanded upon in Section 7.3. In this
work, the rover is not equipped with any kind of applicator, since this was deemed
out of scope and a technical problem of different, separate nature.

The major hardware components of the system are:

1. The UAV used to carry the multi-spectral imager and to perform automated
scanning missions over the area of interest

2. The multispectral imaging sensor which captures data in the red and near
infra-red spectra, which in turn is then used to extract vegetation health in-
formation

3. The GCS in the form of a wireless access point and a laptop computer, for
data transfer and processing and vehicle coordination

4. The rover which visits the areas of interest in the field to apply treatment

An abstract diagram of the proposed system configuration can be seen in Figure
3.1.

PhD Thesis 16

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 3.1: Abstract system diagram

Emmanouil Fragkoulopoulos 17

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 4

The Unmanned Aerial Vehicle

4.1 On the Choice of the Most Suitable UAV
The core of the precision agriculture application presented in this dissertation is
the UAV which is tasked with scanning the crops with a specialized image sensor.
Data captured with that sensor can then be analyzed and used to extract metrics,
regarding the health and growth of the crops.

Even though the UAV might be the most impressive and flamboyant component of
the overall system, one should keep in mind that it is merely a means to an end. The
goal is the acquisition and processing of valuable field data, and the means to do it
is the capturing system. In fact, the image sensor might arguably be considered a
more rare and specialized commodity than the UAV itself: multi-spectral cameras
are still very expensive, hard to make and maintain, as well as quite fragile. On the
other hand, the UAV revolution is in full bloom and has produced plenty of options,
when it comes to lifting and carrying payloads over areas of interest.

Given the above, it might sound as if the selection and operation of a UAV for pre-
cision agriculture applications is a non issue. That would be as far from the truth
as it can be. Choosing the correct UAV for each application is a major engineer-
ing problem which teams and companies face daily. It is even very likely that the
most suitable UAV system for an application is a custom-built one, instead of a
Commercial Off-The-Shelf (COTS) one.

A realistic approach is to build the UAV around the specified payload, while taking
into account the mission requirements. The most crucial decision concerns the air-
frame type. There are 4 major categories:

• Fixed-wing aircraft

• Helicopters

• Multirotors

Emmanouil Fragkoulopoulos 19

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

• Hybrid air-frames

Fixed-wing aircraft
Commonly known as airplane, this is the most traditional aircraft category. It is well-
studied over the span of more than a century and this has led to complete solutions
regarding issues on aerodynamics, construction technology, propulsion and control.
UAVs which fall under this category also have been studied extensively over the past
decades, but room for improvement still exists, with the advance of new materials,
structural configurations and control techniques.

Fixed-wing aircraft boast very efficient flight, the fastest flight speed and great
payload capacity.

On the downside, they must maintain a minimum airspeed airspeed to keep them-
selves on the air and require a minimum, relatively clear stretch of ground to
land (and possibly take-off, with the exception being the hand-launched vehicles).
Parachutes have made an appearance on airplanes, removing the need for a landing
strip, but are not applicable in every case; they cushion the fall, rather than nullify
it, and thus are not an option in expensive and delicate models. On the smallest
scales, airplanes are also very susceptible to wind.

Helicopters
These are the second-oldest motorized, heavier-than-air flying platform. They are
also extensively studied and are also quite efficient in flight, albeit not as much as
airplanes.

On the bright side, they are exceptionally maneuverable in flight and tolerant of
weather adversities. They can take off and land vertically on any terrain and can
carry significant payloads.

However, helicopters are notoriously complex in construction and demanding in
service and maintenance. They are also very hard to fly, in small scales, and this is
all the more true with autopilots. Little to no mature, full-featured autopilots exist
for helicopters, whose absence reflects on the importance of the control problem of
this highly dynamic, highly non-linear system.

Multicopters
This category covers all vehicles which lift themselves by using multiple rotating
propellers, in comparison to a helicopter, which uses a single one (or two, in some
exceptions). This is a relatively new category of aircraft, in the sense that it never
had a counterpart in manned flight. Even though there have been experimental

PhD Thesis 20

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 4.1: A multirotor UAV

aircraft in manned aviation in the past, technical difficulties never allowed them to
claim their place in the skies. A typical multirotor UAV can be seen in Figure 4.1.

The most significant constraint stems from the physical characteristics of propellers,
which exhibit reduced efficiency, the smaller they are. Thus a single, large propeller
will always be more efficient when producing lift, compared to multiple, smaller
ones. This explains the dominance of the helicopter over the multicopter, in spite of
its mechanical complexity.

The advance of technology in the domains of electrical motors, batteries and sensors,
have allowed the multirotor to take form as a UAV, where its advantages often
outweigh its drawbacks.

It is the simplest to manufacture and maintain of all previous airframes. It consists of
a simple geometric design and topology of the motors. Brushless DC motors, mostly
used in multirotors are simple to manufacture and virtually maintenance-free. The
airframe displays a natural hardware redundancy, in the form of multiple lifting
motors. It is impossible to control fully manually, but relatively simple to control
with the means of an automatic control system. Naturally, it can hover above a
specific location and take off and land vertically.

On the down side, it has very poor efficiency and hence low payload capabilities.
Their flight time is equally constrained.

Hybrid UAVs
Aircraft which are a combination of airplanes and multirotors fall under this cate-
gory. They have fixed wings which produce lift when flying forwards, but they also
have motors which point upwards, dedicated for vertical movement. Some configu-
rations use the same motors for vertical and forward propulsion, by placing them on

Emmanouil Fragkoulopoulos 21

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 4.2: A hybrid UAV

moving supports and rotating them, while transitioning from multirotor to airplane
mode and vice versa.

There are some real-world examples of this kind of airframe [81], but hybrid aircraft
are mostly met as a UAVs.

These vehicles span the gap between an airplane and a multirotor, trying to combine
all of their strong points (long flight times, fast flight, significant payload capacity,
hover and vertical flight capability) while leaving out their disadvantages. In prac-
tice, they achieve an intermediate performance in all of the aforementioned tasks.

More importantly, there still aren’t any proven control algorithms for this type of
systems nor any COTS autopilot modules.

Still, this is a very promising category of UAV, which is gaining more ground pro-
gressively. A popular hybrid UAV model [8] can be seen in Figure 4.2.

�

Now that the major UAV categories have been presented, the selection of which one
should be used for the needs of the current application can be discussed. The target
application of the selected vehicle is to carry an multispectral camera (weighing
about 100gr) over a field, while following a scanning pattern over it. Since this is
a proof-of-concept system, a low-cost, low-maintenance solution is sought. Vertical
take off and landing capability is required, so that the system can be deployed in
remote fields, far from airstrips. A small flight time (and hence coverage) of a few
minutes is adequate for the needs of this work.

All of the above constraints factor towards selecting the multicopter, as the most
suitable airframe solution for this application. Indeed, while full-scale and small-
scale airplanes are often used in real applications for mapping large portions of land,

PhD Thesis 22

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

multicopter UAVs are also used when there is a need for more detailed scanning over
a smaller area.

4.2 On the Choice of the Autopilot Module

Specification of the Autopilot Required Features
Once the aircraft type is selected, the next choice concerns the autopilot system
which will be installed in the UAV. The fact that an autopilot providing some level
of autonomy will be installed in the aircraft should be taken as a given. The entire
premise of a robotic system is for one or more computing systems taking over one
or more moving platforms in order to coordinate and automate a task; a human
operator is an undesirable link in the chain of a robotic system, because he can
often be an unreliable pilot, lacking consistency and sharp timing. Instead, it is
much more preferable to assign humans with the task of supervision, where his
mature and elaborate high-level reasoning can prove valuable.

There are multiple autopilot systems available in the market currently, suitable for
various aircraft types. In this text, only multicopter autopilots will be considered.
Their cost varies from under $100 to over several thousand dollars. Their target
applications reflect this price range, with the cheaper addressed towards hobby and
recreational use while the most expensive marketed towards military and security
applications with corresponding specifications and quality control.

The functionality these systems offer also varies. A short list of features commonly
found in multicopter autopilots can be seen below, sorted from the most basic to
the most exotic:

• attitude stabilization

• altitude control

• position control

• power management

• telemetry feedback

• GCS communication and cooperation

• waypoint mission functionality

• mature telemetry message protocol Application Programming Interface (API)

• integrated video feed

• collision avoidance

Emmanouil Fragkoulopoulos 23

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

• redundant sensor set

• encrypted communication link

• redundant actuator / re-configurable control

The most crucial features that are required for the application involved in this work
are full attitude, altitude and position control and waypoint specification, in order to
define the mapping mission with accuracy. Also, telemetry feedback and a mature
API are needed, for the rest of the robotic system to interface with the UAV in
a programmatic way. Collision avoidance and other end-product features are not
necessary for the UAV, for this proof-of-concept application.

Candidate Systems
Given the above specifications, we can immediately reject low-end systems, intended
solely recreational use, such as the CC3D [59] and the Naze32 [3]. We can also opt
out of going for a high-end solution, such as the Piccolo [72] and the Airware systems
[9], or other integrated solutions [43].

Basically, a middle ground is sought, occupied by integrated solutions such as the
DJI [21] and Mikrocopter [47] systems and the aircraft-agnostic DJI [20], ArduPilot
[62], PX4 [62] and Paparazzi [60] autopilot modules.

Delving deeper and examining the features provided by each system individually,
currently offered integrated systems (combinging the flying platform and the autopi-
lot module in one product) can be rejected. Those systems are primarily targeted
towards a client base which has little technical and piloting knowledge but require
a plug-and-play solution for their key application. Such groups are photographers,
cinematographers and news reporters. As a result, little to no telemetry information
is reported back from these platforms and no API is provided; indeed such provisions
would be a waste of resources for the recipient clientele.

Moving on to stand-alone autopilot modules, a product-by-product comparison can
be made.

The DJI autopilot modules, with the A2 being the previous model and A3 being
its latest evolution, are considered to provide a very robust controller for medium
and large airframes. They have high integration with peripherals such as mobile
phones and tablets, but do not provide an extended telemetry set nor an API of
any kind. DJI has announced a new system providing amenities for programmers
and roboticists, but it does not have significant impact yet.

Paparazzi [60] is an open-source software project, intended to offer a sophisti-
cated and free autopilot solution to anyone interested in having one. It boasts a
re-configurable module architecture with swappable components and is one of the

PhD Thesis 24

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

oldest projects in its kind. However, it has not gained significant momentum over
the years, and as a result doesn’t provide two indispensable features: detailed doc-
umentation and a proven hardware supporting it.

PX4 [1] is an open-source software autopilot project, maintained by the ETH Zyrich
university. It might arguably be the most advanced autopilot software, featuring re-
configurable and swappable software modules, cutting edge control schemes fresh-off
the ETH research and a mature telemetry messaging system, doubling as its API. It
runs on the Pixhawk hardware (Figure 4.3), which was designed with collaboration
with 3DRobotics, a UAV startup company. Sadly, it also has constantly outdated
documentation and an unstable GCS.

Finally, the ArduPilot [58] project is one of the most prominent open-source autopi-
lot project in the scene. It shares the Pixhawk as its hardware platform with PX4,
but has also been ported to a multitude of other autopilot hardware boards, both
in the microcontroller realm (PixRacer, APM2 etc) and the embedded computer
realm (Navio, Erle-Brain etc). It also uses the same telemetry messaging system
with PX4 (MAVLink [45]), but the similarities stop there. It is led by a group of
programmers and engineers from around the world who contribute without profit to
the project and, as a result, is developed with usability and functionality in mind.
It has extensive documentation and a large community supporting new users. A lot
of features have been introduced into it, such as camera gimbal control, support for
a variety of sensors, certain redundant subsystems and an extensive, yet still under
development API, which may not be as powerful as PX4’s, but rich nonetheless. It
interfaces best with the Mission Planner GCS software [54], a Windows program.
This autopilot system might arguably be the most used in custom-made UAV as of
today.

For all of the aforementioned reasons, the ArduPilot system was chosen for the
development of this work.

Emmanouil Fragkoulopoulos 25

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 4.3: The Pixhawk flight controller

4.3 The ArduPilot Ecosystem

Since the ArduPilot system is an integral part of the proposed system, this section
is dedicated to its presentation.

Initially, the ArduPilot project was the result of the effort of Chris Anderson’s, co-
founder of 3DRobotics, to create a global hobbyist community, to which he could
later sell the UAV autopilot product which his company was developing. Anderson
created the internet blog/forum DIYDrones.com [5] with the intent to gather any-
one who was interested in contributing to and utilizing an autopilot system with
a dominant open-source and Do-It-Yourself (DIY) character. The household elec-
tronics/robotics revolution previously brought by the Arduino [44] microcontroller,
led to the project being named "ArduPilot". The experiment was successful and the
DIYDrones community grew to a point where other programmers and engineers took
major positions in the ArduPilot project. Eventually, as 3DRobotics lost interest in
the DIY hobbyist market and decided to stop supporting the ArduPilot project fi-
nancially, enough momentum had been gained that an independent foundation [55]
would be formed to keep the project alive.

ArduPilot is a very mature software project. While it was still hosted in the Arduino
platform, it was the largest software project compiled for that board. At one point, it
became too cumbersome and limiting to maintain code that would fit into the limited
board memory, so the firmware migrated to the then-newly designed Pixhawk board.

PhD Thesis 26

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Today, ArduPilot is hosted in Github, a hosting service for version control of col-
laroborative projects, and linked to continuous integration utilities, such as Travis,
to facilitate author collaboration. It is broken down into multiple library modules,
to make the addition of new code and functionality (such as drivers for new sensors
and controllers) easier. It runs on a scheduler coordinating service, in order to en-
sure a causal runtime logic, in the same working premise as a Real Time Operating
System (RTOS).

Multiple vehicle types are supported by ArduPilot. Radio Controlled (RC) airplanes,
helicopters and multicopters, cars and boats can be converted onto autonomous sys-
tems, by installing an ArduPilot-enabled unit. The corresponding firmware "flavours"
of ArduPilot for each platform are named ArduPlane, ArduCopter and ArduRover.
The separation of ArduBoat from ArduRover is under consideration and a special
firmware for antenna trackers also exists, called Antenna Tracker.

4.4 The Pixhawk Hardware and its Peripherals
As mentioned before, ArduPilot can be hosted on a multitude of boards [61]. How-
ever, it is developed with the Pixhawk hardware primarily in mind. For that reason,
and because a Pixhawk was used in this work, this board will be the focus of the
following section, where an overview of the autopilot hardware will be presented.
Still, most hardware alternatives have the same principle of operation and can com-
municate with roughly the same set of peripherals.

The Pixhawk Board
The Pixhawk hosts a 32-bit ARM Cortex M4 core with FPU, running at 168 Mhz,
with 256 KB RAM. It contains 2 MB Flash for permanent memory for storing
firmware. Also, it has an additional 32-bit fail-safe co-processor. An interface with
an external SD card is also available, for data-logging purposes.

Pixhawk is primarily powered by a 5V power supply, but allows for an extra power
input for redundancy. The powering options will be explained later in the section.
However, its digital logic is 3.3V but 5V tolerant.

Since it is intended to act as a host device for a multitude of peripherals, it is
primarily populated with sockets, accepting external connections. In Figure 4.4 and
Figure 4.5 graphic descriptions of the hardware interface can bee seen.

The most common hardware ports are presented below:

• RC Input: This 3-pin port accepts the pilot commands, produced by the hand-
held Transmitter (TX), in the form of a PPM stream . This port also provides
5V power for the Receiver (RX).

Emmanouil Fragkoulopoulos 27

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 4.4: Hardware interface of the Pixhawk hardware, top

Figure 4.5: Hardware interface of the Pixhawk hardware, side

• RC Output: Through this 14 channel output array, the control commands to-
wards motors and control surfaces are communicated. They are capable of
producing PWM output asynchronously from the main firmware code execu-
tion.

• USB: A common USB port, providing power to the board, during setup on
the bench. Usually not used after the system is assembled. Firmware upload
and update takes place through this port.

• Power Input: This port serves as the main 5V input to the Pixhawk board,

PhD Thesis 28

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

but also has analog voltage and current sensing pins allocated on it, for power
monitoring. Usually the Power Module (see next subsection) is connected to
this port.

• Serial Ports: Pixhawk hosts 5 TTL serial ports, spread over 4 connectors.
These can be used for a multitude of purposes, including telemetry flow, GPS
interfacing and also generic communication with optional peripherals.

• I2C Port: Many standard sensors which are used by Pixhawk communicate us-
ing the I2C [82] protocol, such as the digital compass. An external bus splitter
board is provided, when multiple devices need to be connected simultaneously.

Basic Peripherals
Almost all autopilot systems distribute their hardware over more then one board /
enclosure. While this approach may reduce ruggedness and increase complexity, it
allows for more setup options in custom-made systems. Additionally, it leaves room
for easily upgradable, replaceable peripherals.

The most significant and common peripherals of the Pixhawk are:

• External Digital Compass: A MEMS 3-axis magnetometer, used to measure
Earth’s magnetic field, for the purpose of orientation. Even though Pixhawk
also has an internal magnetometer, that is not preferred, due to the heavy elec-
tromagnetic interference commonly found near power systems. Usually sharing
the same enclosure with the GPS receiver.

• GPS receiver: A crucial sensor, enabling the autopilot to estimate its absolute
position, which is necessary for autonomous missions, comprised of waypoints.
Since it relies on direct line of sight with satellites of the GPS constellation
(which emit a relatively low-power signal) it cannot function indoors, within
intense geological formations (such as canyons), under dense forest canopy or
under heavy cloud coverage (e.g. during storms).
Typically, the precision of a GPS receiver is at the order of 3-5 meters, but
more accurate (and expensive) solutions can be employed, which raise the
precision up to centimeter-level.

• RX: This is not strictly considered part of the autopilot system, it is required
nonetheless, because the UAV pilot needs to be able to issue control or mission
commands, using a TX. In some systems this is a required functionality, while
in others it is included mainly as a safety, fall-back control channel.

• Power Module: Commonly, the only power storage available on-board a UAV,
is a LiPo battery. However, its voltage is typically between 11 and 18V. Since

Emmanouil Fragkoulopoulos 29

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Pixhawk requires a strictly 5V power input, this devices is tasked with reg-
ulating the battery voltage to usable levels, while providing enough current
for the autopilot and its most crucial peripherals. It does not have enough
amperage to power the servomotors as well.
Commonly also provides voltage and current measurements as well.

Other Compatible Peripherals
The Pixhawk board is able to communicate with and control many more peripheral
devices, which enhance its functionality. Below is the list of the most common ones,
but their range continuously increases, as support for new devices is added.

• Telemetry Transceiver: Having a live telemetry link with the UAV while it is in
the air is considered a crucial feature, both for functionality and safety reasons.
Pixhawk is able to communicate with a typical TTL serial radio and establish
communication with a GCS, using the MAVLink protocol. Dedicated COTS
telemetry devices exist, which packetize information according to MAVLink
specification, improving transfer and packet drop rates.

• Rangefinder: So far, none of the aforementioned sensors allows a UAV to know
its distance from an object or terrain feature. This information can be provided
by a rangefinder sensor. There are many different implementations for such
sensors, utilizing different technologies, such as ultrasonic and laser waves.
They come in different measuring ranges, from sub-meter to hundreds of me-
ters and have various scan ranges. Others can measure the distance in a very
narrow beam in front of them, whereas others provide a full 360 degree distance
scan of a 2-D plane.
Pixhawk is readily compatible with single-beam sensor, either ultrasonic or
laser, which uses for obstacle avoidance and height measurement during land-
ing.

• Cameras and Gimbals: Capturing images and video is one of the most promi-
nent applications of UAVs. For that reason, Pixhawk can interface with many
camera models, triggering them at specified instances in space or time or con-
trolling their zoom level. Additionally, it can work with stabilization systems
and gimbals, to provide pan-, tilt- and yaw- compensated shots, which greatly
enhance the comfort of a human observer.

In short, the Pixhawk flight controller is a modern, high-end, hobby-grade autopilot
hardware. Thanks to its well-thought design and quality components it has a small
footprint and is easy to deploy on custom UAV platforms. It has had great accep-
tance in amateur UAV systems, but also in small commercial systems, despite the

PhD Thesis 30

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

fact that it does not have aerospace specifications. This goes to show that currently,
UAV systems are experiencing a boom in the private sector, who is searching for
cheap and efficient solutions. Unfortunately, the current manufacturer of Pixhawk,
3DRobotics has ceased production but it is expected that the design, since it is
open, will be adopted by some other manufacturer or be embellished and released
in some other, evolved form.

4.5 The IRIS+ Platform
Having expanded upon the UAV platform and autopilot system selection criteria,
we can now proceed on the selection of the specific UAS which will carry out the
task at hand. We have come down to using a multicopter and the ardupilot/Pixhawk
autopilot. What remains, is to combine them into a complete UAS solution.

This integration step may involve building a custom-made multicopter and a pro-
prietary installation solution of the autopilot system. This direction would require
careful selection of the UAV hardware components, so that they fit the energy bud-
get of the mission at hand but also so that they can cooperate harmoniously with
each other, to provide appropriate lift and endurance. This is not a trivial task and
often a lot of components (propellers, motors, batteries) are swapped for others with
different specs, in an iterative sizing procedure. Even though guidelines and websites
tackling this problem exist, it remains more an art than a closed problem.

Moreover, tuning the control parameters of the autopilot software for a unique UAV
platform of unknown properties is also an open problem, involving iterative steps
and a lot of trial and error.

While the above steps may be mandatory in edge cases, where very specific re-
quirements must be met, in most cases a ready-made commercial multirotor can fit
the mission requirements. Even better, there exist ready-to-fly multirotors, with the
autopilot system already embedded. One of these products, and the one that was
selected for this work, is the IRIS+ platform, depicted in Figure 4.6.

IRIS+ is a (now discontinued) product of 3DRobotics, consisting of a ready-to-
fly quadrotor and a pre-tuned Pixhawk embedded into it. It can achieve about 20
minutes of flight time and has a payload capacity of about 400 g. A telemetry radio
is installed inside it and it can carry a 5100 mA h 3-cell battery. It also comes with
a pre-bound and configured RC transmitter.

This UAV solution is very popular among robotic amateurs and developers, since it
provides a low-cost, yet rugged and well-performing combination of flying platform
and autopilot, provided that its specifications fit the application requirements.

Emmanouil Fragkoulopoulos 31

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 4.6: The IRIS+ quadrotor

PhD Thesis 32

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 5

The Image Capture System

In this chapter, a short introduction on multispectral imaging will be provided. The
multispectral camera used in this work will be presented and its technical details
will be given.

5.1 Multispectral Imaging
Humans are able to perceive through their eyes radiation in a relatively narrow band
of the overall spectrum, approximately in the interval of (380nm - 700nm), known
as the visible light spectrum, corresponding to the violet - red range. Still, radiation
outside of this band exists and propagates in the same manner, unbeknownst to us.

Image sensors, commonly known as cameras, are designed to capture frames of
a scene, in the same way we perceive it. As a result, most cameras are designed
and manufactured to be sensitive to the visible light spectrum and in fact discern
radiation in the same manner as the human eye: by categorizing it into three, slightly
overlapping ranges. These correspond to the well-known basic colours:

• blue: 400nm-500nm

• green: 450nm-630nm

• red: 500nm-700nm

These ranges are assigned to the three channels of color photography and videogra-
phy and reproduced by screens and printers.

Still, special sensors can be manufactured, which are sensitive to other radiation
ranges, collecting information for uses other than visible image reproduction. Com-
mon applications of useful information located outside the visible spectrum can be
found in meteorology, astronomy and thermal imaging.

Emmanouil Fragkoulopoulos 33

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

When an image sensor is tuned to capture a small amount of relatively wide radi-
ation band, distinct from each other, we call it a multispectral imager. In contrast,
hyperspectral imagers capture a large amount of narrow, close to each other bands
of radiation.

For the purposes of remote sensing, in the agriculture background, more useful
information can be collected from radiation outside of the visible spectrum and
specifically from the NIR band.

5.2 The NDVI
Plants have the ability to reflect the infrared light effectively, so as to avoid absorbing
this high-energy radiation which would otherwise raise their internal temperature to
harmful levels. In contrast, they absorb red light, which is useful for photosynthesis.
Healthy, well-watered plants are able to reflect NIR radiation much more effectively
than water-deprived, sick plants.

We take advantage of this fact to create imagers which can detect remotely the
health status (also known as Normalized Difference Vegetation Index (NDVI)). This
kind of cameras usually have a red and green capture channel similar to common
cameras, but instead of a blue channel, they have it replaced with the information
for the NIR band.

The NDVI index can be calculated as

NDV I = NIR−RED
NIR +RED

Healthy plants which reflect radiation effectively should present an NDVI is higher
than 0.35. Plants over 0.25 are usually sick. Anything below that threshold corre-
sponds to lifeless objects. Compare Figures 5.1 and 5.2; In the first picture, healthy
vegetation full of leaves produces high NDVI values, whereas in the second one,
where vegetation has dropped its leaves for the winter, areas with low NDVI ap-
pear.

PhD Thesis 34

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 5.1: NDVI Index of Vegetation in Summer

Figure 5.2: NDVI Index of Vegetation in Winter

Emmanouil Fragkoulopoulos 35

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

5.3 The Multispek Camera
Multispectral imagers are not new technology. There are many models available,
from experimental, high-end, unique sensors mounted on satellites to hand-held
cameras. In general, they are considered an expensive device, available to specialized,
professional operators. However, along with the access of a larger user-base to UAVs,
some relatively cheap multispectral cameras have been made available.

For this work, the Multispek camera (Figure 5.3, now discontinued) was used. It
is based on the popular GoPro Hero 4 Silver video camera, which the Multispek
company modified and repurposed for remote sensing applications, by removing the
infrared (IR) filter from the lens and changing some firmware parameters.

The most important specifications of the Mutlispec camera are:

• weight: 63 g

• resolution @ 400ft: 3.8cm

• pixel count: 12MP

• image capture rate: 1.4s

Figure 5.3: The Multispek camera

PhD Thesis 36

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

• power consumption: 2.3W

While there are other, equally or more capable cameras for this application available
right now, Multispek was a valid option at the time it was made. However, it is not
recommended, since it was discovered that it suffers from NIR spillage to its other
channels, a defect which other modern cameras in the same price range do not suffer
from anymore.

5.4 Connection with Pixhawk
The GoPro Hero 4 host platform has been modified by Multispek, by removing the
battery and exposing the shutter trigger and battery contacts to a common 3-pin
servo connector.

The camera should be powered from an external 7V-24V DC power source, prefer-
ably not from the Pixhawk Power Module, as it does not have the required power
to spare.

The trigger pin should be connected to any of the 6 auxiliary output pins of the
Pixhawk. These can be configured by the ArduCopter to act as relay pins, for trig-
gering camera shutters. With this method, ArduCopter is able to control the time
interval between camera triggers and record their timestamp and location coordi-
nates. Also, GCS software like Mission Planner is able to automatically produce the
shutter trigger interval parameter, by taking into account the required overlap of
the photos, the flight speed, the flight altitude and the camera lens specifications.

5.5 Communication and Image Transmission
The GoPro Hero 4 device is capable to transmit the captured images and video in
real time with various methods.

1. Through a micro-HDMI port

2. Through a hosted WiFi connection, via a proprietary application for Android
and iOS devices

3. Through a hosted WiFi connection, via a file server

For this application, the captured images must be transmitted to the GCS computer
while the UAV is in flight for off-board processing. Thus, option 1 is outright rejected.
Option 2 is rejected as well, because the proprietary application does not allow for
custom processing code to be run, and besides, the images must be directed to a
laptop computer, not a handheld device (such as a tablet).

Emmanouil Fragkoulopoulos 37

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Option 3 remains as the only valid alternative. The GoPro raises an otherwise
common WiFi network, with a visible SSID and a password requirement, all con-
figurable. Unfortunately, the GoPro does not have the ability to join a pre-existing
WiFi network, it can only host one and have other devices join onto it.

The file server is raised at the IP 10.5.5.9:8080, reachable by any device joined
on the network.

Each time an image is captured, it is stored at the directory videos/DCIM/110GOPRO.
From there, the images can be accessed programmatically, as explained in section
8.11.

As a downside, it should be noted that the range of the WiFi network the GoPro
Hero 4 raises is relatively slow, extending only up to a tens of meters. The trans-
fer rate falls proportionally with the signal strength, starting at a few MB/s and
dropping as low as a few kB/s or lower as short as a few tens of meters away. This
constraint should be taken into account when deploying the system.

PhD Thesis 38

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 6

The Rover

The proposed precision agriculture system intervenes to the crops by using a ground-
based vehicle, instead of tasking a UAV to carry and operate the corresponding
equipment.

This approach has drawbacks and advantages. On the down side, a ground vehicle
(commonly referred to as a rover) is limited in its movement by the terrain. Obstacles
must be avoided or navigated. Rough terrain may impede or inhibit the path of the
rover. The velocity at which the rover can move in a field is also limited. Its size
may be constrained by the geometry of the crop rows and the shape of the plants.
If the application calls for it, it must be delicate enough not to damage the crops
during its mission.

On the up side, a rover is generally capable to lift a much heavier payload than a
UAV. In the case of precision agriculture, this usually refers to pesticide or water
tanks and sprayers, whose weight is significant. A rover is much more energy-efficient
and resistant in harsh environments, if built properly. Also, for the same payload
capacity, a rover is much cheaper and easily maintained, compared to a UAV.

The arguments supporting the choice of a rover for the intervention task outweigh
those against it, and consequently a rover was used in this work.

6.1 The Rover Platform
Since COTS rover platforms, suitable for robotics applications are much less com-
mon, the rover for this work needed to be constructed from the beginning. Consider-
ing the heavy-duty nature of the task it had to undertake, a rugged, heavy platform
was constructed (Figure 6.1).

The body was constructed out of 3 mm thick sheet metal and welded. Its wedge-like
shape allows it to overcome uneven terrain. Its wheels have embedded bearings and
provide adequate ground clearance.

Emmanouil Fragkoulopoulos 39

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 6.1: The rover built for this work

It is powered by a 8200 mA h 3-cell LiPo battery, attached onto two Phoenix ESCs,
driving two DC motors. Each motor is a low-RPM, high torque motor and is paired
to both wheels of each side of the rover, via a thick timing belt. This allows the
vehicle to steer in a tank-like fashion, by using differential wheel speed to accelerate
and turn. This configuration removes the need for a mechanical steering system,
reducing complexity and adding maneuverability, a highly required feature.

A wooden shelf was installed inside the rover for the ESCs and autopilot to be
mounted upon. The battery is mounted with velcro on the side wall, inside the
vehicle. The motors are directly mounted on the rover chassis (Figure 6.2). For
more details and explanation on the image annotations, see the list below.

PhD Thesis 40

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

1.

2.

3.

4.

5.

6.

7.

Figure 6.2: Electronics installation inside the rover

Emmanouil Fragkoulopoulos 41

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Legend for Figure 6.2:

1. Velcro R©for battery mounting

2. Right motor driver

3. Left motor driver

4. Right motor

5. Left motor

6. Pixhawk autopilot

7. Laser scanner data and power cables

Some electronic devices need to protrude from the top of the rover. These are the
laser scanner (presented in Section 6.3), the GPS receiver, the magnetometer and
the WiFi antenna, each one for its own reasons:

• The laser scanner needs to have unobstructed line of sight in front of the
vehicle to detect obstacles.

• The GPS receiver must be able to receive signals from as many GPS satellites
as possible, and the metal chassis blocks their signal.

• Metal objects create soft magnet interference to magnetometers, and conse-
quently, the magnetometer sensor must be moved as far away as possible from
the metal chassis.

• Radio signals are heavily affected and warped by metal objects, thus all anten-
nae must have clear line of sight towards the GCS, and be relatively separated
from the chassis.

For the above reasons, another wooden platform was used to host top-level devices.
It was designed with CAD software and cut from 4 mm plywood with a Computer
Numberical Control (CNC) laser cutter. The overall layout is visible in Figure 6.3.
For more details and explanation on the image annotations, see the list below.

Legend for Figure 6.3:

1. Laser scanner

2. GPS receiver with embedded compass

3. Embedded computer

PhD Thesis 42

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

1.

2.

3.

4.

5.

6.

Figure 6.3: Electronics installation on top of the rover

4. Operation switches, from top to bottom: master switch, electronics switch,
motors switch, motors kill switch

5. Motor pinion gear, timing belt and tensor

6. Laser-cut, plywood platform

6.2 The Autopilot
The Ardupilot software is capable of commandeering a ground vehicle, in its dedi-
cated firmware form ArduRover. Much of the user interface and functionality is the
same as its aerial counterparts, with manual, aided and fully autonomous waypoint
missions functionalities being supported.

Emmanouil Fragkoulopoulos 43

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

A Pixhawk autopilot system was thus installed inside the rover. A Power Module
was attached to the battery to power the Pixhawk and monitor power consumption.

Since we have expanded upon Ardupilot in the UAV chapter, no further mention
will be given in this chapter.

6.3 The Laser Scanner
Obstacle avoidance is a mandatory feature for the rover, for several reasons.

First and foremost, the field geometry can not be realistically mapped and known
beforehand. Crop rows and unexpected obstacles can be impassable from the rover,
which must have the ability to navigate around them.

Conversely, the the crops themselves must be protected by the heavyweight rover,
which must be able to avoid them, so as not to damage them during its mission.

Finally, even if the field is mapped in every detail, the GPS-based location system
introduces enough position error to result in undesirable situations: a position esti-
mation error as low as a few decimeters may be enough to make the rover believe
it is in the next crop row as the one it actually is in, and result it in trying to reach
its next waypoint through a crop row.

For the above reasons, an obstacle avoidance solution must be implemented in the
rover. The most common sensor used in this situation is a rangefinder. However, a
beam-type sensor is not suitable for this application.

Such sensors are hard-mounted on the chassis and measure the distance of the
nearest object only in one direction. If placed facing to the front of the rover (a
reasonable assumption), a crop row coming at a shallow angle towards the side of
the vehicle may not be detected in time. Furthermore, if the beam was wide enough
to account for this problem, the problem of false-positives emerges, if crop rows are
too narrow.

Moreover, with a single rangefinder, it would be impossible to discern the direction
at which the obstacle is presented; not enough information exists, for the rover to
know which direction to turn to to perform avoidance.

To deal with these problems, a laser scanner was installed on top of the rover, facing
forwards. Its large scanning angle allows for the detection of objects in a wide range
in the direction of motion and its detailed angular resolution makes finding the
direction of the row possible.

Regarding its principle of operation, a laser scanner has a rotating head, equipped
both with a laser emitter and a sensor sensitive to the wavelength of the laser
emitter. While rotating at constant speed, the laser emitter generates laser pulses
at regular angular intervals. The sensor receives the reflection of the laser beam and

PhD Thesis 44

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 6.4: A typical laser scan frame

based on the propagation delay, the device estimates its distance from the reflecting
object. A visualization of a typical laser scan frame can be seen in Figure 6.4.

The exact model used in this work was a SICK LMS111 [70] (Figure 6.5). It is a
high-end, outdoors laser range scanner with the following features:

• Light source : Infrared (905 nm)

• Aperture angle : 270◦

• Scanning frequency : 25 Hz

• Angular resolution : 0.5◦

• Operating range : 0.5 m - 20 m

• Interfaces : Serial, Ethernet

Laser scanners have high sampling rates and provide large amounts of data. In order
to acquire and process it, a potent computing system is required. Pixhawk does not
support laser scanners and does not have the necessary computational power to
handle them.

For that reason, an external, on-board computer must be installed and used to
interface with the laser scanner. This solution can take advantage of the already
existing software drivers. This computer must be carried by the rover; the large

Emmanouil Fragkoulopoulos 45

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 6.5: The SICK LMS1110 laser scanner

amount of data produced by the LMS1110 (about 220 kB/s) would clutter any WiFi
link and would make off-board data processing in the GCS impractical.

The on-board computer must be light and energy-efficient, yet powerful enough.
Thankfully, such a family of computers exists, commonly referred to as embedded
computers.

6.4 The Embedded Computer
Traditionally, robotics applications were targeted towards static robotic manipula-
tors and full-size ground and aerial vehicles. These platforms could allow for large
computing systems (even mainframe-sized) with no penalty. However, with the ad-
vent of scaled UAVs, a robotics platform with very limited payload headroom, the
need for lighter computation units became more imperative than ever.

Embedded computers are gaining ground as the host unit of modern robotics de-
cision centers and algorithmic computational units. New, resource-intensive algo-
rithms such as SLAM and image recognition create a constant demand for embed-
ded computers with ample power and naturally, the market has responded with new
products.

PhD Thesis 46

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 6.6: The Odroid XU3 Embedded Computer

While there is a multitude of competitive products, such as the Raspberry Pi, the
Jetson TX1, the Beaglebone Black etc, we will not delve into a comparative discus-
sion on the topic of embedded computers. This component is just a means to an
end; as long as it can carry out the required tasks, it is considered suitable for our
application.

Namely, it should be able to host an Ubuntu Linux operating system along with
ROS, in order to take advantage of the already existing drivers for the laser scanner.

The Odroid [36] units satisfy our requirements having the advantages of being easy
to use, cheap, powerful and with large community support. Specifically, the Odroid
XU3 model was used (Figure 6.6).

Among its features, the most crucial ones are:

• Quad-core 2.0GHz processor

• 2GB RAM

• 6 USB ports

• Ethernet port

• 5V/2A power requirement

Apart from the hard requirement for the Ethernet port, to connect the laser scanner,
the hardware amenities of the XU3 allow for more functionality to be migrated on-
board the rover, making it a more independent unit.

First and foremost, the MAVLink stream form the Pixhawk can be fed to the XU3,
through a Serial-to-USB converter cable. From there, off-board control of the rover

Emmanouil Fragkoulopoulos 47

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

can be done on the XU3 with dedicated program threads, and the MAVLink stream
can be re-routed to the GCS for visualization and logging purposes.

Functionality can be further expanded by attaching a WiFi USB dongle to the XU3,
providing wireless communication capabilities.

PhD Thesis 48

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 7

Elements of Theory

Apart from the technical presentation and selection of the hardware components
of the system, the mathematical and algorithmic aspects of the system merit their
own space. The theoretical support of this work is presented in this chapter, where
a separate section is dedicated to discuss the algorithms which enable the system
to perform its task.

7.1 Coordinate Frames
Within a robotics system, measurements and quantities are expressed in terms of
different reference frames. In order to use these quantities throughout the system
and for various calculations, they need to be converted from one frame to another.
Thus, proper definition of these coordinate frames is important [2].

The most common coordinate frame used to refer to locations at and over the surface
of the Earth is WGS84 [50]. It describes Earth as an oblate ellipsoid and thus its
coordinates are (φ, λ) pairs. φ is the latitude angle and λ is the longitude angle.
These two angles, ranging from -180 to +180 for λ and from -90 to +90 for φ, can
pinpoint any location on the Earth’s surface. Additionally, a third coordinate for
height, h, can be used.

The problem with WGS84 coordinates is that they are expressed in degrees, which
makes them incompatible with distance measurements on the surface of the Earth.
For that reason, the UTM [83] projection has been introduced. This projection
splits the longitude of the Earth into 60 zones. Inside each zone, a secant transverse
Mercator projection is performed, to map the surface on a Cartesian grid. This
grid can be used for distance operations in SI units. Furthermore, the error induced
by the projection is less than 1/1000. The conversion between WGS84 and UTM
coordinates is possible through operations of medium complexity, but thankfully
software libraries which handle the conversion exist [11]. The conversion procedure
is has millimeter-level accuracy.

Emmanouil Fragkoulopoulos 49

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Still, the UTM frame may be an overcomplication when one wants to deal only with
the local displacement of a robotic platform, in respect to its initial location. For
that purpose, the NED frame is used. NED is shorthand for North-East-Down and is
a 3-dimensional Cartesian coordinate system and its origin is usually placed on the
start location of the robot. Another valid option is to place the origin at the center of
the area the robot is expected to operate. Its x-y plane is horizontal, tangent to the
surface of the Earth at the origin. Its x-axis points North and its y-axis points East.
As NED is a right-handed axes system, the z-axis positive points down, towards
the ceter of the Earth. As a result, above surface heights have negative z-values.
Another common name for the NED frame is the inertial frame.

The next frame, in the sequence of transformations is the carried frame (see Figure
7.1). This has the same orientation as the NED frame, but its origin is placed at the
center of mass of the robot, thus the term carried. The carried frame is converted
to the NED frame by a single translation by the position of the robot.

Another important frame is the body frame. Its x-axis is aligned with the longitudinal
axis of the robot, which for aircraft it usually coincides with the forward direction.
Its y-axis extends to the right of the robot and its z-axis to the bottom of the robot,
completing a right-hand system. As the robot turns and banks, so does the body
frame. This rotational transformation between the carried frame and the body frame
can be expressed as 3 separate rotations.

There are many conventions for the description of this rotation sequence but the
one used most often in robotics and especially in UAV applications are the Euler
angles with the Tait-Bryan convention. The 3 Euler angles are roll, pitch and yaw,
represented with the triplet (φ, θ, ψ). The Tait-Bryan convention dictates that in
order to rotate from the carried frame to the body frame, we must do, in that order:

1. Rotate about the z-axis of the carried frame by ψ, until the x-axis is in the
same plane as the body-frame x-axis, resulting in a new, intermediate frame.

2. Rotate about the y-axis of this intermediate frame by θ, until the x-axis coin-
cides with the body-frame x-axis, resulting in a new, intermediate frame.

3. Rotate about the x-axis of this intermediate frame by φ, until the y-axis co-
incides with the body-frame y-axis.

Those three angles can be used to construct a rotation matrix, which is defined as

Rb
v =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (7.1)

PhD Thesis 50

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.1: The NED, carried and body frames

Where

sx = sin(x)
cx = cos(x)

Rb
v can be used to convert vector quantities from the inertial (or carried) frame to

the body frame and vice versa. For example, the gravity vector, which in the inertial
frame is usually expressed with only a vertical component

Fg,i =

 0
0
mg

 (7.2)

Emmanouil Fragkoulopoulos 51

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

is "felt" from on-board the UAV as
Fg,b = Rb

vFg,i (7.3)

=

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 ·
 0

0
mg

 (7.4)

= mg

−sθsφcφ
cφcθ

 (7.5)

Conversely, if we want to convert a vector from the body frame to the inertial frame,
we can multiply it with the transpose of the rotation matrix:

pi = Rbᵀ
v pb = Rv

bpb (7.6)

There are other methods of representing rotations,such as quaternions [65], but
rotation matrices built by Euler angles are very common. Rotations allow us to
capture vector measurements taken from on-board a robot, such as accelerometer
and laser scanner readings, and convert them to the inertial frame, for use in various
algorithms. Common applications are orientation estimation and localization.
Since camera readings and image recognition also play a major role in this work, we
will introduce two more frames of reference. See Figure 7.2 for visual comparison.
The camera frame has its origin at the camera sensor, and its z-axis outwards from
the camera lens. The x- and y- axis usually are placed to the right and downward
respectively. Since in our application the camera is mounted on the bottom of the
UAV facing downward, the Euler angles from the body frame to the camera frame
are

Ebcam = (0, 0, 90) (7.7)

Finally, the image frame is a 2-dimensional frame, corresponding to the projection
of the environment on the camera sensor as a 2-dimensional plane. The image frame
is set in front of the camera origin by the focal distance f. The x- and y-coordinates
describe the positions of objects as they are captured on the image.
The objects coordinates are scaled by their distance to the image frame. A point
with coordinates

pcam = (xp, yp, zp)
in the camera frame, will be imprinted on the image frame at the coordinates

pi =
(
f

zp
xp,

f

zp
xp

)
(7.8)

Conversely, if we know the distance of the object to the camera and its position
in the image frame, we can invert the projection to find its location in the camera
frame.

PhD Thesis 52

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.2: The camera and image frames

7.2 Rover Path Generation
Part of the end goal of this work is to enable a rover to navigate through a field
with bush vegetation planted in crop rows and visit specific points inside of it. As is
discussed in Section 6.3, the rover must not collide with the vegetation but rather
navigate around it. This is especially important when the rover needs to visit a point
in a different crop row than the one it currently is.

It is assumed that the vegetation forms impassable rows. This is a common occur-
rence, for example in vineyards. As an example, see Figure 7.3, where plants form
parallel crop rows (line R-R’). We also assume that the field contains at least 2
corridors (lines C1-C1’ and C2-C2’) which are larger than the space between the
crop rows.

With this geometrical information, it is possible to specify a path from the current
rover location to the target location, by adding two intermediate waypoints located
on a corridor. Essentially, the rover will exit a crop row, turn on a corridor and
re-enter the field at the desired row.

However, as is the case of the rover constructed in the premises of this work, it is not
guaranteed that the rover will be able to turn around its body-z axis. This ability

Emmanouil Fragkoulopoulos 53

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.3: A Typical Crop Field Geometry

depends on the locomotion system configuration as well as the motor power and
ground friction. This imposes another constraint: The rover must exit a crop row
towards the direction it is currently facing. See Figure 7.4 for more details.

We examine two cases: One where the rover starts facing generally northwards (S)
and one where the rover starts facing southwards (S’). In both cases, the target
location is G.

In the first case, the rover must continue up to point E, reaching the corridor, turn
to F, reach it and then turn again in the crop row to reach G.

In the second case, the steps are similar, but the points E and F are replaced with
their counterparts E’ and F’, situated in the corridor on the other side of the field.

It is clear that a detailed strategy must be defined for the generation of the inter-
mediate points E and F.

We start with the assumption that we know the coordinates of points A, B and C.
A and B are situated on different corridors and on the ends of the same crop row.
C is situated on the same corridor as B. Let us define the coordinates of A, B and
C as:

PhD Thesis 54

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.4: The Proposed Path Geometry

A = (Alon, Alat) (7.9)
B = (Blon, Blat) (7.10)
C = (Clon, Clat) (7.11)

Working on the NED frame and using the above information, we can define, on the
2-D horizontal plane, lines describing the slope of the crop rows and the lines of the
two corridors.

The line AB has the equation

y = lABx+ cAB (7.12)

where:
lAB = (Blat − Alat)/(Blon − Alon) (7.13)

and
cAB = Alat − lABAlon (7.14)

Similarly the line BC is
y = lBCx+ cBC (7.15)

Emmanouil Fragkoulopoulos 55

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

with:
lBC = (Clat −Blat)/(Clon −Blon) (7.16)

and
cBC = Blat − lBCBlon (7.17)

We can also easily define the line AD as:

y = lADx+ cAD (7.18)

with
lAD = lBC (7.19)

and
cAD = Alat − lADAlon (7.20)

We also define another two auxiliary lines, parallel to AB, one crossing point S (or
S’) and another crossing G.

The first one has the equation
y = lSx+ cS (7.21)

where:
lS = lAB (7.22)

and
cS = Slat − lSSlon (7.23)

and the second is
y = lGx+ cG (7.24)

where:
lG = lAB (7.25)

and
cG = Glat − lGGlon (7.26)

We can calculate E as the point where line BC and the one crossing S intersect:

Elon = (cBC − cS)/(lS − lBC) (7.27)
Elat = lSElon + cS (7.28)

and F as the point where line BC and the one crossing G intersect:

Flon = (cBC − cG)/(lG − lBC) (7.29)
Flat = lGFlon + cG (7.30)

PhD Thesis 56

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Conversely, points E’ and F’ can by found as the intersections of line AD with the
lines crossing S and G:

E ′lon = (cAD − cS)/(lS − lAD) (7.31)
E ′lat = lSE

′
lon + cS (7.32)

F ′lon = (cAD − cG)/(lG − lAD) (7.33)
F ′lat = lGF

′
lon + cG (7.34)

The decision on whether the path S-E-F-G or S-E’-F’-G should be generated can
be made based on the heading of the rover, which is available information. If the
rover is heading northwards, the first path is generated and followed. Otherwise, the
second one is followed.

7.3 Obstacle Avoidance
The importance of collision avoidance for this specific robotic application has already
been mentioned in previous sections. The rover must not under any circumstances
collide with the surrounding vegetation. One way of achieving this would be to have
an exact, accurate map of the crop row formation as well as knowledge of the precise
position of the rover. With this information, a path planning algorithm would be
able to produce a collision-free path, by having access to a high-level of detail of the
problem inputs. After such a path is generated, it should be accurate enough to be
collision-free. Essentially, this is an open-loop approach to the problem.

However, there are several problems with this approach. First and foremost, such a
high-level of detail in the depiction of the field would require an enormous amount of
effort from human operators, with the related cost. Still, the captured information
would quickly go out-of-date, in a dynamic environment such as a field with live
plantation.

Moreover, in order to access location information for the rover with centimeter-level
accuracy, expensive hardware infrastructure is required; the standard GPS receivers
provide an accuracy of only a few meters.

Thus, it is evident that this approach to path planning would quickly fail, due to
the high degree of both process and measurement uncertainty.

Sensor Description
A closed-loop method is required for robust obstacle avoidance. To this end, a planar
laser scanner sensor is used in order to provide real-time readings of the surrounding
obstacles with centimeter-level accuracy. Without getting into technical details in

Emmanouil Fragkoulopoulos 57

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

this section, a laser scanner sensor is able to detect the distance of the nearest
obstacle in each angular segment around it, over an angular range. Characteristics of
performance for this type of devices are the scan angle range, the angular resolution
and the distance measurement range.

An example is given for the used SICK LMS111 sensor, so as to better explain the
nature of each specification. An angular range of 270 degrees would signify that the
sensor can detect obstacles as far as 135 degrees to the left of it and 135 degrees to
the right of it. It would be blind to any obstacles outside this range.

The angular resolution specification reflects the angular step between successive
distance measurements and is an index of distinguish-ability for the sensor. A 0.5
degree resolution would mean that the sensor takes a new distance measurement
every 0.5 degree. In conjunction with the angular range specifications, it is calculated
that at each scan frame, the sensor takes 540 distance measurements.

Finally, the distance range expresses the limits of the distance measurement, which
often has a minimum and maximum value. Our sensor may have a 0.5m - 20m
measurement range.

Mathematically, the measurement vector for each scan can be annotated as

d(φ, t) (7.35)

with
φ = n · dφ (7.36)

n ∈ [φmin/dφ, φmax/dφ] ⊂ Z (7.37)

d(φ) ∈ [dmin, dmax] (7.38)

Equation 7.36 reflects the angular resolution of the senor, with n being the dis-
cretization index and dφ being the angular resolution. Equation 7.37 reflects the
angular limits of the sensor. Equation 7.38 reflects the measurement range of the
sensor.

For the SICK LMS111 sensor it would be dφ = 0.5degree,
(φmin, φmax) =(−135degrees, 135degrees) and (dmin, dmax) = (0.5m, 20m).

The interaction of the sensor with the environment can be seen in Figure 7.5, where
the rover is placed between two crop rows, depicted as green rectangles. The angular
range of the sensor is depicted as an incomplete circle centered on the sensor, with
a radius equal to the maximum measurement range. A number of distance measure-
ments are drawn as dashed red lines, ending on the nearest obstacle or at the end
of the range.

PhD Thesis 58

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.5: The obstacle avoidance and navigation problem geometry

Vector field approach
Given the available information of the desired target position and the obstacle posi-
tions with respect to the rover, we must devise a control strategy for path generation.
Among many candidate solutions, a simple and tested method is that of the vector
field. First, we introduce the potential fields as a path planning approach, which, for
each point in space, constructs a reference vector which the robot should align itself
with during its motion. In this manner, by dictating the direction of the robot’s
motion, the potential field can shape the path it will follow (see Figure 7.6) (Image
taken from [12]).

It should be noted that potential fields usually have two defining functions: one which
produces the vector norm at any location and another for the vector direction. The
vector norm can be used to create a reference velocity for the trajectory. However, in
this work, the velocity control is chosen to be performed by the low-level autopilot,
not the trajectory manager. Thus, vector fields are used instead, which are different
from potential fields in that they do not necessarily represent the gradient of a
potential. Rather, the vector simply indicates a desired direction of travel [52].

At each point, the reference vector direction can be constructed by taking into ac-
count various conditions which affect the resulting trajectory. Each condition results

Emmanouil Fragkoulopoulos 59

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

to a component vector field, which can be summed up with others to produce the
final field.

The most common component is the attraction field, created by the target way-
point p = (xp, yp), the destination. The corresponding vector field at any location
r = (x, y) should construct an attractive field towards the destination. Usually, a
constant-norm vector is produced, which points towards the destination:

Vp(r) = kp
p− r
|p− r|

(7.39)

or in Cartesian form[
Vp,x
Vp,y

]
= kp√

(px − rx)2 + (py − ry)2

[
px − rx
py − ry

]
(7.40)

To accomplish obstacle avoidance, another vector field is created, which points away
from known obstacles at positions oi = (xo,i, yo,i). Its magnitude should be greater,
as the robot approaches the obstacle, to ensure that the repulsive contribution will
become strong enough to overcome the attractive force towards the destination.
Usually, an inverse distance law is used:

Vo,i(r) = ko
r− oi
|oi − r|

(7.41)

The dividing distance could very well be raised to some power, to make the increasing
force effect steeper, with decreasing distance from the obstacles.

The sum
V(r) = Vp(r) +

∑
i

Vo,i (7.42)

produces the overall reference direction. As discussed above, the magnitude of this
vector is disregarded and the velocity control is left to the low-level autopilot.

Constants kp and ko should be tuned appropriately, so that the correct balance
between attraction and repulsion is achieved.

In Figure 7.6 it is evident how the destination point produces a field component
which draws the trajectory close to it, especially in locations far from the obstacle
(black circle). Close to the obstacle, the repulsive field component is so strong that
overpowers the attractive force.

In Figure 7.7, the application of the vector field methodology for a given rover
position is visualized. The blue attraction vector points towards the destination
point, annotated with a blue "P" point. If only this component contributed to the
reference heading, then the rover would collide to the crop row.

PhD Thesis 60

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.6: An example vector field

In this work, the repulsion vector used is

Vo,φ(r) = ko

Rb
i

[
−cosφ
−sinφ

]
d(φ)2 (7.43)

A first-pass value assignment for the vector constants could be:

kp = 1 (7.44)

ko = 1
250 (7.45)

The various object distance measurements create the repulsive vectors vo,i, each
denoted as a red, dashed arrow. Their sum is the red, solid arrow.

The blue and red components are summed to the green overall vector field reference
heading. The reference vector is the result of the operation

V(r) = Vp(r) +
∑
φ

Vo,φ (7.46)

Along the heading of V(r), a tracking point can be placed (annotated as a green
"T" circle) at a pre-defined distance and communicated to the low-level autopilot.
The autopilot will try to direct the rover towards it.

Mathematically, the position of the tracking point could be expressed as

T(r) = L
V(r)
|V(r)| (7.47)

where L is the lead distance of the tracking point from the vehicle.

Emmanouil Fragkoulopoulos 61

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 7.7: Vector field synthesis

PhD Thesis 62

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 8

Software Components

Modern robotic systems tend to be large and complex, spanning multiple envi-
ronments and networks. They take advantage of knowledge from multidisciplinary
fields and make use of a diverse set of computational tools. This is a natural effect
of the fact that as robotics evolves and is called to solve more intricate problems,
robotic systems become larger and more involved, in order to face new problems
and challenges.

Similarly to the programmers, who maintain software libraries and build upon them,
roboticists often try to create hardware and software modules. These modules im-
plement specific, well defined functionalities and can be combined relatively easily
to construct a robotic system of larger scale. This alleviates the burden of re-solving
every robotics problem from roboticists, each time they start building a new system.

It is considerably harder to standardize hardware components and device drivers,
because they reflect the unique aspects of each project and device. For example, it
is impractical to re-purpose a rover design which was used for defusing bombs to be
part of a precision agriculture system; The latter application calls for a cost-efficient,
modular solution, while the first requires a robust and very precise platform.

Still, on the software side of things, there has been significant progress in the devel-
opment of software modules for robotics applications.

8.1 The Robotics Operating System (ROS)
Perhaps the most significant contribution towards the standardization of robotics
constructs is ROS [63]. ROS is a meta operating system which provides utilities
for executing and managing multiple user-written programs as well as establishing
a pipe-based communication system among them, using TCP. Furthermore, it fa-
cilitates the compilation and linking of source code and libraries, under its build
system, called catkin.

Emmanouil Fragkoulopoulos 63

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

ROS is basically intended to support the Ubuntu Linux Operating System (OS), but
there is also limited support for Windows and some embedded system architectures.

Roscore
Each time ROS executables need to be run on a computer, one ROS program must be
run before all. This program is called the roscore. Only one roscore can be running
at each time in any computer. roscore is tasked with arbitering all subsequently
launched ROS programs (called nodes), monitoring their execution and organizing
their inter-communication.

Nodes
The user can write ROS programs (usually referred to as nodes) in Python and
C++, taking advantage of both languages’ strong points.

Python nodes can benefit from the vast number of libraries (also known as mod-
ules), suitable for scientific calculations in a high-level abstraction. Notable examples
are the numpy module for matrix manipulation and the openCV library for image
processing.

C++ nodes can be compiled very efficiently to produce fast code, ideal for imple-
menting device drivers or writing low-latency loops. Fast processing of the large
amount of data produced by a laser scanner or execution of fast control loops are
some examples where C++ would be a good choice of programming language.

It is recommended to split the functionality of a robotics project into multiple nodes,
so that each one contains a stand-alone body of code, which can run on its own
thread and exist separately of other nodes.

Topics
ROS uses a pipe-based system to arbiter communications between nodes. Each pipe
is called a topic and must contain only one type of variable structure. Variable
structure types are called messages is ROS terminology. There are stock message
definitions for the most common data structures, but custom messages can be de-
scribed as well. Each node can either subscribe on one or more topics and/or publish
onto them.

Pipes are queue-based, buffered structures, meaning that a nodes can publish more
than one message, filling the pipe gradually, before another node starts popping
messages from that pipe and processes them.

Topics are created by objects belonging to nodes, called publishers. Publishers are
created with a new topic name and a topic type as arguments. They inform the

PhD Thesis 64

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

roscore of the creation of a new topic and interface with him for the exchange of
messages. They also provide methods for message publishing.

Conversely, objects for subscribing to topics (i.e. receiving messages) exist, called
subscribers. These are also assigned on nodes and given a topic to monitor and a
callback function as arguments. Each time a new message appears on a topic, the
subscriber will pop it and pass it on the callback function.

It should be noted that for C++ compiled nodes, subscriber objects only monitor
topics for new messages during specific events during the node execution. That is,
they are not asynchronous threads but run when ros::spinOnce() or ros::spin()
functions are called.

Python nodes have dedicated threads for subscribers.

8.2 ROS Node/Topic Example Network
A simple ROS node and topic network can be seen in Figure 8.1. The image is a
snapshot of the ROS network state at the time it was taken. Two nodes (executable
programs) are seen running, depicted as ovals, /turtlesim and /draw_square. Each
has its own, unique name. In this case, both start with a slash, but namespaces are
supported, allowing for the same leaf name to be used under different prefixes.

Two topics are also observed in the form of directed lines, /turtle1/pose and
/turtle1/command_velocity. turtle1 is considered to be a namespace for these
topics in this case. The direction of the arrows specifies the publisher/subscriber
relatation between the topics and the nodes.

In this example, pose is published by /turtlesim and subscribed by /draw_square
while command_velocity is published by /draw_square and subscribed by turtlesim.

Parameter Server
Commonly, coded functionality needs to act/operate based on the value of one
or more parameters. Controller gains, IP addresses and delay intervals are some
common examples where the behavior of a program depends on values which may
need to change from execution to execution, based on the needs of the user. Compiled
ROS programs cannot have their execution parameters changed, unless another re-
compilation is issued. This is an unstable and time-consuming process.

ROS provides a convenient solution for this problem: the parameter server. Before
the execution of a node, one or more parameters of specific value can be loaded
to a dedicated node/server (always under the roscore supervision) represented by
a name-value pair. These parameters can then be accessed during run-time by the
nodes, through a dedicated API.

Emmanouil Fragkoulopoulos 65

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 8.1: A simple ROS node and topic network

Multiple parameters can be loaded from text files, described in .yaml format.

Packages
The source files for the nodes, the custom message definitions, makefiles and other
project-related files are organized in packages. Each package is a collection of files,
usually referring to a well-defined program or functionality. For example, the source
code required to operate a robotic arm can be enclosed in a package, from the device
drivers to the high-level trajectory planning and computer vision programs.

The ROS build system, catkin parses each package and builds it, producing exe-
cutable files. Packages can have interdependencies and provide libraries, to be used
by other project-packages.

We usually say that an executable node belongs to a specific package.

File System
Each ROS installation has a standard file structure. The system files are automati-
cally placed by the installer under the /opt/ros/<ros-version> directory as well
as any other packages downloaded from the official package server.

However, the user files should be created and placed into the workspace. The workspace
is a specifically declared folder under the user directory tree, where custom, propri-
etary applications are developed. It contains two major folders, src and devel.

The user can create a new folder under the src directory for each new package
he wants to develop. Each package folder creates source code, scripts, launch files,
package manifests and other assets, corresponding to that specific package.

PhD Thesis 66

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Each time the compile system provided by the ROS installation is invoked, it scans
the whole src directory tree and compiles all the packages it finds. The executable
files that are created are placed under the devel folder, from where the roscore
launches them.

Currently, the compile system used by ROS is called catkin.

Launch Files
Nodes can be launched via commands in a bash terminal, but in large robotics
projects, this can quickly become cumbersome and error prone. ROS defines Launch
Files, XML structures which belong to packages and describe an execution order and
the arguments of multiple nodes, as well as topic renames and parameter loading.

The user can offload the node launching to a launch file and only issue its execution
instead, alleviating most of the launching burden.

Launch files can also perform basic conditional block execution and include other
node files, allowing for modular and flexible programs.

8.3 The multimaster-fkie Package
Often robotic systems need to span multiple computers and computing units, in a
networked structure. Centralized systems with peripheral agents and decentralized
systems fit this description and are very common in all but the most rudimentary
projects. Thus, there is the need for co-operating nodes across different computers.

Let’s assume that a networked system consists of two computers, A and B, linked
with a WiFi connection through a router. Each node needs a roscore to operate
under. One option is to launch roscore in A and declare in B that all nodes should
be assigned to the roscore of A, which is supported and a viable option. However,
in the case where the communication between A and B is intermittently lost, all
nodes of B will hang during the communication outage and may crash. This is
very unwanted behavior, especially in fast-moving robots which interact with the
environment.

A solution to this problem is to launch a roscore in each A and B, each with its
own nodes. However, this complicates communication between nodes of A and B,
because standard ROS protocol does not allow for shared topics between roscores.
The developer could try to write his own TCP, UDP, serial or other communication
protocols, but this is the exact burden one is trying to avoid, by using ROS and the
topic system.

multimaster_fkie [76] is a collection of 3rd party packages which offer exactly this
functionality. It consists of two main nodes.

Emmanouil Fragkoulopoulos 67

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Running rosrun master_discovery_fkie master_discover under a roscore will
raise a node which will look for and find other roscores in other computers in the
same network. The nodes and topics of these roscores are identified.

Running rosrun master_sync_fkie master_sync subsequently allows for synchro-
nization of topics and parameters between roscores. The topics of one roscore are
available to the nodes of the other and vice versa.

This functionality really unlocks a lot of potential for distributed systems across
networks. Issues with packet drops and communication delays still exist, but at
least each computer is now able to run stand-alone code and maintain minimum
failsafe functionality for that event.

8.4 The Image Transport Package
Typically, message packets are defined either by standard ROS types or by user
definition files, in a similar manner as e.g. C language structures. Then topics of
appropriate size can host them and they can be encoded and decoded by publishers
and subscribers. All kinds of message types can be exchanged between nodes this
way, from simple integer numbers to complex GPS and odometry information with
dozens of fields.

However, there is a notable exception: images. Images have very large packet sizes
which make their exchange difficult in networked systems, especially since multiple
instances of each image are created, one for each node subscribed to its topic.

For that reason, the Image Transport [46] package was created, which alleviates some
of the burden of image exchange from roscore, by using a more efficient exchange
protocol, with less impact on the system memory.

On the downside, it requires the use of its own publisher and subscriber objects and
the conversion of image message types to its own type.

8.5 The Image_Proc Package and Image
Rectification

Every camera introduces distortion to the captured image, due to lens imperfec-
tions and misalignment. This is mostly visible as a "bending" of straight lines the
further they are from the center of the image (see Figure 8.2) and is a problem for
computer vision applications which rely on geometric measurements upon the image
coordinates.

Thankfully, calibration and rectification of the camera distortion is possible and in
ROS it can be done using the image_pipeline package [56] and its sub-packages.

PhD Thesis 68

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 8.2: A demonstration of lens distortion

Figure 8.3: The lens calibration chess pattern

A method for camera calibration is provided by the camera_calibration package.
The user prints a pre-defined chess pattern (Figure 8.3) and places it in front of
the camera, in various positions, distances and orientations. The calibration algo-
rithm compares the visible result with the expected correct image projection and
constructs the distortion coefficients matrix.

Once the distortion coefficients are calculated, the image_proc node can be run,
which handles image rectification. With its default arguments, the image_proc node
subscribes to the image_raw topic for the image feed and to the camera_info topic
for the camera calibration data and produces the image_rect_color topic with the

Emmanouil Fragkoulopoulos 69

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

rectified image.

8.6 The OpenCV Library
Computer vision is by now a vital part of many robotics applications. In fact, it is so
wide-spread that it has its own term: robotic vision. Robotic vision is the discipline
which is involved with enabling robots to capture photographs or videos of their sur-
roundings, process them in search of specific features and geometries and interpret
them, in such a way that the robot will be able to gain information about its sur-
roundings. This information can be used for navigation, obstacle avoidance, object
recognition, grasping and manipulation of objects and implicit communication.

Generally, the development of computer vision algorithms is a scientific field on itself
and it would be near impossible to incorporate any vision functionality if robotics
applications if one had to program it from the beginning.

Thankfully, as is usually is the case, a revolutionary software project has emerged,
solving exactly the problem of computer vision as a part of a robotics system: the
OpenCV library [39].

OpenCV comes as a C++ or Python library and is very feature-rich. From colour-
masking to edge and feature detection, it provides a large set of software tools, which
enable roboticists incorporate robotic vision functionality into their projects.

ROS has a dedicated set of packages for OpenCV, which are frequently updated.

In this work, OpenCV functions are used extensively during the processing phase
of the NIR images, to extract the NDVI of the crop under survey.

8.7 The MAVLink Protocol
When software systems with modular software are deployed, especially in distributed
systems, there is the need for standardized communication protocols between the
constituting parts. Not only does a communication protocol allow for robust com-
munication between the system parts, contribute to a streamlined developing phase
and successful transfer of required information, but it provides important indirect
advantages to the system.

With a carefully designed, detailed and preemptive communication protocol, a sys-
tem can be expanded with new modules and parts by using the same protocol. As
long as all system parts "speak the same language", they can cooperate with each
other.

Equally important, the communication protocol is the system part which ensures
the integrity of communications and their security. Methods for identifying a broken

PhD Thesis 70

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

or otherwise corrupted message, such as checksums are specified by the communi-
cation protocol. Packetization and reconstruction lie under the same protocol. Also,
encryption methods are topics of the communication protocol as well.

Traditionally, for as long as UAVs were considered solely military technology, avia-
tion, military-grade communication protocols were used for UAV-GCS communica-
tion. These usually come with extensive security requirements, are cumbersome to
program and integrate into a new project and are very difficult to extend, in order
to incorporate new functionality.

As UAVs have become more accessible by the research community, other communi-
cation protocols are emerging and are commonly used in new projects and products.
One of them, perhaps the most known, is MAVLink [45].

Taken from the webpage of QGroundControl, a GCS software developed by ETH
Zyrich, follows the definition of another piece of software developed by the same
laboratory, MAVLink:

MAVLink is a very lightweight, header-only message marshaling
library for micro air vehicles

At its core, MAVLink is nothing more than a C or Python library, which can be im-
ported into any UAV or GCS communications module. It defines standard message
types for common UAV-related operations, such as the waypoint or mission defi-
nition, upload and download, telemetry information, command relaying and health
monitoring.

It also provides standard methods for encoding and decoding the aforementioned
information with software functions and offers a packetization strategy to take ad-
vantage of communication systems of specific packet size, increasing bandwidth.

MAVLink leaves room for user-defined messages and is constantly evolving, through
user feedback. Currently, the stable version is 1.0 but 2.0 is on the works.

Each MAVLink packet has a specific structure, but not fixed length. Its components
are visualized in Figure 8.4, where each byte is represented by a square.

1. Start byte (0xFF)

2. Payload length, used for packet decoding, since its length is not fixed

3. Packet sequence ID, to detect packet loss

4. System ID, for packet addressing in multi-system networks

5. Component ID, for packet addressing in multi-component systems

6. Message ID, corresponding to a predefined message set and characterizing the
meaning of the payload

Emmanouil Fragkoulopoulos 71

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 8.4: The components of a MAVLink packet

7. Data bytes

8. Two checksum bytes for packet integrity verification

ArduPilot and PX4 both use MAVLink as their communication protocol for autopilot-
GCS communication, but in theory MAVLink also supports multi-vehicle networks
and hardware sub-module addressing. Other autopilot projects use MAVLink as
their communication protocol, exactly because it is robust, functional and stand-
alone.

8.8 The mavros Package
Even though MAVLink C and Python libraries are provided, there is no officially
supported method to interpret a MAVLink packet into a ROS topic. This function-
ality is highly desirable, when one wants to interface an ArduPilot autopilot with a
ROS system.

In order to achieve that goal, a dedicated node would have to be programmed, which
would take advantage of the MAVLink libraries and translate the message traffic
incoming from the UAV into ROS topic of different types and vice versa. Thankfully,
this program already exists and is incorporated in the mavros package [25].

The mavros node can be run alongside other ROS nodes, intercepting MAVLink
traffic between the autopilot and GCS. Information such as GPS coordinates, orien-
tation, altitude and many more are exposed as ROS topics in real time. Conversely,
mission commands, flight mode issuing and control surface commands can be sent
as topics to mavros and be encoded as MAVLink packets, sent to the UAV.

Unfortunately, mavros is designed with the PX4 firmware in mind, which uses a
slightly more specialized subset of the MAVLink dialect. As a result, not all func-
tionality advertised and documented by mavros is operational when communicating
with ArduPilot systems, thus the developer should be aware of that.

In this work, mavros is used to capture telemetry information of the UAV during the
scanning of the crops phase. The position and orientation of the UAV are recorded.
Specifically these topics are used:

PhD Thesis 72

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

• /mavros/global_position/global containing the timestamped GPS coor-
dinates of the UAV

• /tf where mavros publishes the transformation from the body frame to the
NED frame

8.9 The dronekit Library
Another piece of software that can be used to intercept, decode and encode MAVLink
packets is dronekit [4]. It comes with APIs for Android, Python and cloud applica-
tions, but does not support ROS topics. Still, it can be used in a ROS node as any
other Python library.

dronekit is much more feature-rich compared to mavros, when it comes to issuing
commands to the autopilot and triggering based on events. It also encodes infor-
mation in a more user-friendly way, since it abstracts a lot of functionality under
Python classes and methods.

A vehicle object is the core of dronekit functionality, which is instantiated with the
source address of the MAVLink stream.
vehicle = dronekit.connect(<mavlink_src_address)
The MAVlink source address can be a serial COM port, a USB port, a TCP or a
UDP IP address.

The autopilot mission can be downloaded as a mission object, edited and reuploaded.
mission = vehicle.commands
mission.clear()
mission.add(waypoint)
mission.upload()

The location of the vehicle can be queried at any time through the location member,
in various frames of reference.
vehicle.location.global_frame
vehicle.location.local_frame

The same holds for the vehicle orientation
vehicle.heading

Finally, the mode of the autopilot can be set by
vehicle.mode = dronekit.VehicleMode(<modeName>)
Common modes offer manual, guided and automatic control.

In this work, dronekit is ran in a ROS node on the Odroid carried by the rover, in
order to monitor the state of the rover and issue waypoint commands for obstacle
avoidance, according to the readings of the laser scanner.

Emmanouil Fragkoulopoulos 73

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

8.10 The MAVProxy GCS
Throughout this work, there is often the need to re-direct and send MAVLink packet
streams to one or more recipients. The telemetry information from the rover must
reach both the Odroid on-board companion computer, but the GCS laptop as well,
for the system operator to monitor it.

Moreover, the transport layer over which they are sent may need to be switched,
according to the channel they are sent through. Packets travel over an 118kbaud/s,
8N1, TTL serial connection while going from the Pixhawk to the Odroid, but as a
high-speed Ethernet UDP stream from the Odroid to the GCS laptop.

The stream duplication and type conversion functionalities are not trivial at all; a
bad implementation of such functionality may lead to high packet loss, latency and
low bandwidth. Thankfully, there exists a software which can handle this type of
operations very efficiently and effectively: The MAVProxy GCS software [10].

MAVProxy was originally built as a GCS software, with all the traditional function-
ality of telemetry display, mission upload and monitor and teleoperation, by one
of the main contributors and authors of ArduPilot, Andrew Tridgell. It was built
to have a very small resource impact on the running OS, and for that reason it is
a good choice for small, low-power, embedded computers. It uses a module-based
logic, in order to keep only the vital functionality active at any moment. In fact, at
its core, MAVProxy can run only as a console-based program, with no GUI at all.

Because it incorporates functionality to redirect and convert MAVLink streams, in
a level that almost no other GCS software can offer right now, it is often used solely
as a MAVLink handling software. This is exactly how it is used in this work as well.

Specifically, an instance of MAVProxy runs on the Odroid of the rover to re-direct
the Pixhawk stream to the GCS laptop and convert it from TTL serial to UDP
protocol. Another instance runs on the GCS laptop to duplicate the UAV Pixhawk
telemetry stream and provide it to both the GCS software and the ROS nodes who
need it.

For example, the initialization command run on the Odroid, which raises MAVProxy
and routes the MAVLink streams is
mavproxy.py --master=/tty/USB0 --baudrate=115200

--out=udp:127.0.0.1:14550
--out=udp:127.0.0.1:14551
--out=udp:192.168.1.201:14551

The master argument lets MAVProxy know at which port the source of the MAVLink
stream sends the telemetry stream. Multiple ports can be declared in the case where
multiple, redundant links are used. In our case, a USB port is used.

PhD Thesis 74

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

The baudrate argument accompanies all serial port declarations and sets the baud
rate of the communication.

With the out argument, the ports to which the MAVLink stream should be for-
warded are declared. As is the case, the udp:IP:port format is valid as well.

8.11 The wget Program
As it was previously mentioned, the photographs taken from the Multispek camera
are stored within its SD card and are available through the file server hosted by the
camera at its IP address.

These images need to be accessed through the established Local Area Network
(LAN); removing the SD card after each flight is not only cumbersome and prone to
accidents, but most importantly breaks the continuum of operations which ideally
should happen in real time.

Naturally, the act of downloading the images should not be assigned to a human
through the GUI of a web browser. This is an unnecessary workload with a repetitive
character, which needs to be carried out during the whole flight of the UAV. All of
these characteristics make the automation of this task a very lucrative option.

The wget program for Linux [53] is a very suitable candidate: It is part of the
GNU project and advertises exactly the required functionality: retrieving files using
HTTP, HTTPS or FTP. It can be passed a number of option flags, which control
and embellish its operation.

In our case, we will be using the following command to retrieve pictures from Mul-
tispek:

wget -r -nd -np -N -A .JPG http://10.5.5.9.8080/videos/DCIM/110GOPRO/

Let us examine each option flag separately, in an effort to understand the exact
function of the command:

• -r: Enables the recursive parsing of the directory. Used in case subfolders with
images are created under the directory of interest.

• -nd: When parsing and retrieving recursively, do not mirror the directory struc-
ture. Instead copy all files in a single directory.

• -np: Do not parse parent directories. Only traveling the directory tree down-
wards is allowed.

• -N: Turn on timestamping. This option makes wget download a file only if it is
a newer version of the already copied one. In this way, an already downloaded

Emmanouil Fragkoulopoulos 75

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

file will not be downloaded again, cluttering the bandwidth of the wireless
link.

• -A .JPG: Create an accept list, which filters which file types are downloaded.
In this case, only JPG files are downloaded.

• The target address: This is the last argument, which states which network
address will the wget program access and copy from.

8.12 k-means Algorithm and Library
In the premises of this work, the many thousands, if not millions of data points,
corresponding to each image pixel are captured during an imaging mission. Each
is evaluated to obtain vegetation health data which will later be used to decide
whether this specific point needs to be issued with intervention material (pesticides
or water). However, it is evident that pixel-by-pixel application is infeasible.

A strategy for grouping the datapoints is sought, so that representative locations can
be extracted. Application of intervention material in these locations should cover as
many of the datapoints of interest as possible.

To that goal, the k-means algorithm, stemming from the signal processing and data
mining scientific fields is employed. Given a set of datapoints and a number of re-
quired results, the algorithm returns a number of centroids, points which correspond
to an equal number of groups (clusters), to which the datapoints can be categorized.
Each datapoint is said to belong to the cluster of a centroid if that centroid is the
one that is closest to the datapoint. A visualization of the clustering procedure can
be seen in Figure 8.5.

The implementation of the k-means algorithm used in this work was taken from the
SciPy Python library, specifically the kmeans2 algorithm [19].

PhD Thesis 76

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 8.5: Clustering with the k-means algorithm

Emmanouil Fragkoulopoulos 77

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 9

System Integration

In this chapter, the details of how individual components of the system are combined
to form a unified system will be laid out. Furthermore, the novel software solutions
which were employed for the solution of the problem at hand will be presented in
detail.

9.1 Network Configuration
The proposed system is composed by separate, spatially distributed systems, which
still need to communicate with each other in real-time. Hence, there is a need for a
data network which spans the entire system and allows the exchange of data between
the system components.

There are several constraints, imposed by the technology of the employed devices,
which need to be taken into account during the network design.

First and foremost, as expected, both the UAV and the rover need to travel long
distances in outdoor environments. It is impossible to maintain a wired connection
through a tether to the GCS. A wireless connection is the only option in both cases.

The Pixhawk situated in the UAV can communicate its telemetry information with
its wireless serial module. The ground-end of this serial link is a transceiver with a
USB interface, which needs to be plugged onto the GCS.

The Multispek camera can output its captured images in two ways. The first one is
to use its mini HDMI port, which constitutes a wired solution and thus is deemed
unusable. The second is to use the WiFi network of the camera and the correspond-
ing file server. It should be emphasized that GoPro 4 (and hence Multispek as well)
is able to only raise their own WiFi network, upon which it acts as host and not as
a client. Thus, it is impossible to attach a Multispek onto an existing WiFi network.

The SICK LMS111 laser scanner offers either a serial or an Ethernet output. It is
convenient to use the Ethernet interface, since it offers higher transfer rates and is

Emmanouil Fragkoulopoulos 79

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 9.1: System network configuration

easily usable with modern computing systems.

The Pixhawk situated in the rover can communicate its telemetry information and
receive commands either by contacting via a wireless serial module (as in the case of
the UAV unit) or by directing the data stream towards the on-board Odroid unit.

The Odroid itself can communicate either through its USB ports, its ethernet port
or by using a USB WiFi adapter.

While many GCS software can be used to setup the UAV mission, Mission Planner
is a popular one and arguably the most mature and feature-rich. However, it is only
available as a Windows distribution.

Taking into account all of the above constraints, the proposed system network is
presented in Figure 9.1.

An Ethernet wireless router/switch is tasked with hosting the LAN/Wireless Local
Area Network (WLAN), where the GCS laptop, the Mission Planner laptop and the
rover Odroid are connected, allowing all of them to communicate with each other.
Static IP addressing is selected, in order to automate the procedure of connection
and discovering for each computer.

The reserved IPs of the network components are:

PhD Thesis 80

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

• router/switch: 192.168.1.201

• GCS laptop: 192.168.1.201

• Mission Planner laptop: 192.168.1.204

• Odroid: 192.168.1.202

• Laser scanner: 192.168.0.203

Starting from the UAV, the wireless serial transceiver pair is used to control and
monitor the Pixhawk. The ground-based transceiver is plugged in a USB port on
the GCS laptop. The over-the-air data transfer rate is set to 57600 baud, as per
default.

The GCS laptop is connected to the LAN and a MAVProxy instance duplicates and
forwards the MAVLink stream to multiple consumers in UDP protocol:

• The Mission Planner laptop at port 14550, where the mission of the UAV can
be composed and uploaded and initiated

• The local mavros node listening at localhost:14550

The GCS laptop is also logged in the wireless network hosted by the Multispek,
using its wireless adaptor, so that it can download the captured images. Also it is
connected to the LAN via an Ethernet cable.

By default, the image server of the Multispek camera can be reached at the address
10.5.5.9:8080.

The Pixhawk placed in the rover is connected to the Odroid using a USB-to-Serial
adaptor, with a data transfer rate of 115200 baud. On the Odroid, a MAVProxy
instance forwards the MAVLink stream to multiple consumers in UDP protocol:

• localhost:14550 for local use

• The GCS laptop at port 14551

The laser scanner is connected to the Odroid using its Ethernet interface. A separate
subnet is dedicated for this connection, since it was deemed impractical to bridge
the wired and wireless network adapters of the Odroid. The subnet 192.168.0.X
was used for this connection and the port 2111 or 2112 for communication, as per
defaults.

Emmanouil Fragkoulopoulos 81

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

9.2 Flow Diagram
Figure 9.2 contains an abstract representation of the overall information flow and
the procedure flowchart. The steps in green refer primarily to the UAV system, those
in yellow to the GCS and those in blue to the rover. In general, the software in the
three different platforms can run independently and does not need synchronization.

At a glance and following the information flow, the UAV is the first system com-
ponent to start its operation, by beginning its mission (top left start node). During
its flight, it will capture images at predetermined points, defined during the mission
setup (node below). Images will be triggered for as long as the mission goes on. After
it is completed, the UAV can return home and land, regardless of the evolution of
the other software threads.

The image processing software, running on the GCS laptop can be started before
the UAV takes off (e.g. during system setup), seen as the yellow start node. Each
time a new image is taken, the wget program, which polls the camera for new files,
will download it on the laptop (node below). A software hook which monitors the
image folder will trigger on each new image download and begin another iteration
on the loop of the yellow branch.

At first, the new image filename will be published by a ROS node on a topic ("Publish
new image filename"). The filename message will trigger the callback of the next ROS
node, which will read the image, convert it into a ROS image message and push it
down another topic ("Read image and publish image message").

Another node will read the image message and process it, in order to extract the
NDVI values out of it, as well as locate the image areas which correspond to sick
vegetation and isolate them ("Calculate image NDVI").

The next node ("Point of interest geolocation") apart from the image message will
also receive the UAV position information, via telemetry. Combining this informa-
tion, a large array storing the coordinates of all affected vegetation points will be
aggregated. Until the mission is over, this array will continue to grow.

Upon the end of the mission, the coordinate array will be processed, and a few
points of primary interest will be extracted. These points need to be visited by the
rover and are thus communicated to it ("Publish waypoints to rover").

The rover software can also be started asynchronously, e.g. during system setup
("Rover mission start"). As long as no waypoints are received from the GCS, no
operation will be carried out.

When the waypoints are received, each one will be examined in order and a path
towards it which respects the crop field geometry will be generated ("Generate path
to next waypoint"). Distance data produced by the laser scanner will be read and

PhD Thesis 82

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

the path will be adjusted in real time to ensure obstacle avoidance. When all of the
waypoints are visited, the mission of the rover is complete.

The launch files (see Subsection 8.2) of the GCS laptop and the rover ROS systems
reflect this architecture.

Emmanouil Fragkoulopoulos 83

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 9.2: System software flow diagram

PhD Thesis 84

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

9.3 Launch Files
This is the launch file responsible for bringing up the ROS nodes on the GCS laptop.

1 <launch>
2

3 <!-- Launch the mavros nodes, which handle communication with the
UAV -->

4 <include file="$(find␣green_eye)/launch/mavros_ge.launch"/>
5

6 <!-- Load the camera calibration -->
7 <group ns="calibration">
8 <rosparam command="load" file="/home/george/GOPRO/chessboard/

calibrationdata/cal.yml"/>
9 </group>

10

11 <!-- Load program parameters -->
12 <rosparam command="load" file="$(find␣green_eye)/data/ge_params.

yaml"/>
13

14 <!-- Launch the file monitoring node -->
15 <node pkg="green_eye" name="file_monitor" type="file_monitor"

output="screen"/>
16

17 <!-- Launch the image publisher node, which converts the image file
to a ROS topic -->

18 <node pkg="green_eye" name="image_publisher" type="image_publisher"
output="screen"/>

19

20 <!-- Launch the image processing node -->
21 <node pkg="green_eye" name="image_processor" type="image_processor"

output="screen">
22 <remap from="/camera/image_rect_color" to="/camera/image_raw"/>
23 </node>
24

25 <node pkg="green_eye" name="geolocation" type="geolocation_python"
output="screen"/>

26

27 </launch>

Initially, mavros is raised, to convert telemetry from the UAV into ROS topics (line
4).

The pre-determined camera calibration parameters are loaded into the parameter

Emmanouil Fragkoulopoulos 85

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

server from the stored YAML file (line 7-9).

The rest of the program parameters, such as the sick plants thresholds for the NDVI
processing are loaded into the parameter server (line 12).

The wget program is launched from outside the ROS environment and is thus not
included in this launch file.

The file_monitor responsible for detecting new file , image_publisher responsible
for creating the image topic and image_processor responsible for NDVI processing
are raised next (lines 15-23).

Finally, the Python geolocation node is brought up, to convert the points of in-
terest from the captured pictures into waypoints for the rover to visit.

The rover launch file is also provided below

1 <launch>
2

3 <include file="$(find␣green_eye)/launch/lms111.launch" />
4

5 <rosparam command="load" file="$(find␣green_eye)/data/gh_params.
yaml" />

6

7 <node pkg="green_eye" name="path_planner" type="gh_path_planner.py"
output="screen" />

8

9 </launch>

Initially, it loads a custom-written launch file to initialize the laser scanner param-
eters and start the laser scanner driver node. This launch file is provided by the
device driver ROS package.

Afterwards, it loads the parameters related to the path planner functionality.

Finally, it raises the main path planner node, where the target reception, dronekit
interfacing, path generation and laser scanner interfacing functionality takes place.

9.4 File Monitoring
As presented in Section 8.11, the wget program is used in this work to download
the NDVI images from the camera to the GCS laptop in real-time. New image files
are created in a pre-specified directory. The GCS software needs to be alerted on
the appearance of new images in order to read them later and convert them in a file
format usable by OpenCV.

PhD Thesis 86

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

A dedicated ROS node was created for this task, namely watch for the creation of
new images in a prespecified folder and send their file path down a ROS topic, on
which another node tasked with image conversion is subscribed. The corresponding
code is presented below and explained in detail.

The primary technology enabling this node is the inotify.h library, which creates
hooks for file creation.

1 #include <ros/ros.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <errno.h>
5 #include <sys/types.h>
6 #include <sys/inotify.h>
7 #include <signal.h>
8

9 #include <std_msgs/String.h>
10

11 #define EVENT_SIZE (sizeof (struct inotify_event))
12 #define BUF_LEN (1024 * (EVENT_SIZE + 16))
13

14 int fd;
15 int wd;
16

17 ///////////////////
18 // SIGIN handler //
19 ///////////////////
20 void sigintHandler(int sig)
21 {
22 // remove the hook and delete the event
23 (void) inotify_rm_watch(fd, wd);
24 (void) close(fd);
25 ros::shutdown();
26 }
27

28 ///////////////////
29 // Main Function //
30 ///////////////////
31 int main(int argc, char **argv)
32 {
33 ros::init(argc, argv, "file_monitor", ros::init_options::

NoSigintHandler);
34 ros::NodeHandle n;
35 ros::Publisher pub = n.advertise<std_msgs::String>("/image_latest"

Emmanouil Fragkoulopoulos 87

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

,100);
36 signal(SIGINT,sigintHandler);
37

38 ROS_INFO("file_monitor␣node␣up");
39

40 ros::WallDuration(3).sleep(); //wait for other nodes to get raised
41

42 int length, i;
43

44 char buffer[BUF_LEN];
45 std_msgs::String msg;
46 std::stringstream ss;
47

48 // Create the event
49 fd = inotify_init();
50

51 if (fd < 0) {
52 perror("inotify_init");
53 }
54

55 // Add the hook to watch a folder for new images
56 wd = inotify_add_watch(fd, "/home/user/catkin_ws/src/green_eye/

data/images", IN_CREATE);
57

58 // Loop and check for new files
59 while (ros::ok())
60 {
61

62 // Blocking-read for the new file
63 length = read(fd, buffer, BUF_LEN);
64

65 // Handle bad return values
66 if (length < 0) {
67 ROS_ERROR("Bad␣length␣in␣file_monitor");
68 ros::shutdown();
69 }
70

71 i = 0;
72 while (i < length) {
73 struct inotify_event *event = (struct inotify_event *) &

buffer[i];
74 if (event->len) {

PhD Thesis 88

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

75 if (event->mask & IN_CREATE) {
76 if (event->mask & IN_ISDIR) {
77 ROS_ERROR("Unexpected␣directory␣creation");
78 }
79 else {
80 ROS_INFO("The␣file␣%s␣was␣created", event->name);
81 // Convert from char to std_msgs::String
82 ss.str(std::string());
83 ss << event->name;
84 msg.data = ss.str();
85 // and publish
86 pub.publish(msg);
87 }
88 }
89 else if (event->mask & IN_DELETE) {
90 ROS_ERROR("Invalid␣event␣type");
91 ros::shutdown();
92 }
93 }
94 i += EVENT_SIZE + event->len;
95 }
96 }
97

98 ROS_INFO("file_monitor␣closing");
99

100 return 0;
101 }

In lines 31-40, the node is initialized. It is given the name file_monitor, the node-
handle is created and a topic publisher is assigned on it. The publisher produces the
/image_latest topic of std_msgs:String type.

In lines 48-56 the hook is created and it is given a specific folder to watch. The last
parameter of inotify_add_watch is IN_CREATE, which corresponds to file creation.
Other options exist, such as file deletion or modification, but they are not of interest
to us.

The while-loop in line 59 runs the following code perpetually, until roscore dies for
any reason (exits due to an exception or closed by the user), which is monitored by
the function ros::ok().

The program waits in line 63 with a blocking read on the fd buffer, until a hook
fills it with a struct related to the inotify.h library event. Once that happens,

Emmanouil Fragkoulopoulos 89

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

the content is copied on the buffer buffer, for further processing. Specifically, this
information is loaded in the event structure.

If the new file created is a folder (line 76), then an error is returned, since we do not
expect any folders to be created inside our watch folder, only image files. Otherwise,
we capture the filename and path provided in the event->name field and publish it
over the \image_latest topic by using the pub publisher (lines 79-87).

With the new image file information pushed in the topic, another node will handle
its reading and processing.

As a side note, notice that we have disabled the default SIGINT function of the
node (line 33) and replaced it with a callback function (line 36). This is because by
default the node wouldn’t also delete the watched folder hook on shutdown and a
specialized function is used to do that first instead, and then close the node (lines
20-26).

9.5 Publishing the Image Topic
After the new image filename and path have been published onto the \image_latest
topic by the file_monitor node, the image_publisher node steps in to read that
image and convert it into suitable message types for further processing. The corre-
sponding code can be seen below and it is further explained afterwards.

1 #include <ros/ros.h>
2 #include <ros/console.h>
3 #include <image_transport/image_transport.h>
4 #include <opencv2/highgui/highgui.hpp>
5 #include <opencv2/contrib/contrib.hpp>
6 #include <cv_bridge/cv_bridge.h>
7

8 #include <cstdlib>
9 #include <cstdio>

10

11 #include <std_msgs/String.h>
12 #include <marti_visualization_msgs/TexturedMarker.h>
13 #include <geometry_msgs/Pose.h>
14 #include <tf/transform_listener.h>
15

16

17 class ImgPub {
18

19 public:
20

PhD Thesis 90

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

21 ros::Subscriber sub;
22 image_transport::Publisher pub_img_raw;
23 ros::Publisher pub_cfg;
24 sensor_msgs::CameraInfo cfg;
25

26 ros::Publisher pub_texmark;
27 marti_visualization_msgs::TexturedMarker texturedmarker;
28 geometry_msgs::Pose camera_pose;
29

30 tf::TransformListener listener;
31 tf::StampedTransform transform;
32

33 //////////////////////////////
34 // Initialize class members //
35 //////////////////////////////
36 ImgPub(ros::NodeHandle n) {
37 // Subscriber to the latest image name topic
38 sub = n.subscribe("/image_latest",100, &ImgPub::imageCallback,

this);
39

40 image_transport::ImageTransport it(n); // create the image
transport handle

41

42 pub_img_raw = it.advertise("/camera/image_raw",1); // create the
raw image topic

43 pub_cfg = n.advertise<sensor_msgs::CameraInfo>("/camera/
camera_info",1); // create the camera_info topic

44 pub_texmark = n.advertise<marti_visualization_msgs::
TexturedMarker>("/camera/mapviz_image",1); // create the
mapviz TexturedMarker topic

45

46 // Read the camera_info data from the parameter server and create
the CameraInfo message

47 XmlRpc::XmlRpcValue list;
48 int i;
49

50 cfg.header.frame_id = "camera";
51 double temp;
52 ros::param::get("/calibration/image_height", temp);
53 cfg.height = (uint)temp;
54 ros::param::get("/calibration/image_width", temp);
55 cfg.width = (uint)temp;

Emmanouil Fragkoulopoulos 91

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

56 ros::param::get("/calibration/distortion_model", cfg.
distortion_model);

57 ros::param::get("/calibration/distortion_coefficients/data", list
);

58 cfg.D.clear();
59 for (i=0;i<5;i++) {
60 cfg.D.push_back((double)list[i]);
61 }
62 ros::param::get("/calibration/camera_matrix/data", list);
63 for (i=0;i<9;i++) {
64 cfg.K[i] = list[i];
65 }
66 ros::param::get("/calibration/rectification_matrix/data", list);
67 for (i=0;i<9;i++) {
68 cfg.R[i] = list[i];
69 }
70 ros::param::get("/calibration/projection_matrix/data", list);
71 for (i=0;i<12;i++) {
72 cfg.P[i] = list[i];
73 }
74

75 // Fill the TexturedMarker structure
76 texturedmarker.header.frame_id = "map";
77 texturedmarker.action = texturedmarker.ADD; //add
78 texturedmarker.ns = "";
79 texturedmarker.id = 0;
80 texturedmarker.lifetime = ros::Duration(300);
81 texturedmarker.resolution = 0.02;
82 texturedmarker.alpha = 1.0;
83

84 // Publish the camera info message for Geolocation to record it
85 pub_cfg.publish(cfg);
86

87 }
88

89 ////////////////
90 // Destructor //
91 ////////////////
92 ~ImgPub()
93 {}
94

95

PhD Thesis 92

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

96 ///////////////////////////////
97 //Process new image callback //
98 ///////////////////////////////
99 void imageCallback(const std_msgs::String img_name)

100 {
101 ROS_DEBUG("Callback␣to␣publish␣image␣%s", img_name.data.c_str());

// Debug output
102 std::stringstream ss;
103 ss.str(std::string());
104

105 // Creating the image pathname
106 ss << "/home/user/catkin_ws/src/green_eye/data/images/";
107 ss << img_name.data;
108

109 // Read the image file to an openCV matrix
110 ROS_INFO("Reading␣%s", ss.str().c_str());
111 cv::Mat image = cv::imread(ss.str(), CV_LOAD_IMAGE_COLOR);
112

113 ros::Time stamp = ros::Time::now(); // capture the current
timestamp

114

115 // stamp and publish the image topic
116 ROS_DEBUG("Converting␣cv_img␣to␣ros_img");
117 sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header()

, "bgr8", image).toImageMsg();
118 msg->header.stamp = stamp;
119 msg->header.frame_id = "camera";
120 pub_img_raw.publish(msg);
121

122 // stamp and publish the camera_info
123 ROS_DEBUG("Publishing␣camera_info");
124 cfg.header.stamp = stamp;
125 pub_cfg.publish(cfg);
126 ROS_DEBUG("Done␣publishing␣raw␣images");
127

128 // Calculate the camera pose
129 ROS_DEBUG("Calculating␣the␣camera␣pose");
130 try{
131 listener.lookupTransform("map", "camera", ros::Time(0),

transform);
132 camera_pose.position.x = transform.getOrigin().getX();
133 camera_pose.position.y = transform.getOrigin().getY();

Emmanouil Fragkoulopoulos 93

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

134 camera_pose.position.z = transform.getOrigin().getZ();
135 camera_pose.orientation.x = transform.getRotation().getX();
136 camera_pose.orientation.y = transform.getRotation().getY();
137 camera_pose.orientation.z = transform.getRotation().getZ();
138 camera_pose.orientation.w = transform.getRotation().getW();
139

140 // stamp and publish the TexturedMarker topic
141 ROS_DEBUG("Publishing␣mapviz␣TexturedMarker");
142 texturedmarker.header.stamp = stamp;
143 texturedmarker.image = *msg;
144 texturedmarker.pose = camera_pose;
145 pub_texmark.publish(texturedmarker);
146 texturedmarker.id = texturedmarker.id+1;
147 }
148 catch (tf::TransformException &ex) {
149 ROS_ERROR("%s",ex.what());
150 }
151

152 }
153

154 };
155

156 ///////////////
157 //Main function
158 ///////////////
159 int main(int argc, char **argv)
160 {
161 ros::init(argc, argv, "image_publisher"); // initialize the ros

node
162 ros::NodeHandle nh; // create the nodehandle
163

164 // Raising verbosity level to DEBUG
165 if(ros::console::set_logger_level(ROSCONSOLE_DEFAULT_NAME, ros::

console::levels::Debug)) {
166 ros::console::notifyLoggerLevelsChanged();
167 }
168

169 ImgPub image_publisher(nh);
170

171 //wait for other nodes to get raised
172 ros::Duration(1).sleep();
173

PhD Thesis 94

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

174 ROS_INFO("image_publisher␣node␣up");
175

176 // Spin waiting for the callback
177 while (ros::ok())
178 {
179 ros::spin();
180 }
181

182 return 0;
183 }

The node is initialized in lines 159-167 and a new object which handles all of the
image reading functionality is created (line 169). This is an object of the ImgPub
class, defined in the same file. Then the node falls into a spin (line 179) to capture
subsequent incoming topic traffic.

The ImgPub class encompasses all the functionality of this node. This is a common
practice in ROS node implementations: Start a node which creates only one class
object and let that object handle all of the functionality for that node.

On initialization of the object, a new subscriber on the /image_latest topic is cre-
ated (line 38) as well as publishers for the outputs of this node: the
/camera/image_raw and /camera/camera_info topics. On the former, the raw im-
age message will be published, wereas on the latter, important information regarding
the camera calibration will be pushed, accompanying each image.

Notice that the publisher of the camera message is a method of the image_transport
(it) class, instead of a typical nodehandle. This is done for performance and com-
patibility reasons, as explained in Section 8.4.

In lines 46-73 the structure regarding the camera calibration is initialized and pop-
ulated with contents already uploaded in the parameter server beforehand the exe-
cution of the current node.

Next, the code for the subscriber callback function is defined (lines 99-152). Each
time it is called, the new image filename is read (line 107) and the complete image
path is constructed (lines 103-107). The image is read and stored in the OpenCV
cv::Mat structure (lines 110-111). The image type is specified as a 3-channel image
with the argument CV_LOAD_IMAGE_COLOR. cv::Mat is a generic and useful variable
type which allows for the storage of images of variable size and interfaces well with
most functions and methods of OpenCV.

Afterwards, the image array is converted into an image message, timestamped and
published (lines 116-120), along with its camera calibration information (lines 123-
126).

Emmanouil Fragkoulopoulos 95

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

9.6 Image Processing for NDVI Extraction

This node comes functionally after image_publisher, capturing the raw image data
and performing the NDVI operation onto it. Its code is presented below and ex-
plained aftwards.

1 #include <ros/ros.h>
2 #include <ros/console.h>
3 #include <image_transport/image_transport.h>
4 #include <opencv2/highgui/highgui.hpp>
5 #include <opencv2/contrib/contrib.hpp>
6 #include <cv_bridge/cv_bridge.h>
7 #include <sensor_msgs/image_encodings.h>
8

9 #include <cstdlib>
10 #include <cstdio>
11

12 #include <std_msgs/String.h>
13

14 ros::Publisher pub;
15 ros::Subscriber sub;
16 image_transport::Publisher pub_poi;
17 image_transport::Subscriber sub_img_rect;
18

19 static const std::string OPENCV_WINDOW = "Vigor␣index";
20

21 ///////////////////////////////
22 //Process new image callback //
23 ///////////////////////////////
24 void imageCallback(const sensor_msgs::ImageConstPtr& msg)
25 {
26 ROS_DEBUG("Entering␣image␣processing␣callback");
27 cv_bridge::CvImagePtr cv_ptr; // Create a pointer to an openCV

image
28

29 ROS_DEBUG("Copying␣image␣for␣local␣processing");
30 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::

BGR8); // Convert the ROS image message to a openCV image
31 ROS_DEBUG("Pasting␣image␣to␣a␣cv::Mat␣object");
32 cv::Mat image = cv_ptr->image; // acquire the image pointer
33

34 // split the image channels to apply NDVI calculation
35 ROS_DEBUG("Splitting␣the␣image␣channels");

PhD Thesis 96

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

36 cv::Mat channels[3];
37 cv::split(image,channels);
38 cv::Mat bi, gi, ri;
39 bi = channels[2];
40 gi = channels[1];
41 ri = channels[0];
42

43 // Convert to float for float calculations
44 ROS_DEBUG("Converting␣integer␣channels␣to␣float");
45 cv::Mat bf(bi.rows, bi.cols, CV_32FC1);
46 cv::Mat gf(gi.rows, gi.cols, CV_32FC1);
47 cv::Mat rf(ri.rows, ri.cols, CV_32FC1);
48 bi.convertTo(bf,CV_32FC1);
49 gi.convertTo(gf,CV_32FC1);
50 ri.convertTo(rf,CV_32FC1);
51

52 // Create the NDVI arrays, as per e.g. the bf size
53 cv::Mat ndvi(bf.rows, bf.cols, CV_32FC1); // The NDVI image array,

-1 - +1 range
54 cv::Mat ndvi_thresh(bf.rows, bf.cols, CV_32FC1); // The thresholded

NDVI image array, {0,1} range
55 cv::Mat ndvi_disp(bf.rows, bf.cols, CV_32FC1); // The NDVI image

array, displayable float range
56

57 // Perform the NDVI calculation
58 ROS_DEBUG("Performing␣NDVI␣calculaiton");
59 ndvi = (2*bf - rf) / (rf); // as suggested by Multispek crew
60

61 // Create a displayable NDVI image
62 //
63 ndvi_disp = ndvi;
64

65 // Perform thresholding operation
66 ROS_DEBUG("Thresholding␣the␣result");
67 // Define the sick vegetation thresholds
68 double thresh_low, thresh_high;
69 ros::param::getCached("/ndvi_thresh_min", thresh_low);
70 ros::param::getCached("/ndvi_thresh_max", thresh_high);
71 cv::Mat poi;
72 cv::inRange(ndvi, thresh_low, thresh_high, poi);
73

74 // Communicate the image higher and lower values for debugging

Emmanouil Fragkoulopoulos 97

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

75 double min, max;
76 cv::minMaxLoc(ndvi, &min, &max);
77 std::cout << "ndvi␣min/max:␣" << min << "␣" << max << std::endl;
78 cv::minMaxLoc(poi, &min, &max);
79 std::cout << "poi␣min/max:␣" << min << "␣" << max << std::endl;
80

81 try{
82 cv::imshow(OPENCV_WINDOW, ri); // Display an image to the debug

window
83 // cv::imshow(OPENCV_WINDOW, ndvi_disp); // Display an image to the

debug window
84 // cv::imshow(OPENCV_WINDOW, poi); // Display an image to the debug

window
85 }
86 catch(...) {ROS_DEBUG("imshow␣failed");
87

88 }
89 // stamp and publish the image topic
90 ROS_DEBUG("Converting␣cv_img␣to␣ros_img");
91 cv_bridge::CvImage img_out;
92 img_out.header = std_msgs::Header();
93 img_out.encoding = sensor_msgs::image_encodings::MONO8;
94 // img_out.image = ndvi;
95 img_out.image = poi;
96 sensor_msgs::ImagePtr img_out_ptr = img_out.toImageMsg();
97

98 img_out_ptr->header.stamp = msg->header.stamp;
99 img_out_ptr->header.frame_id = "camera";

100 pub_poi.publish(img_out_ptr);
101

102 }
103

104 ///////////////
105 //Main function
106 ///////////////
107 int main(int argc, char **argv)
108 {
109 ros::init(argc, argv, "image_processor"); // initialize the ros

node
110 ros::NodeHandle n;
111

112 // Raising verbosity level to DEBUG

PhD Thesis 98

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

113 if(ros::console::set_logger_level(ROSCONSOLE_DEFAULT_NAME, ros::
console::levels::Debug)) {

114 ros::console::notifyLoggerLevelsChanged();
115 }
116

117 image_transport::ImageTransport it(n);
118 cv::namedWindow(OPENCV_WINDOW, CV_WINDOW_NORMAL);
119 cv::startWindowThread();
120

121 sub_img_rect = it.subscribe("/camera/image_rect_color", 10,
imageCallback);

122 pub_poi = it.advertise("/camera/ndvi",1);
123

124 ROS_INFO("image_processor␣node␣up");
125

126 while (ros::ok())
127 {
128 ros::spin();
129 }
130

131 cv::destroyWindow(OPENCV_WINDOW);
132

133 return 0;
134 }

The node is initialized in lines 107-115. In lines 117 the image transport handle is
created and in lines 118-119 an OpenCV image window thread is started. This can be
used for visualization of the OpenCV arrays during the node runtime, for supervision
or debugging purposes. In line 121 the subscription on the /camera_rect_color is
initiated and in line 122 the resulting image is published on /camera/ndvi. Even
though no previous node has been publishing the /camera_rect_color topic, this
does not pose a problem. We use this chance to introduce the concept of topic name
re-naming capabilities of ROS.

For the launch of the image_publisher node, we execute the following code:

<node pkg="green_eye" name="image_processor" type="image_processor"
output="screen"
<remap from="/camera/image_rect_color" to="/camera/image_raw"/>
</node>

This code re-maps every instance of the /camera/image_rect_color topic in the
image_publisher code to the /camera/image_raw topic. This is another great fea-
ture ROS provides to aid code modularity and reusability.

Emmanouil Fragkoulopoulos 99

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

The image processing takes place in the imageCallback function. In lines 27-32 the
input image is converted from the image_transport type to the OpenCV cv::Mat
type, using the cv_bridge::toCvCopy method.

Afterwards, the 3 channels (red, green and NIR) are split and allocated into separate
variables (lines 35-41). These channels are of integer type but we are interested in
performing float calculations on top of them, so they are converted into float type
(lines 44-50). Other arrays of the same size and type are created to store intermediate
and final results (lines 53-55).

The core NDVI calculation takes place in line 59. Notice that it differs from what was
presented in Section 5.2. This is because of the NIR band spillage on the red channel.
To compensate for this, the NIR channel is subtracted from the red channel, to
obtain the "true red" channel. In turn, this is the channel used for NDVI calculations.
While this might seem inappropriate, it is the technical solution proposed by the
camera manufacturers, nonetheless.

Since we are interested in isolating the features corresponding to sick vegetation
from the NDVI-extracted image, we proceed with thresholding the result (lines 66-
72). The threshold value are not fixed, but read from the parameter server. The
result is an image populated only in the value range of interest. This functions as
an "image mask" which covers the vegetation of interest.

9.7 Point of Interest Geolocation
After the NDVI information has been extracted from the image, the next course of
action is to isolate single points of interest and correlate them to the position of the
UAV. This task is performed by the following node, whose code is presented and
explained in detail below. Note that this node is written in Python, in contrast to
the previous nodes which were written in C++. Python was selected for this node
because it provided some useful high-level functions and methods.

1 #!/usr/bin/env python
2

3 import rospy
4 import numpy as np
5 import sys
6 import tf
7 from cv_bridge import CvBridge, CvBridgeError
8 from scipy.cluster.vq import kmeans2
9 import image_geometry

10 import utm
11

12 # Import required messages

PhD Thesis 100

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

13 from rosgraph_msgs.msg import Clock
14 from sensor_msgs.msg import Image
15 from sensor_msgs.msg import CameraInfo
16 from sensor_msgs.msg import NavSatFix
17 import geometry_msgs.msg
18 from visualization_msgs.msg import Marker, MarkerArray
19

20 class Geolocator:
21

22 def __init__(self):
23 self.sub_img = rospy.Subscriber(’/camera/ndvi’, Image, self.

append_data, queue_size=50)
24 self.sub_cfg = rospy.Subscriber(’/camera/camera_info’,

CameraInfo, self.get_camera_info, queue_size=10)
25 self.sub_gps = rospy.Subscriber(’/mavros/global_position/

global’, NavSatFix, self.get_wgs84, queue_size=10)
26 self.pub_marker = rospy.Publisher(’/target/marker’, Marker,

queue_size=10000)
27 self.pub_GPS = rospy.Publisher(’/target/GPS’, NavSatFix,

queue_size=10)
28 self.pub_pois = rospy.Publisher(’/target/points’,

geometry_msgs.msg.PointStamped, queue_size=10000)
29

30 self.bridge = CvBridge()
31 self.cfg = CameraInfo()
32 self.camera_model = image_geometry.PinholeCameraModel()
33 self.N = None
34 self.E = None
35 self.alt = 0
36 self.max_alt = 0
37 self.listener = tf.TransformListener()
38 self.done = False
39 self.points = np.empty(shape = (0,2), dtype=’float64’) #

Points of interest container
40 self.cur_point = geometry_msgs.msg.PointStamped() # Temporary

point variable
41 self.cur_point.header.frame_id = ’camera’
42 self.count = 0
43 self.temp_array = np.empty(shape = (3000,4000) , dtype=’uint8

’)
44 self.centroids = None
45 self.home = NavSatFix()

Emmanouil Fragkoulopoulos 101

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

46

47 # Build target markers array
48 self.target = Marker()
49 self.targets = MarkerArray()
50 self.target.header.frame_id = ’/map_true’
51 self.target.id = 0
52 self.target.type = Marker.CYLINDER
53 self.target.action = Marker.ADD
54 self.target.pose.orientation.x = 0
55 self.target.pose.orientation.y = 0
56 self.target.pose.orientation.z = 0
57 self.target.pose.orientation.w = 1
58 self.target.scale.x = 1
59 self.target.scale.y = 1
60 self.target.scale.z = 1
61 self.target.color.r = 1
62 self.target.color.g = 0
63 self.target.color.b = 0
64 self.target.color.a = 1
65 self.target.lifetime = rospy.Duration(10)
66

67 def get_camera_info(self, cfg_msg):
68 rospy.logdebug(’storing␣CameraInfo␣structure’)
69 self.cfg = cfg_msg;
70 self.camera_model.fromCameraInfo(cfg_msg)
71

72 def get_wgs84(self, gps_msg):
73 self.latitude = gps_msg.latitude
74 self.longitude = gps_msg.longitude
75

76 def append_data(self, image):
77 rospy.logdebug(’geolocation␣new␣image␣callback’)
78 try:
79 (trans,rot) = self.listener.lookupTransform(’map’, ’/

camera’, rospy.Time(0))
80 except (tf.LookupException, tf.ConnectivityException, tf.

ExtrapolationException):
81 pass
82 # parse image
83 try:
84 cv_image = self.bridge.imgmsg_to_cv2(image, "mono8")
85 except CvBridgeError as e:

PhD Thesis 102

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

86 print(e)
87

88

89 rospy.logdebug(’Rectifying␣image’)
90 self.camera_model.rectifyImage(cv_image, cv_image)
91 rospy.logdebug(’Converting␣to␣numpy␣array’)
92 temp_array = np.asarray(cv_image)
93 temp_array = np.squeeze(temp_array)
94 rospy.logdebug(’Calculting␣non-zero␣elements’)
95 temp_points = np.transpose(np.nonzero(temp_array))
96 rospy.logdebug(’Current␣image␣has␣%d␣nonzero␣elements’ %

temp_points.shape[0])
97 projected_points = np.empty([3000*4000,3], dtype=’float64’)
98 counter = 0
99 skipper = 0

100 for i,j in temp_points:
101 if (skipper % 100 == 0): # run operations every 100

coordinate pairs
102 temp_point = projected_points[counter,:] # For each

point in the image frame
103 temp_point_tup = self.camera_model.projectPixelTo3dRay

((i,j)) # Convert it to the camera frame
104 temp_point = np.empty([1,3], dtype=’float64’)
105 temp_point[0,0] = temp_point_tup[0]
106 temp_point[0,1] = temp_point_tup[1]
107 temp_point[0,2] = temp_point_tup[2]
108 temp_point = temp_point/temp_point[0,2] # Normalize it

for unit height
109 temp_point = -temp_point * self.alt # And scale it up

by the vehicle height
110

111 # Find the camera-to-map transformation
112 temp_point_stamped = geometry_msgs.msg.PointStamped()
113 temp_point_stamped.header.frame_id = ’/camera’
114 temp_point_stamped.header.stamp = rospy.Time(0)
115 temp_point_stamped.point.x = temp_point[0,0]
116 temp_point_stamped.point.y = temp_point[0,1]
117 temp_point_stamped.point.z = temp_point[0,2]
118

119 temp_point_stamped_NED = self.listener.transformPoint(
’/map_true’, temp_point_stamped)

120

Emmanouil Fragkoulopoulos 103

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

121 projected_points[counter,0] = temp_point_stamped_NED.
point.x

122 projected_points[counter,1] = temp_point_stamped_NED.
point.y

123 projected_points[counter,2] = temp_point_stamped_NED.
point.z

124

125 self.pub_pois.publish(temp_point_stamped_NED)
126

127 self.target.id = self.target.id + 1
128 self.target.pose.position.x = temp_point_stamped_NED.

point.x
129 self.target.pose.position.y = temp_point_stamped_NED.

point.y
130 self.target.header.stamp = rospy.Time(0)
131

132 counter += 1
133 skipper += 1
134

135 # Add the points of this image to the points container (it is
in NED frame)

136 self.points = np.vstack((self.points, projected_points[0:
counter,0:2]))

137 (rows, cols) = self.points.shape
138 rospy.logdebug(’Points␣gathered:␣%d␣x␣%d’, rows, cols)
139 # rospy.logdebug(’First point coordinates in camera frame: (%

f, %f, %f)’ % (temp_point[0,0], temp_point[0,1],
temp_point[0,2]))

140 rospy.logdebug(’First␣NED␣point␣in␣current␣image:␣(%f,␣%f,␣%f
)’ % (projected_points[0,0], projected_points[0,1],
projected_points[0,2]))

141

142 self.find_centroids()
143

144 time_now = rospy.Time.now()
145 self.target.header.stamp = time_now
146 self.target.header.seq = 1
147

148 def find_centroids(self):
149 rospy.logdebug(’entered␣find_centroids’)
150 (self.centroids, labels) = kmeans2(self.points, 3)
151 rospy.logdebug("""Centroid coordinates:

PhD Thesis 104

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

152 %f, %f
153 %f, %f
154 %f, %f""" % (self.centroids[0,0], self.

centroids[0,1], self.centroids[1,0], self.
centroids[1,1], self.centroids[2,0], self.
centroids[2,1]))

155 (rows, cols) = self.centroids.shape
156 rospy.logdebug(’Finished␣centroids␣calculation.␣Found␣%d␣x␣%d

␣centroids’, rows, cols)
157

158 def checkDone(self):
159 try:
160 rospy.logdebug(’Checking␣current␣altitude’)
161 (trans,rot) = self.listener.lookupTransform(’map’, ’/

camera’, rospy.Time(0))
162 self.N = trans[0]
163 self.E = trans[1]
164 self.alt = trans[2]
165 rospy.logdebug(’Current␣altitude:␣%f,␣Maximum␣altitude:␣%f

’ % (self.alt, self.max_alt))
166 if self.alt > self.max_alt:
167 self.max_alt = self.alt
168 # Check if mission is done
169 if self.alt < (0.5*self.max_alt):
170 if not(self.done):
171 self.done = True # This means we’re coming down
172 self.find_centroids()
173 time_now = rospy.Time.now()
174 self.targets.markers[0].header.stamp = time_now
175 self.targets.markers[0].pose.position.x = self.

centroids[0,0]
176 self.targets.markers[0].pose.position.y = self.

centroids[0,1]
177 self.targets.markers[1].header.stamp = time_now
178 self.targets.markers[1].pose.position.x = self.

centroids[1,0]
179 self.targets.markers[1].pose.position.y = self.

centroids[1,1]
180 self.targets.markers[2].header.stamp = time_now
181 self.targets.markers[2].pose.position.x = self.

centroids[2,0]
182 self.targets.markers[2].pose.position.y = self.

Emmanouil Fragkoulopoulos 105

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

centroids[2,1]
183 self.pub_marker.publish(self.targets) # Fails with

AttributeError: ’list’ object has no attribute ’x’
184

185 gps_point = NavSatFix()
186 gps_point.header.frame_id = ’/wgs84’
187 gps_point.header.stamp = rospy.Time.now()
188 gps_point.status.status = 0
189 (utm_lat, utm_lon, num, let) = utm.from_latlon(self.

home.latitude, self.home.longitude)
190 (lat, lon) = utm.to_latlon(utm_lat+self.centroids

[0,0], utm_lon+self.centroids[0,1], 34, ’S’)
191 gps_point.latitude = lat
192 gps_point.longitude = lon
193 self.pub_GPS.publish(gps_point)
194 gps_point.header.stamp = rospy.Time.now()
195 (utm_lat, utm_lon, num, let) = utm.from_latlon(self.

home.latitude, self.home.longitude)
196 (lat, lon) = utm.to_latlon(utm_lat+self.centroids

[1,0], utm_lon+self.centroids[1,1], 34, ’S’)
197 gps_point.latitude = lat
198 gps_point.longitude = lon
199 self.pub_GPS.publish(gps_point)
200 gps_point.header.stamp = rospy.Time.now()
201 (utm_lat, utm_lon, num, let) = utm.from_latlon(self.

home.latitude, self.home.longitude)
202 (lat, lon) = utm.to_latlon(utm_lat+self.centroids

[2,0], utm_lon+self.centroids[2,1], 34, ’S’)
203 gps_point.latitude = lat
204 gps_point.longitude = lon
205 self.pub_GPS.publish(gps_point)
206 except (tf.LookupException, tf.ConnectivityException, tf.

ExtrapolationException):
207 rospy.logdebug(’failed␣to␣lookup␣transform’)
208 pass
209

210 # Main function
211 if __name__==’__main__’:
212 try:
213 rospy.init_node(’geolocation’, log_level=rospy.DEBUG)
214 G = Geolocator()
215 rate = rospy.Rate(1)

PhD Thesis 106

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

216 rospy.loginfo(’geolocation␣Python␣node␣up’)
217 while not rospy.is_shutdown():
218 G.checkDone()
219 rate.sleep()
220 except rospy.ROSInterruptException:
221 pass

The main node initialization code resides at the end, in lines 211-221. A Geolocator
class object is created in line 214 (defined previously in the file) and left working.
Once a second (line 215) its method checkDone is run to decide if the UAV has
landed and the results can be gathered (line 218).

The Geolocator object is initialized in lines 22-65. It subscribes to the /camera/ndvi
and /camera/camera_info topics and also to the /mavros/global_position/global
topic, produced by mavros (see Section 8.8) (lines 23-25) and advertizes the
/target/marker and /target/GPS topics, carrying the target information in local
and GPS frame format.

Various variable initializations ensue, with the most important one being that of
the points array (line 39). This holds the coordinates of every field point under
examination. Also important is the PinholeCameraModel object (line 32), which
allows us to rectify the image and convert from image to camera coordinates and
vice-versa.

The targets variable array with length 3 will carry the three most suffering spots of
vegetation for the entire survey and will also be used for visualization of the result
in an external viewer (lines 48-65).

The callback function get_camera_info (lines 67-70) for the topic /camera...
/camera_info simply stores the topic message (the camera calibration information)
in a local structure.

The callback function get_wgs84 (lines 72-74) for the topic /mavros/...
global_position/global stores locally the UAV coordinates at each time instance
in real-time.

The callback function append_data for the topic /camera/ndvi is responsible for the
important task of the geolocation of the points of interest for each incoming picture.
Every time a new ndvi image is available, first and foremost, the transformation for
the camera frame to the NED frame is requested from the TF tree (line 79).

ROS has a dedicated mechanism for aiding the developers with coordinate frame
transformations problems, called the TF Tree, where TF stands for "transformation".
ROS has special API commands which the developers can use to inform it about the
transformations between various coordinate frames. If the transformations refer to
successive frames, then ROS can organize the frames to a tree structure, on which all

Emmanouil Fragkoulopoulos 107

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

frames are placed and a path exists between any two frames. Then, the developer can
query the transformation between any frame pair. This greatly alleviates a significant
computational burden from the developer, since he no longer needs to write tedious
transformation operations each time a transformation is needed. Instead, he only
needs to update the TF tree regularly with single transformation steps.

In our case, mavros already populates the TF tree with transformations fromWGS84,
to NED, to the body frame from the UAV telemetry, which we can then easily use.

The image message is also converted to an OpenCV structure (lines 83-86).

The image is rectified (line 90) and converted to a numpy array (line 91-93). The
numpy library offers a lot of high-level mathematical operations, methods and func-
tions and is well-suited for the needs of this node.

Afterwards, the indices (coordinates in the image frame) of all the non-zero elements
of the image are stored in the temp_points array. Recall that these correspond to
the affected vegetation areas that were left out after the image masking operation.

Image pixels will now be scanned to reveal the most affected point of this image.
Because the image resolution is very high (4000*3000) pixels, scanning and process-
ing every pixel would take a very long time and break the real-time nature of the
node. Instead, a balance between speed and resolution was found at scanning one
every 100 image pixels (line 101).

For each scanned pixel, an array holding its normalized coordinates in the camera
frame was created and filled (lines 102-103). Then, the coordinates were scaled up
by the UAV above-ground altitude (line 109).

The conversion of the point coordinates are transformed into the NED frame (here
referred to as map_true). The transformPoint method of the ROS transform lis-
tener is used. A PointStamped object is created and loaded with the coordinates
(lines 112-117) and the result is returned into the object temp_point_stamped_NED.

The NED coordinates for each point are stored in the points array, along with other
pixels’ coordinates from previous image callbacks (line 136). They will be examined
as a total after the end of the inspection flight.

The checkDone function (lines 158-208), run once a second, compares the state of
the UAV against a mission end condition. In this case, the condition is whether the
current altitude is less than half of the maximum altitude recorded during the flight
(line 169), signifying the landing phase of the mission.

When the condition is met, the find_centroids function is run (line 172) on the
points array. This function, defined in lines 148-156 uses the kmeans2 algorithm
from the scipy.cluster.vq library [19] at its core. Given a n-dimensional distri-
bution of points (2-dimensional in our case) it returns k points (3 in our case, but
this can vary) which stand as the centroids of the distribution. In other words, the

PhD Thesis 108

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

points are lumped together into 3 separate groups and the "centers" of those groups
are given.

kmeans2 allows us to group together many small points with poor NDVI index
and treat them simultaneously, by intervening at central points, with maximum
proximity to the surrounding distribution, without having to visit every single point,
a potentially very time- and resource-consuming task.

The 3 centroids are stored in the targets.markers structure (lines 174-182). How-
ever, they are represented in the NED frame, which is not convenient for communi-
cating them to the robotic system and is dependent upon the origin location of the
UAV. The absolute WGS84 system will be used instead.

To convert from NED to WGS84, we use the utm Python library [11]. This is conve-
nient because from a local standpoint, UTM coordinates [83] form a cartesian grid,
in contrast to the WGS84, which are in degrees and in spherical coordinates around
the Earth. Thus, they enable us to add the vectors of the home position and the
centroids.

Summarily, the procedure for each centroid is:

1. Convert home position from WGS84 to UTM (line 189)

2. Vector add the local centroid coordinates (line 190)

3. Convert the result back to WGS84 (line 190)

Finally, the coordinates of the 3 target points are transmitted via the /target/GPS
topic to the rover, so that it can proceed with the intervention (line 205).

9.8 Generation of Rover Path
The functionality related to the path planning and obstacle avoidance for the rover
is performed onboard the rover, at the Odroid embedded computer. The option of
sending all telemetry information back to the GCS laptop and processing it there
was considered but rejected for a few reasons:

• The autonomy of the rover would be significantly reduced, being constantly
dependent on the communication quality with the GCS.

• The required bandwidth to transmit the laser scanner readings is very high,
cluttering the communication link.

• Either another wireless link hardware pair would be required to transmit the
telemetry information from the Pixhawk to the GCS or an onbard embedded

Emmanouil Fragkoulopoulos 109

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

computer would need to be installed anyway to convert and transmit the
information over WiFi.

Thus, another ROS installation was included on the onbard Odroid and the follow-
ing Python script was included in it. Its details are explained subsequently. The
reasoning behind the functionality of this script is explained in Section 7.2.

It should be noted that both the Odroid and the GCS laptop are connected onto
the same LAN and thus the multimaster_fkie (see Section 8.3) ROS package was
used for the sharing of topics between to separate ROS installations.

The primary task of this script is three-fold:

1. Receive waypoints from the GCS in the form of GPS coordinates, which the
rover should visit.

2. Create intermediate points, consisting a path which allows the rover to navi-
gate the crop rows, according to the reasoning presented in Section 7.2.

3. Use laser scanner readings to avoid collisions with vegetation.

The last point will be expanded upon on the next section.
1 #!/usr/bin/env python
2

3 import rospy
4 # Import DroneKit-Python
5 import dronekit
6 from pymavlink import mavutil
7 import numpy as np
8

9 # Import required messages
10 from rosgraph_msgs.msg import Clock
11 from sensor_msgs.msg import NavSatFix
12 import geometry_msgs.msg
13 from visualization_msgs.msg import Marker, MarkerArray
14

15 class path_planner:
16

17 def __init__(self):
18 self.sub_gps = rospy.Subscriber(’/target/GPS’, NavSatFix, self.

add_waypoint, queue_size=10)
19 self.rover = dronekit.connect(’udp:127.0.0.1:14550’)
20 rospy.sleep(3)

PhD Thesis 110

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

21 self.mission = self.rover.commands
22 self.mission.clear()
23 self.mission.upload()
24 self.wp_index = None
25 self.wp_queue = []
26

27 self.turnArray = 3*[None]
28 self.turnIndex = None
29

30 def add_waypoint(self,gps_point):
31 self.wp_queue.append(gps_point)
32 print "Added␣a␣new␣waypoint␣to␣the␣queue"
33

34 def waypoint_manager(self):
35 if self.wp_index == None: # If we don’t have any active waypoints

yet
36 if len(self.wp_queue)==0: # If we don’t have any waypoints
37 print "No␣waypoints␣received"
38 return
39 else: # If we have our first waypoint, route it
40 self.wp_index = 0;
41 print "Routing␣first␣waypoint"
42 self.draw_path(self.wp_queue[0])
43 return
44 elif self.distance_to_current_waypoint() < 2: # If we have

reached the current waypoint
45 if len(self.wp_queue) > self.wp_index+1 : # If there is another

waypoint available
46 print "Routing␣next␣waypoint"
47 self.wp_index = self.wp_index+1
48 self.draw_path(self.wp_queue[self.wp_index])
49 return
50 else:
51 print "Routed␣last␣waypoint"
52 else: # If we have at least one waypoint but haven’t reached it

yet
53 print "Rover␣on␣its␣way␣to␣next_waypoint"
54 self.navigate() # Navigate towards next turn
55 return
56

57 def distance_to_current_waypoint(self):
58 """

Emmanouil Fragkoulopoulos 111

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

59 Gets distance in metres to the current waypoint.
60 It returns None for the first waypoint (Home location).
61 """
62 current_wp=self.wp_queue[self.wp_index]
63 targetWaypointLocation=dronekit.LocationGlobalRelative(current_wp

.latitude,current_wp.longitude,current_wp.altitude)
64 distancetopoint = self.get_distance_metres(self.rover.location.

global_frame, targetWaypointLocation)
65 print "Distance␣to␣next␣waypoint:␣%f" % distancetopoint
66 return distancetopoint
67

68 def get_distance_metres(self,aLocation1, aLocation2):
69 """
70 Returns the ground distance in metres between two ‘LocationGlobal

‘ or ‘LocationGlobalRelative‘ objects.
71

72 This method is an approximation, and will not be accurate over
large distances and close to the

73 earth’s poles. It comes from the ArduPilot test code:
74 https://github.com/diydrones/ardupilot/blob/master/Tools/autotest

/common.py
75 """
76 dlat = aLocation2.lat - aLocation1.lat
77 dlong = aLocation2.lon - aLocation1.lon
78 return np.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5
79

80 # Called on a new target
81 # Sets up a new mission which respects the row heading
82 def draw_path(self,gps_point):
83 # Enter hold mode until the new mission is created
84 self.rover.mode = dronekit.VehicleMode("HOLD")
85

86 # Clear the existing mission
87 print "Clearing␣mission"
88 self.mission.download()
89 self.mission.wait_ready()
90 home = self.rover.home_location
91 self.mission.clear()
92

93 ptA = dronekit.LocationGlobalRelative(rospy.get_param("/lat_a"),
rospy.get_param("/lon_a"), 0)

94 ptB = dronekit.LocationGlobalRelative(rospy.get_param("/lat_b"),

PhD Thesis 112

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

rospy.get_param("/lon_b"), 0)
95 ptC = dronekit.LocationGlobalRelative(rospy.get_param("/lat_c"),

rospy.get_param("/lon_c"), 0)
96 ptG = dronekit.LocationGlobal(gps_point.latitude, gps_point.

longitude, gps_point.altitude)
97

98 ptS = self.rover.location.global_frame
99

100 # Turn 1
101 l_ab = (ptB.lat-ptA.lat)/(ptB.lon-ptA.lon)
102 c_ab = ptA.lat - l_ab*ptA.lon
103 l_bc = (ptC.lat-ptB.lat)/(ptC.lon-ptB.lon)
104 c_bc = ptB.lat - l_bc*ptB.lon
105 c_ad = ptA.lat - l_bc*ptA.lon
106

107 # Check if vehicle is heading Northwards or Southwards
108 curr_heading = self.rover.heading
109 print curr_heading
110 if curr_heading>180:
111 curr_heading = curr_heading - 360
112

113 if np.fabs(curr_heading)<90: #vehicle faces Northwards
114 print "heading␣north"
115 l_s = l_ab
116 c_s = ptS.lat - l_s*ptS.lon
117

118 ptE_lon = (c_bc-c_s)/(l_s-l_bc)
119 ptE_lat = l_s*ptE_lon + c_s
120

121 # Turn 2
122 l_g = l_ab
123 c_g = ptG.lat - l_g*ptG.lon
124

125 ptF_lon = (c_bc-c_g)/(l_g-l_bc)
126 ptF_lat = l_g*ptF_lon + c_g
127

128 else:
129 print "heading␣south"
130 l_s = l_ab
131 c_s = ptS.lat - l_s*ptS.lon
132

133 ptE_lon = (c_ad-c_s)/(l_s-l_bc)

Emmanouil Fragkoulopoulos 113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

134 ptE_lat = l_s*ptE_lon + c_s
135

136 # Turn 2
137 l_g = l_ab
138 c_g = ptG.lat - l_g*ptG.lon
139

140 ptF_lon = (c_ad-c_g)/(l_g-l_bc)
141 ptF_lat = l_g*ptF_lon + c_g
142

143

144 ptE = dronekit.LocationGlobalRelative(ptE_lat, ptE_lon, 0)
145 ptF = dronekit.LocationGlobalRelative(ptF_lat, ptF_lon, 0)
146

147 print "Uploading␣new␣mission"
148 self.mission.add(dronekit.Command(0,0,0, mavutil.mavlink.

MAV_FRAME_GLOBAL_RELATIVE_ALT, mavutil.mavlink.
MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0,home.lat, home.lon, 0))

149 self.mission.add(dronekit.Command(0,0,0, mavutil.mavlink.
MAV_FRAME_GLOBAL_RELATIVE_ALT, mavutil.mavlink.
MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0,ptE.lat, ptE.lon, 0))

150 self.mission.add(dronekit.Command(0,0,0, mavutil.mavlink.
MAV_FRAME_GLOBAL_RELATIVE_ALT, mavutil.mavlink.
MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0,ptF.lat, ptF.lon, 0))

151 self.mission.add(dronekit.Command(0,0,0, mavutil.mavlink.
MAV_FRAME_GLOBAL_RELATIVE_ALT, mavutil.mavlink.
MAV_CMD_NAV_WAYPOINT, 0, 0, 0, 0, 0, 0,ptG.lat, ptG.lon, 0))

152

153 # Verify that mission has 1+3 waypoints
154 items = self.mission.count
155 print "Constructed␣a␣mission␣with␣%i␣items" % (items)
156 if items<4:
157 print "Failed␣to␣produce␣a␣mission␣with␣4␣items"
158 self.mission.upload()
159

160 self.mission.download()
161 self.mission.wait_ready()
162 items = self.mission.count
163 print "The␣vehicle␣has␣a␣mission␣with␣%i␣items" % (items)
164 if items<4:
165 print "Failed␣to␣acquire␣a␣mission␣with␣4␣items.␣Re-uploading"
166 self.draw_path(gps_point)
167

PhD Thesis 114

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

168 self.turnArray[0] = ptE
169 self.turnArray[1] = ptF
170 self.turnArray[2] = ptG
171 self.turnIndex = 0
172

173 def navigate(self):
174 targetPoint=self.turnArray[self.turnIndex]
175 distancetopoint = self.get_distance_metres(self.rover.location.

global_frame, targetPoint)
176 if distancetopoint < 2:
177 self.turnIndex = self.turnIndex + 1
178 if self.turnIndex = 3:
179 self.turnIndex = 2
180 self.rover.simple_goto(self.get_tracking_point(targetPoint))
181

182 def get_tracking_point(self, targetPoint):
183 # [To be described separately]
184

185

186 # Main function
187 if __name__==’__main__’:
188 try:
189 rospy.init_node(’gh_path_planner’, log_level=rospy.DEBUG)
190 P = path_planner()
191 r = rospy.Rate(0.5) # 0.5Hz
192 rospy.loginfo(’gh_path_planner␣Python␣node␣up’)
193 while not rospy.is_shutdown():
194 P.waypoint_manager()
195 r.sleep()
196 except rospy.ROSInterruptException:
197 pass

Starting from the end of the code and from the main function (lines 186-197) the
node is initialized with the name gh_path_planner (line 189) and a path_planner
object is created (line 190). The object class encompasses all of the functionality of
the code and will be explained afterwards. With a rate of 0.5Hz (line 191, 195) the
method waypoint_manager of the class is called to perform the functionality of the
script (line 194).

The class path_planner functions primarily through the method waypoint_manager,
which stores the waypoints and keeps track of the already visited ones. It uses the
draw_path method to generate the intermediate paths around the crop rows and
the navigate method to perform low-level control over the steering of the rover.

Emmanouil Fragkoulopoulos 115

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

During the initialization of the class object (lines 17-28), a subscriber on the
/target/GPS topic is declared which listens for new target waypoints from the GCS.
The corresponding callback function add_waypoint populates a related array (lines
30-32).

In line 19, the first usage of the dronekit module is met (see Section 8.9): a con-
nection object is created which listens to the source address of the MAVLink stream
(see Section 8.7), in this case specified at udp:127.0.0.1:14550. All read and write
operations regarding the rover will take place through this rover object.

Another important data structure is the mission object (line 21) which is used to
read and write waypoints to the Pixhawk autopilot. Even though in this application
the rover is steered by the script and not from the Pixhawk guidance algorithm, it
is useful as it can store the rover intended path and then be displayed at a GCS.

The wp_queue (line 25) list contains the target GPS coordinates and is populated
by the callback method add_waypoint. The active, targeted waypoint is denoted at
any time by the index variable wp_index (line 24).

Each time the waypoint_manager method is called, it initially checks against the
wp_queue variable value (line 35).

If it is None, then no waypoint has been set as active yet; the mission is just starting.
If wp_queue contains any target waypoints, then the first one is set as active and a
new route is constructed to visit it (lines 36-43).

In the case where wp_index is not None, it means that some waypoint is currently
active. First, it is checked if the rover has reached it, by comparing its distance from
it (line 44), using the method distance_to_current_waypoint.

distance_to_current_waypoint compares the current position of the rover (ac-
quired in line 65 with rover member location.global_frame) with the target
waypoint, by using the method get_distance_meters. For the needs of the com-
parison, the ROS message type NavSatFix is converted to the dronekit-compatible
LocationGlobalRelative type (lines 62-63). Note that the comparison of the coor-
dinates is done using a norm-2 distance, suitable for a Cartesian plane. Even though
the coordinates are ellipsoid, in the local tangeant NED frame the approximation is
acceptable and the error is very small.

Continuing with the logic of waypoint_manager, if the distance to the current target
waypoint is adequately small, the next waypoint is routed and wp_index is increased
(lines 44-49). Otherwise, the current target waypoint remains unchanged and the
steering algorithm is called, in the form of the method navigate (lines 52-55).

PhD Thesis 116

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

The draw_path Method
This method, which creates the crop row go-around path from the rover current
location to the current target waypoint uses the reasoning and geometric calculations
from Section 7.2.

Initially, the current mission loaded on the rover is downloaded and cleared (lines
88-89,91). At the end of this method, the new path will be uploaded to the Pixhawk.
This is done solely for visualization purposes in our case, but there is always the
option to let Pixhawk take over and guide the rover through the mission.

The home location refers to the point where the Pixhawk of the rover was first
switched on. This serves as the origin of the local NED frame and is used in the
conversions between UTM and WGS84 coordinates.

Points A, B and C are pre-specified from the system operator and loaded as pa-
rameters. They are retrieved from the parameter server in lines 93-95. The target
location (point G) is constructed in line 96. The current location of the rover (point
S) is read at line 98.

In order to construct point F, the equations of lines AB, BC and AD are first
constructed, in lines 101-105. Afterwards, based on the current heading of the rover
(line 108-111) point E is either placed on line BC (lines 113-119) or on line AD (lines
129-134).

Point F is similarly placed on either line in the cross-section with line crossing G,
based on the same check, on lines 122-126 for the first case and on lines 137-141 for
the second.

Finally, the two constructed points are converted both in dronekit format (lines
144-145) and also on a local array, turnArray, to be used by navigate (lines 168-
171).

On lines 147-151 new mission object is created and on lines 154-166 it is uploaded to
Pixhawk. The additional consistency checks are used for the case where the upload
procedure is interrupted by intermittent communications. If an invalid number of
waypoints is detected, then the mission is re-uploaded.

The navigate method
It is during the transitions from points S to E to F to G that we require a navigation
scheme aided by the laser scanner measurements. The corresponding navigation
routine, navigate is called upon in line 54. Its implementation is in lines 173-180.
Essentially, the method works similarly to the waypoint visiting logic, holding a
point index turnIndex for the currently active goal-point.

The coordinates of the current target point are passed onto the method
get_tracking_point which returns the current tracking point. The tracking point

Emmanouil Fragkoulopoulos 117

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

serves as a direction indicator, a point which is constantly updated, leading the
rover and pulling it away from obstacles and towards the next point, as presented
in Section 7.3. It is this tracking point that the Pixhawk is commanded to drive
the rover to, at each time. The dronekit simple_goto method implements the
low-level rover movement.

The logic for the generation of the tracking point, as well as the handling of the
laser scanner data, as implemented by get_tracking_point, will be discussed in
the next section.

9.9 Interfacing with the Laser Scanner and
Obstacle Avoidance

Finally, the source code for the interfacing with the laser scanner and the obstacle
avoidance functionality is presented below. This is an extension to the main Python
script that was presented in the previous Section.

Initially, some additional declarations and variable initialization take place in the
__init__ function of the path_planner class.

1 def __init__(self):
2

3 #[...]
4

5 self.sub_laser = rospy.Subscriber(’/laser/scan’, LaserScan, self.
update_scan, queue_size=10)

6

7 # [...]
8

9 self.kp = rospy.get_param("/laser/kp")
10 self.ko = rospy.get_param("/laser/ko")
11 self.dphi = rospy.get_param("/laser/dphi") # in radians
12 self.span = rospy.get_param("/laser/span") # in radians
13 self.ranges = [None]

A new subscriber is built for the topic where the laser scanner publishes its measure-
ment messages (line 5). The variable parameters which contribute to the algorithm
of obstacle avoidance are initialized and take values from the parameter server (lines
9-11). The distance measurement array d(φ) is initialized as well, in line 13 and will
contain the latest distance measurement data.

The subscriber callback function, update_scan simply copies the laserScan mes-
sage data to the local variable, as seen below.

PhD Thesis 118

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

1 # Update the laser scanner ranges array
2 def update_scan(self,laserScan):
3 self.ranges = laserScan.ranges

Next, the get_tracking_point function code itself is presented.

1 def get_tracking_point(self, targetPoint):
2 if self.ranges[0] = None: # No laserScan message received yet
3 return self.rover.location.global_frame # Send the current

location to keep rover stationary
4 else:
5 curr_loc = self.rover.location.global_frame # Get current

location and convert it to UTM
6 (point_utm_lat, point_utm_lon, num, let) = utm.from_latlon(

targetPoint.latitude, targetPoint.longitude)
7 (rover_utm_lat, rover_utm_lon, num, let) = utm.from_latlon(

curr_loc.lat, curr_loc.lon)
8

9 # Construct the attractor vector
10 point_distance = np.sqrt((point_utm_lat - rover_utm_lat)*(

point_utm_lat - rover_utm_lat) + (point_utm_lon -
rover_utm_lon)*(point_utm_lon - rover_utm_lon))

11 attraction_NED_n = self.kp*(point_utm_lat - rover_utm_lat)/
point_distance

12 attraction_NED_e = self.kp*(point_utm_lon - rover_utm_lon)/
point_distance

13

14 # Construct the repulsor vector in the body frame
15 nSamples = len(targetPoint.ranges)
16 repulsion_NED_x = 0
17 repulsion_NED_y = 0
18 for i in xrange(nSamples):
19 phi = i*self.dphi - self.span/2
20 d = targetPoint.ranges[i]
21 repulsion_body_x = repulsion_NED_x - self.ko*np.cos(phi)/(d*d

)
22 repulsion_body_y = repulsion_NED_y - self.ko*np.sin(phi)/(d*d

)
23

24 # Construct the repulsor vector in the NED frame
25 heading = self.rover.heading * np.pi / 180
26 repulsor_NED_n = np.cos(heading)*repulsion_body_x - np.sin(

Emmanouil Fragkoulopoulos 119

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

heading)*repulsion_body_y
27 repulsor_NED_e = np.sin(heading)*repulsion_body_x + np.cos(

heading)*repulsion_body_y
28

29 # Construct tracking point in the NED frame
30 delta_NED_n = attraction_NED_n + repulsor_NED_n
31 delta_NED_e = attraction_NED_e + repulsor_NED_e
32

33 delta_NED_n_normalized = delta_NED_n / np.sqrt(delta_NED_n*
delta_NED_n + delta_NED_e*delta_NED_e)

34 delta_NED_e_normalized = delta_NED_e / np.sqrt(delta_NED_n*
delta_NED_n + delta_NED_e*delta_NED_e)

35

36 # Convert tracking point in UTM
37 tracking_utm_lat = rover_utm_lat + delta_NED_n_normalized
38 tracking_utm_lon = rover_utm_lon + delta_NED_e_normalized
39

40 # Convert tracking point to WGS84
41 (tracking_wgs_lat, tracking_wgs_lon) = utm.to_latlon(

tracking_utm_lat, tracking_utm_lon, num, let)
42

43 return dronekit.LocationGlobalRelative(tracking_wgs_lat,
tracking_wgs_lon, 0)

Initially, a validity check on the range data takes place in lines 2-3. If, for any reason
the ranges array has not been filled with data yet, then the position which the rover
currently holds will be returned, so that the autopilot will not perform any motion.

During normal operation, the algorithm presented in Section 7.3 is implemented,
starting from capturing the current rover coordinates and converting them to a
Cartesian frame, the UTM in this case (lines 5-7).

Afterwards, the attractor vector is constructed. The target point is passed to the
function as an argument. After this is also converted in the UTM frame, the vector
components from the rover in the x- and y- axis are calculated, such that the vector
will have unit length.

The construction of the repulsor vector require the processing of the laser scanner
data. Given that the corresponding angle of each measurement is known from the
sensor configuration, each measurement sample is used to construct a repulsor vector
component towards the opposite direction, in body frame coordinates. All these
components are summed up to form the overall repulsor vector x- and y- coordinates
in the repulsor_body_x and repulsor_body_y variables (lines 15-22).

PhD Thesis 120

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Naturally, in order to add the repulsor vector to the attractor vector, a conversion
from the body frame to the UTM frame is required, which takes place in lines 25-27
and requires the current rover heading.

The overall desired direction vector is calculated in lines 30-31 and normalized in
lines 33-34, so that is serves as a vector field element, not a potential field element.

Its commanded displacement is added to the current rover location in lines 37-38,
converted to WGS84 coordinates (line 41) and returned to the calling function (line
43).

Emmanouil Fragkoulopoulos 121

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 10

Results

In this chapter, all the above methods and technologies, as presented in this work,
are used in practice. A typical mission is presented, the deployment of the system
is described and its performance is discussed upon.

10.1 Typical Mission Description
The objective of this example is to use a UAV, equipped with a multispectral cam-
era and fly an inspection mission over a field. Vegetation data is to be captured,
processed and filtered, in order to locate the points on the field which need inter-
vention the most. Based on those points, a mission will be created for the rover
and uploaded onto it. The rover will visit all the provided waypoints, while avoiding
obstacles on its path.

The field chosen for the presentation was a small one with young grapevines, located
in eastern Attika, Greece. The mission was run during the month of April. An aerial
photograph of the location under survey can be seen in Figure 10.1.

Emmanouil Fragkoulopoulos 123

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.1: The vineyard under survey

10.2 UAV Mission Setup
As discussed in sections 4.5 and 5.3, the UAV employed was the 3DR IRIS+ quadro-
tor, equipped with a Multispek camera.

The mission was defined in Mission Planner and uploaded through it to the Pix-
hawk inside the IRIS+ through telemetry link. The survey grid was designed to be
adequately tight, to ensure good coverage of the field. The mission waypoint list is
presented below.

1. Set home position at (latitude:37.804459, longitude: 24.035542, altitude: 108.18)

2. Set desired airspeed at 3 m s−1

3. Set camera triggering every 5 m

4. Go to point at (latitude: 37.804352, longitude: 24.035362, vertical offset: 40)

5. Go to point at (latitude: 37.804981, longitude: 24.035387, vertical offset: 40)

6. Go to point at (latitude: 37.804977, longitude: 24.035484, vertical offset: 40)

PhD Thesis 124

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.2: The mission planning screen of Mission Planner

7. Go to point at (latitude: 37.804348, longitude: 24.035458, vertical offset: 40)

8. Go to point at (latitude: 37.804344, longitude: 24.035553, vertical offset: 40)

9. Go to point at (latitude: 37.804974, longitude: 24.035578, vertical offset: 40)

10. Go to point at (latitude: 37.804970, longitude: 24.035667, vertical offset: 40)

11. Go to point at (latitude: 37.804337, longitude: 24.035648, vertical offset: 40)

12. Disable camera triggering

13. Set desired airspeed at 6 m s−1

14. Return to home position

A snapshot of the Graphic User Interface (GUI) of the Mission Planner software
during the definition of the mission can be found in Figure 10.2.

The mission was completed by the UAV in about 100 s.

10.3 Image rectification
As each image was arriving from the UAV to the GCS laptop, it was processed by
the corresponding ROS node. Let us examine the output of each processing step,
on an example image, randomly selected from the dataset of the mission.

Emmanouil Fragkoulopoulos 125

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.3: A multispectral image, captured during the UAV mission

The image under discussion, in its original form as was captured and created from
the camera can be seen in Figure 10.3.

The orientation of the image is inverted, with the southern direction corresponding
to the top of the image.

As has been discussed before the camera, as a combination of a lens and a sensor, has
imperfections which distort the image geometrically. The camera calibration task
has been performed offline once and the calibration coefficients have been extracted,
but they need to be applied for every new image.

Camera calibration allows for the extraction of the transformation parameters from
the image frame to the camera frame. Prior to calibration, it would be impossible
to deduce the parameters of a ray stemming for the focal point and crossing a pixel
in the image. The calibration procedure is also expected to correct for the so-called
fish-eye effect that most lenses (especially the wide angle ones) suffer from, which
essentially "bends" the lines outwards, the further to the edge of the image.

The rectified image is displayed in Figure 10.4, to help visualize the effect of image
rectification.

In the original image, the fish-eye distortion is apparent in the concrete wall at the
left side of the image, which appears obviously bent. After the image is calibrated,
the concrete wall is significantly more straight. Note that black edges have appeared
to the bottom and right of the image, binding towards the image center. This is a
result of the image calibration procedure. They represent missing information which,
geometrically should be present at that spot, but due to distortion, the lens could

PhD Thesis 126

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.4: The rectified image

not capture it.

If the rectification procedure is not applied, then, depending on the camera imper-
fections and the height of flight, the introduced error might reach meter-level.

10.4 NDVI Extraction
We cannot make any remarks on the vegetation health from Figure 10.3. The NDVI
operation must take place next. We remind that, as stated in Section 9.6, the cor-
respondence between the actual colour bands and the camera channels is:

1. Image red corresponds to red band

2. Image green corresponds to green band

3. Image blue corresponds to NIR band, plus some red band leakage

The colour channels, as are extracted and singled-out from the raw image can be
seen in Figure 10.5.

The RED band is corrected for NDVI leakage by subtracting the NDVI band from
the red band

RED = REDcorrputed −NIR (10.1)

Emmanouil Fragkoulopoulos 127

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.5: The original image and its three colour components

and the NDVI operation (see Section 5.2) is performed:

NDV I = NIR−RED
NIR +RED

(10.2)

= NIR−REDcorrupted +NIR

NIR +REDcorrupted −NIR
(10.3)

= 2 ·NIR−REDcorrupted

REDcorrupted

(10.4)

The result of this operation on the sample image can be seen in Figure 10.6. A
blue-to-red colormap has been applied for better visibility.

It is verified that the highest-scoring areas, shown in deep red, are those where lush
vegetation is found. Each grapevine is clearly distinguishable from the ground. The
buildings have a low score and the water surface inside the tank is evaluated at the
lowest bottom of the scale, as expected. There is high distinguish-ability between
vegetation and man-made structures.

It is of interest to extract from this scalar image a pixel mask, which will isolate
the plats which is at the lower limit of the vegetation interval and witness low
health scores. In theory, this is interval is (0.25, 0.35), but in practice, this has to

PhD Thesis 128

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.6: The NDVI operation applied on the sample image

be empirically determined, because the camera is not calibrated for the reflectivity
of the surfaces. In our case, the unhealthy plant interval was situated around 0.5.

The result of the masking procedure for this interval can be seen in Figure 10.7.

Figure 10.7: The corresponding thresholded NDVI index image

Emmanouil Fragkoulopoulos 129

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

10.5 Points of Interest Geolocation and
Aggregation

All of the white points (in the form of pixels) in Figure 10.7 constitute locations
which need intervention and thus, are of interest. In this state, their coordinates are
only known in the image frame, which isn’t a very useful representation. In order
for this information to drive the rover on the field, it needs to be converted into an
inertial frame, i.e. NED, UTM or WGS84.

This is possible by combining the known transformation parameters between consec-
utive frames. The conversion from the image frame to the camera frame is possible
because the camera calibration procedure provides a transformation from the im-
age pixel coordinates to the image frame, given the distance of the object from the
screen. In turn, this is known, because the flight height is user-selectable.

Afterwards, the conversion from the camera frame to the body frame is a simple -90
degree yaw rotation.

The conversion from the body frame to the NED frame is possible thanks to the
telemetry information that Pixhawk creates and sends back to the GCS in the form
of a MAVLink stream. mavros is able to publish the transformation information
under a ROS topic as well, which facilitates the procedure greatly.

Lastly, the conversion from NED to UTM or WGS84 is trivial, and depends on the
initialization coordinates.

The data extracted from the flight at hand was numerous and trying to process
and visualize all of them would be impossible, given the technical limitation of this
project. Only 1 every 100th unhealthy point was converted from the pictures to
NED frame. The result can be seen in Figure 10.8.

For reference, the flight path that the UAV traversed during its mission is depicted
as a blue trace. All the unhealthy points that were extracted from the images are
depicted as green dots. Note that they cover a much wider area that the projection
of the flight path. This is to be expected, since the angle of the camera lens can
reach far to the side of the UAV trace.

The sheer number of data points and the irregular shape of their distribution makes
them unwieldy, when it comes to sending the rover for intervention. The rover must
be ordered to visit and intervene to only a few locations on the field, to save time
and resources, but at the same time affect the largest possible amount of vegetation
in need. It is reasonable to take the density of the data points into account during
the process of extraction of the waypoints which the rover will visit.

There are various methods of point grouping, mostly found under the informatics
scientific field, where they are referred to as clustering methods [6]. In this work, the

PhD Thesis 130

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.8: Points in need of intervention and the corresponding centroids

k-means method is used, as implemented in the kmeans2 module of the scipy.cluster
Python library.

The data points are given to the kmeans2 algorithm as 2-dimensional points and
a pre-defined number of centroids are returned. If all data points are assigned into
disjoint groups, then the centroid of each group is the average of the points of that
group. The computational difficulty stands in deciding which points should belong to
which group and the k-means algorithm approaches it by starting with unit groups
and merging the closest ones iteratively.

The centroids are ideal locations to intervene with the rover, since they are the
locations which are exactly in the middle of a group of unhealthy measurements
and are thus the most suitable for spreading the intervention agent.

In this work, 3 centroids were requested from the algorithm, which are then used to
generate a path for the rover. Other centroid generation methods would be that of
minimum distance with each other (to avoid overlapping intervention areas) or of
predefined centroid radius (to reflect on the intervention area radius).

Emmanouil Fragkoulopoulos 131

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

The centroids corresponding to the example data set, can be seen in Figure 10.8 as
red X-marks.

10.6 Rover Trajectory Generation
The problem of navigating the rover through the field given a set of waypoints is
a separate problem for the waypoint generation. The waypoints are created by the
clustering algorithm and are passed onto the rover pathing problem. The solution of
the pathing problem does not affect the waypoint generation. As a result, the rover
pathing problem can be tackled completely separately.

In order to ensure repeat-ability and to avoid technical problems out of scope of this
work, a secluded parking lot was selected as the test location for the rover pathing
algorithm. The top view of the location can be seen in Figure 10.9. Light poles are
visible which serve as permanent obstacles and so do the perimeter walls, but other
artificial obstacles were also added.

The three points A, B, C defining the geometric area of the rover activity (as dis-
cussed in Section 7.2), as well as the direction of the virtual crop rows are also
depicted in the image, corresponding to named points 1, 2 and 3. Point H is the
starting location of the rover.

The coordinates of the delimiting points are:

Point # Latitude Longitude
A 37.9810554 23.7813543
B 37.9811167 23.7811598
C 37.9808239 23.7809989

The coordinates of the target waypoints are, in order:

Point # Latitude Longitude
WP1 37.9810322 23.7812550
WP2 37.9809613 23.7811357
WP3 37.9808292 23.7811209

3 waypoints are passed to the Odroid companion computer on the rover, as NavSatFix
location messages, which correspond to the 3 centroid locations that the geolocation
algorithm would produce. These are also seen in Figure 10.9.

Based on the rover initial location and depending on its orientation, for each succes-
sive waypoint the intermediate path which navigates through and around the crop
rows is generated. In Figure 10.10 the automatically generated path from the ini-
tialization point to waypoint 1 can be seen. The intermediate corners are uploaded

PhD Thesis 132

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.9: The location of the rover pathing test and its outline points

on the autopilot as mission waypoints. Points 1, 2 and 3 correspond to intermediate
corners E, F and G of Figure 7.4.

After all the intermediate corners have been crossed and the first waypoint/centroid
is visited, a new route, containing another two intermediate corners is generated.
The new route can be seen in Figure 10.11 and the same holds for the final waypoint

Figure 10.10: Intermediate corners to waypoint 1

Emmanouil Fragkoulopoulos 133

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.11: Intermediate corners to waypoint 2

route, visible in Figure 10.12.

For this section, the autopilot of the rover was allowed to take over and guide the
rover through the generated missions. The result for each intermediate path can be
seen in Figures 10.13, 10.14 and 10.15

Figure 10.12: Intermediate corners to waypoint 3

PhD Thesis 134

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.13: Rover trajectory for intermediate path 1

Figure 10.14: Rover trajectory for intermediate path 2

Emmanouil Fragkoulopoulos 135

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.15: Rover trajectory for intermediate path 3

10.7 Obstacle Avoidance
In this section, the performance of the obstacle avoidance algorithm, based on vector
fields will be presented. The corresponding tests were run on the same parking spot
as the path generation tests, in order for the results to be comparable.

As seen on Figure 10.9, the most notable obstacles along and around the rover
trajectory are the wall to the north of the parking lot, the flower beds to the east
and west and the light poles in the middle of the lot.

Figures 10.16, 10.17 and 10.18 visualize the obstacles, as the rover perceives them
through the laser scanner as well as the vector field components. The laser scanner
data, subsampled for better visualization is displayed as red points. Notice how only
obstacles in front of the rover are detected, since there is a 90 degree blind spot to
the rear of the sensor. In accordance to Figure 7.7, the blue arrow points towards
the next waypoint (displayed as a big blue circle), the red arrow is the repulsor field
component and the green arrow is the vector sum of the blue and red arrows, the
resulting desired direction that the rover should turn to, in order to align itself with
the vector field.

Three interesting cases are isolated and discussed upon. The first one, visible in
Figure 10.16, demonstrates a case where very little, far away obstacles are detected.
This results in a very small repulsor vector. The attractor vector, since it has a
constant magnitude, dominates over the vector sum and the green arrow generally

PhD Thesis 136

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.16: Attractor vector dominating the desired heading

points in the same direction as the blue arrow. The rover moves directly towards
the next waypoint.

The second case is seen on Figure 10.17. The rover is very close to the obstacle,
the flower bed to its right side. Thus, the magnitude of the repulsor vector grows
very large, trying to draw the rover away from the obstacle. The overall vector thus
points significantly away from the next waypoint.

The third case is presented in Figure 10.18. We see a configuration where, despite
a large obstacle area is presented in front and to the left of the rover, the repulsor
vector points to the left as well. With careful inspection, the trace of the light pole
can be seen very close and to the right of the rover. Due to the inverse square
distance law which constructs the repulsor vector, the contribution of the pole is
much greater than that of the other obstacles, due to its proximity. As a result, the
rover will prioritize navigating away from the pole. This is the intended behavior,
since the pole is very close and poses a more significant threat to the rover. When the
rover has distanced itself adequately from the pole, the repulsor vector will change,
to point away from the walls and flower beds.

Overall, the vector field construction performs as intended, successfully combining
the attractor and repulsor field components, to produce a desired heading for the
rover to follow. Even though the laser scan data is quite dense and with high trans-

Emmanouil Fragkoulopoulos 137

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Figure 10.17: Repulsor vector dominating the desired heading

Figure 10.18: Nearest obstacle dominating the repuslor vector

PhD Thesis 138

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

fer rate, at about 220kB/s, the on-board Odroid computer manages to process it
successfully.

10.8 Discussion and Future Work
The focus of this work was to integrate image processing and navigation method-
ologies with existing technical solutions to create a proof-of-concept precision agri-
culture system. In this context, the final result accomplished this goal.

A Unmanned Aerial System (UAS) which was able to capture imagery of the field
was put together. The health assessment of vegetation was successfully performed
with the use of NDVI. The resulting information was georeferenced in combination
with the UAV odometry data and the points of interest in the field were local-
ized. These points were transferred to the rover through a LAN in real time and
a methodology for path generation was implemented. The rover was able to detect
obstacles on its path and generate an obstacle avoidance strategy.

However, there naturally is room for improvement. On the topic of data collec-
tion, with the current implementation, the spatial overlapping of captured images
is allowed and not taken into account. This can result in the same area appearing
multiple times in the collected data, emphasizing any low health index and assign-
ing it with unproportional weight. This problem can be mitigated by inserting a
GIS between the image capture and processing. This will result in a single, non
overlapping image, covering the whole field. This comes at a cost, though, because
GIS software require a lot of time to process the input imagery and hence break the
real-time nature of the application.

Regarding the performance of the rover used, it must be stated that its maneu-
verability was severely limited, in that it could not perform on-the-spot rotations,
around its z-axis. This resulted in a serious pathing problem, and triggered the design
the row go-around logic that was implemented. In general, it is a good rule of thumb
that the hardware of any prototype system should be as capable as possible, so that
the software will not hit implementation obstacles, such as model non-linearities
and under-actuation. On the other hand, this has a significant impact on the cost
of the hardware and a balance needs to be stroked.

On the way to system deployment, the intervention system (sprayer and container)
need to be integrated onto the rover. This poses considerable technical difficul-
ties. On the one hand, the system must be waterproof and ruggedized, but on the
other antennae and the laser scanner need to protrude above the vehicle top side.
Although similar vehicles exist, they utilize high-end and costly components and
manufacturing procedures, which at this point don’t seem to be avoidable.

Emmanouil Fragkoulopoulos 139

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Chapter 11

Conclusions

In this thesis we studied the use of an autonomous crop control system using
robotic vehicles. Important conclusions were drawn regarding the feasibility of such
a project, but also the benefits that the rural community will make with such an
implementation. Significant results have also emerged on the interconnection of dis-
parate systems so that a commercial or research package can be made ready for use
outside the box. The main conclusions are the following:

1. A robotic system which be able to measure plant growth and health in agri-
cultural crops as well as soil problems for small or large areas is feasible.

2. The time saved for checking a site is a fraction of what would be needed if a
man or even a group of people were undertaking a similar task.

3. The overall cost reduction would also be significant for two reasons:
a. the costs for seeds, fertilizers and pesticides distribution as well as paid
labor, machinery expenses and fuels will be reduced.
b. the robotic system requires little maintenance and can offer its services for
many years.

4. The interconnection of dissimilar systems is feasible, and most importantly,
this is done by using open-source software.

In addition, some constraints have also been observed that should be taken into
account when developing such a system. The main points are as follow:

1. The final system should be proportional to cultivation coverage. The presented
system is satisfactory for small crops due to the restriction of communications
and the duration of the drone flight. In large crops, another type of drone
should be studied. It should be able to cover larger areas and carrying proper
communication systems.

Emmanouil Fragkoulopoulos 141

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

2. The type of ground will determine the capabilities and characteristics of the
rover and the type of communication devices.

3. More accurate results could be derived if there was a correlation of the data
obtained from the multispec camera in combination with a sunlight gauge so
as to minimize the errors of the daylight fluctuation.

A further improvement could be the implementation of a centralized database stor-
ing data from individual flights in different areas all over the country. Each record
will include data such as: crop types, date, weather conditions, temperature, soil
type, etc. With data mining systems, conclusions can be drawn for improving agri-
culture quality. This will be not only great advantage to the farmers, making each
field as productive as possible but as well as for the research community.

PhD Thesis 142

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

Bibliography

[1] Px4 project. http://px4.io/.

[2] Small Unmanned Aircraft: Theory and Practice. 2012.

[3] Naze32 flight controller. http://www.abusemark.com/downloads/naze32_
rev3.pdf, 2016. [Online; accessed 12-May-2016].

[4] 3DRobotics. Dronekit. http://dronekit.io/.

[5] 3DRobotics. Diydrones.com. http://diydrones.com/, 2016. [Online; accessed
12-May-2016].

[6] Rajaraman A. and Ullman Jeffrey D. Mining of Massive Datasets. 2010.

[7] J. S. Aber, S. W. Aber, L. Buster, W. E. Jensen, and R. O. Sleezer. “Challenge
of infrared kite aerial photography: A digital update". Kansas Academy of
Science Transactions, 112:31–39, 2009.

[8] BirdsEyeView Aerobotics. Firefly y6. http://www.birdseyeview.aero/
products/firefly6.

[9] Airware. Flight core. https://www.airware.com/products/flight-core.

[10] Steven Dade Andrew Tridgell. Mavproxy. http://dronecode.github.io/
MAVProxy/html/index.html.

[11] Tobias Bieniek Bart van Andel and Torstein I. Bo. utm python library. https:
//pypi.python.org/pypi/utm.

[12] Multi-Robot Systems Lab Boston University. Obsta-
cle avoidance. http://sites.bu.edu/msl/research/
coordinated-aggressive-control-of-aerial-vehicles/, 2016. [On-
line; accessed 23-May-2016].

[13] X. Burgos-Artizzu, A. Ribeiro, M. Guijarro, and G. Pajares. “Real-time im-
age processing for crop/weed discrimination in maize fields". Computers and
Electronics in Agriculture, 75:337–346, 2011.

Emmanouil Fragkoulopoulos 143

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

http://px4.io/
http://www.abusemark.com/downloads/naze32_rev3.pdf
http://www.abusemark.com/downloads/naze32_rev3.pdf
http://dronekit.io/
http://diydrones.com/
http://www.birdseyeview.aero/products/firefly6
http://www.birdseyeview.aero/products/firefly6
https://www.airware.com/products/flight-core
http://dronecode.github.io/MAVProxy/html/index.html
http://dronecode.github.io/MAVProxy/html/index.html
https://pypi.python.org/pypi/utm
https://pypi.python.org/pypi/utm
http://sites.bu.edu/msl/research/coordinated-aggressive-control-of-aerial-vehicles/
http://sites.bu.edu/msl/research/coordinated-aggressive-control-of-aerial-vehicles/

[14] X. Burgos-Artizzu, A. Ribeiro, A. Tellaeche, G. Pajares, and C. Fernandez-
Ouintanilla. “Analysis of natural images processing for the extraction of agri-
cultural elements". Image and Vision Computing, 28:138–149, 2010.

[15] W. W. Casady, M. R. Paulsen, and J. F. Reid. “A trainable algorithm for
inspection of soybean quality". ASAE, pages 90–7522, 1990.

[16] A. Chaimowicz, D. Cowley, Gomez-Ibanez B., M. Grocholsky, H. Hsieh, J. Hsu,
V. Keller, R. Kumar, and C. T. Swaminathan. “Deploying air-ground multi-
robot teams in urban environments". International Workshop on Multi-Robot
Systems, Washington, DC (USA), 2005.

[17] L. Chaimowicz, B. Grocholsky, J. F. Keller, R. V. Kumar, and C. J. Tay-
lor. “Experiments in multirobot air-ground coordination". IEEE International
COnference on Robotics and Automation, 4:4053–4058, 2004.

[18] D. Daniels. Ground Penetrating Radar. IET, Sonar, Navigation and Avionics
Series, 2007.

[19] SciPy developers. Scipy. http://docs.scipy.org/doc/scipy/reference/
generated/scipy.cluster.vq.kmeans2.html#scipy.cluster.vq.kmeans2.

[20] DJI. A2. http://www.dji.com/product/a2.

[21] DJI. Phantom 4. https://www.dji.com/product/phantom-4.

[22] M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-rayes. Microwave
dielectric behavior of wet soil-part ii: Dielectric mixing models. IEEE Trans-
actions on Geoscience and Remote Sensing, GE-23(1):35–46, Jan 1985.

[23] H. Duan and S. Liu. “Unmanned air/ground vehicles heterogeneous cooper-
ative techniques: Current status and prospects". Science China Technological
Sciences, 53:1349–1355, 2010.

[24] A. G. Eobin, G. Tiwari, R. N. Yadav, E. Peters, and S. Sadana. “UAV systems
for parameter identification in agriculture". Global Humanitarian Technology
Conference: South Asia Satellite (GHTC-SAS), 2013 IEEE, pages 270–273,
2013.

[25] Vladimir Ermakov. mavros ros package. http://wiki.ros.org/mavros.

[26] M. E. Everett. Near-Surfaced Applied Geophysics. Cambridge University Press,
2013.

[27] W .L. Felton, A. F. Doss, P. G. Nash, and K. R. McCloy. “A microprocessor
controlled technology to selectively spot spray weeds". In Proc. Automated
Agriculture for the 21st Century Symp., Chicago,, pages 427–432, 1991.

PhD Thesis 144

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html#scipy.cluster.vq.kmeans2
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html#scipy.cluster.vq.kmeans2
http://www.dji.com/product/a2
https://www.dji.com/product/phantom-4
http://wiki.ros.org/mavros

[28] J. Gago, C. Douthe, R. E. Coopman, P. P. Gallego, M. Ribas-Carbo, J. Flexas,
J. Escalona, and H. Medrano. “UAVs challenge to assess water stress for sus-
tainable agriculture". Agricultural Water Management, 153:9–19, 2015.

[29] M. Garzn, J. Valente, D. Zapata, and A. Barrientos. “An aerial-ground robotic
system for navigation and obstacle mapping in large outdoor areas". Sensors,
13:1247–1267, 2013.

[30] G. J. Gaskin and J. D. Miller. “Measurement of soil water content using a sim-
plified impedance measuring technique". Journal of Agricultural Engineering
Research, 63:153–160, 1996.

[31] R. Gerhards and S. Christensen. “Real-time weed detection, decision making
and patch spraying in maize sugarbeet winter wheat and winter barley". Weed
Research, 43:385–392, 2003.

[32] R. Gerhards and H. Oebel. “Practical experiences with a system for site-specific
weed control in arable crops using real-time image analysis and GPS-controlled
patch spraying". Weed Research, 46:185–193, 2006.

[33] I. Giannakis, A. Giannopoulos, and C. Warren. A realistic fdtd numerical
modeling framework of ground penetrating radar for landmine detection. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
9(1):37–51, Jan 2016.

[34] B. Grocholsky, S. Bayraktar, V. Kumar, and G. Pappas. “Uav and ugv collab-
oration for active ground feature search and localization". Proc. of the AIAA
3rd “Unmanned Unlimited" Technical Conference, 2004.

[35] D. E Guyer, G. E. Miles, M. M. Schrieiber, O. R. Mitchell, and V. C. Vanderbitt.
Transactions of the ASAE, 29.

[36] Hardkernel. Odroid embedded computers. http://www.hardkernel.com/
main/main.php.

[37] A. Harrigton. “Who controls the drones". Engineering and Technology, pages
80–83, 2015.

[38] Y. Inoue, S. Morinaga, and A. Tomita. “A blimp-based remote sensing sys-
tem for low-altitude monitoring of plant variables: A preliminary experiment
for agricultural and ecological applications". Remote Sensing of Environment,
21:379–385, 2000.

[39] Itseez. Opencv software library. http://opencv.org/.

[40] S. K. Khijwania, K. L. Srinivasanb, and J. P. Singha. “An evanescent wave
optical fiber relative humidity sensor with enhanced sensitivity". Sensors and
Actuators B: Chemical, 104:217–222, 2005.

Emmanouil Fragkoulopoulos 145

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

http://www.hardkernel.com/main/main.php
http://www.hardkernel.com/main/main.php
http://opencv.org/

[41] W. Kunzler, S. G. Calvert, and Laylor M. “Measuring humidity and moisture
with fiber optic sensors". Proceedings of SPIE, 5278:86–pp, 2003.

[42] W. S. Lee, C. Slaughter, and D. K. Giles. “Robotic weed control system for
tomatoes". Precision Agriculture, 1:95–113, 1999.

[43] Lockheed Martin. Kestrel autopilot. http://www.lockheedmartin.gr/us/
products/procerus/kestrel-autopilot.html.

[44] Tom Igoe Gianluca Martino Massimo Banzi, David Cuartielles and David Mel-
lis. Arduino microcontroller. https://www.arduino.cc/.

[45] Lorentz Meier. Mavlink - micro air vehicle message marshaling library. https:
//github.com/mavlink/mavlink, 2009–2014.

[46] Patrick Mihelich. image_transport ros package. http://wiki.ros.org/
image_transport.

[47] Mikrocopter. Thermo 6s. http://www.mikrokopter.de/en/products/
thermo6eng.

[48] M. S. Moran, Y. Inoue, and E. M. Barnes. “Opportunities and limitation for
image-based remote sensing in precision crop Management". Remote Sensing
of Environment, 61:319–346, 1997.

[49] M. Mozib and N. Zhang. “Weed detection using color machine vision". Trans-
actions of the ASAE, 43:1969–1978, 2000.

[50] WM Mulaire. Department of Defense: World Geodetic System 1984. Technical
report, National Imagery and Mapping Agency, 2000.

[51] S. R. Nandurkar, V. R. Thool, and R. C.. Thool. “Design and development
of precision agriculture system using wireless sensor network". First Inter-
national Conference on Automation, Control, Energy and Systems (ACES),
Hooghy, pages 1–6, 2014.

[52] D.R. Nelson, D.B. Barber, T.W. McLain, and R.W. Beard. Vector field path
following for small unmanned air vehicles. American Control Conference, 2006,
pages 7–pp, 2006.

[53] Hrvoje Niksic. Gnu wget. https://www.gnu.org/software/wget/.

[54] Michael Oborne. Mission planner. http://ardupilot.org/planner/docs/
mission-planner-overview.html.

[55] Multiple parties. Dronecode foundation. https://www.dronecode.org/.

PhD Thesis 146

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

http://www.lockheedmartin.gr/us/products/procerus/kestrel-autopilot.html
http://www.lockheedmartin.gr/us/products/procerus/kestrel-autopilot.html
https://www.arduino.cc/
https://github.com/mavlink/mavlink
https://github.com/mavlink/mavlink
http://wiki.ros.org/image_transport
http://wiki.ros.org/image_transport
http://www.mikrokopter.de/en/products/thermo6eng
http://www.mikrokopter.de/en/products/thermo6eng
https://www.gnu.org/software/wget/
http://ardupilot.org/planner/docs/mission-planner-overview.html
http://ardupilot.org/planner/docs/mission-planner-overview.html
https://www.dronecode.org/

[56] James Bowman Patrick Mihelich. image_pipeline ros package. http://wiki.
ros.org/image_pipeline.

[57] A. J. Perez, F. Lopez, J. V. Benlloch, and S. Christensen. “Colour and shape
analysis techniques for weed detection in cereal fields". Computers and Elec-
tronics in Agriculture, 25:197–212, 2000.

[58] Ardupilot project. Ardupilot autopilot. http://ardupilot.org/ardupilot/
index.html.

[59] OpenPilot project. Cc3d flight controller. http://opwiki.readthedocs.io/
en/latest/user_manual/cc3d/cc3d.html.

[60] Paparazzi project. Paparazzi-compatible autopilots. https://wiki.
paparazziuav.org/wiki/Main_Page.

[61] Ardupilot projects. Supported boards by ardupilot. http://ardupilot.org/
dev/docs/supported-autopilot-controller-boards.html, 2016. [Online;
accessed 12-May-2016].

[62] Philip Rowse Laurens Mackay Dominik Honegger Julian Oes Sam Kelly Jeff
Wurzbach Craig Elder px4dev, Lorenz Meier. Pixhawk flight controller. http:
//dev.px4.io/hardware-pixhawk.html.

[63] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[64] J. M. Reynolds. An Introduction to Applied and Environmental Geophysics.
John Wiley and Sons Ltd, 2013.

[65] RM Rogers. Applied mathematics in integrated navigation systems. AIAA, 2
edition, 2003.

[66] C. A. Rokhmana. “The potential of UAV-based remote sensing for supporting
precision agriculture in Indonesia". Procedia Environmental Sciences, 24:245–
253, 2015.

[67] T. P. Seang and J. Mund. “Balloon based geo-referenced digital photo tech-
nique: a low cost high resolution option for developing countries". In Proceedings
of XXIII FIG Congress. Munich, Germany, 2000.

[68] T. Seiyama, N. Yamazoe, and H. Arai. “Ceramic humidity sensors". IEEE
Transactions on Components Hybrids, and Manufacturing Technology, 3:85–
96, 1980.

Emmanouil Fragkoulopoulos 147

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

http://wiki.ros.org/image_pipeline
http://wiki.ros.org/image_pipeline
http://ardupilot.org/ardupilot/index.html
http://ardupilot.org/ardupilot/index.html
http://opwiki.readthedocs.io/en/latest/user_manual/cc3d/cc3d.html
http://opwiki.readthedocs.io/en/latest/user_manual/cc3d/cc3d.html
https://wiki.paparazziuav.org/wiki/Main_Page
https://wiki.paparazziuav.org/wiki/Main_Page
http://ardupilot.org/dev/docs/supported-autopilot-controller-boards.html
http://ardupilot.org/dev/docs/supported-autopilot-controller-boards.html
http://dev.px4.io/hardware-pixhawk.html
http://dev.px4.io/hardware-pixhawk.html

[69] D. J. Selkowitz, G. Green, B. Peterson, and B. Wylie. “A multisensor LIDAR,
multi-spectral and multi-angular approach for mapping canopy heigh in boreal
forest regions". Remote Sensing of Environments, 121:458–471, 2012.

[70] SICK. Lms111 laser scanner. https://www.sick.com/media/pdf/2/42/842/
dataSheet_LMS111-10100_1041114_en.pdf.

[71] J. V. Stafford. “Implementing precision agriculture in the 21st century: a re-
view". Journal of Agricultural Engineering Research, 76:267–275, 2000.

[72] Cloud Cap Systems. Piccolo autopilots. http://www.cloudcaptech.com/
products/auto-pilots.

[73] M. Takahashi, M. Shimada, T. Tadono, and M. Watanabe. “Calculation of tree
heigh using PRISM-DSM". International Journal of Remote Sensing, pages
6495–6498, 2012.

[74] L. Tang, L. Tian, and J. Steward, Reid. “Texture-based weed classification
using Gabor wavelets and neural networks for real-time selective herbicide ap-
plications". Transactions of the American Society of Agricultural Engineers,
99:pp–pp, 1999.

[75] H. G. Tanner and D. K. Christodoulakis. “Decentralized cooperative control of
heterogeneous vehicle groups". Robotics and Autonomous Systems, 55:811–823,
2007.

[76] Alexander Tidenko. multimaster_fkie ros package. http://wiki.ros.org/
multimaster_fkie.

[77] A. Tyagi, A. A. Reddy, J. Singh, and S. R. Chowdhury. “A low cost portable
temperature-moisture sensing unit with artificial neural network based signal
conditioning for smart irrigation applications". International Journal on Smart
Sensing and Inteligent Systems, 4:94–104, 2011.

[78] J-B. Vioix, J-P Douzals, F. Truchetet, L. Assemat, and J-P Guillemin. “Spatial
and spectral methods for weed detection and localization". Journal on Applied
Signal Processing, 7:679–685, 2002.

[79] L. T. Waser, E. Baltsavias, K. Ecker, H. Eisenbeiss, C. Ginzler, M. Kuchler,
P. Thee, and L. Zhang. “High-resolution digital surface models (DSMs) for
modeling fractional shrub/tree cover in a mire environment". International
Journal of Remote Sensing, 29:1261–1276, 2008.

[80] J. Weaver. Collaborative coordination and control for an implemented hetero-
geneous swarm of UAVS nad UGVS. PHd thesis submitted at the Univeristy
of Florida, 2 edition, 2014.

PhD Thesis 148

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

https://www.sick.com/media/pdf/2/42/842/dataSheet_LMS111-10100_1041114_en.pdf
https://www.sick.com/media/pdf/2/42/842/dataSheet_LMS111-10100_1041114_en.pdf
http://www.cloudcaptech.com/products/auto-pilots
http://www.cloudcaptech.com/products/auto-pilots
http://wiki.ros.org/multimaster_fkie
http://wiki.ros.org/multimaster_fkie

[81] Wikipedia. Bell Boeing V-22 Osprey — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Bell%20Boeing%
20V-22%20Osprey&oldid=718000997, 2016. [Online; accessed 12-May-2016].

[82] Wikipedia. I2C — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=I%C2%B2C&oldid=716229181, 2016. [Online; ac-
cessed 12-May-2016].

[83] Wikipedia. Universal Transverse Mercator coordinate system — Wikipedia,
the free encyclopedia. http://en.wikipedia.org/w/index.php?title=
Universal%20Transverse%20Mercator%20coordinate%20system&oldid=
717190708, 2016. [Online; accessed 13-May-2016].

[84] D. Woebbecke, G. Meyer, K. VonBargen, and D. Mortensen. “Color indices for
weed identification under various soil, residue, and lighting conditions". Trans-
actions of ASAE, 38:271–281, 1995.

[85] X. Wu, W. Xu, Y. Song, and M. Cai. “A detection method of weed in wheat
field on machine vision". Procedia Engineering, 15:1998–2003, 2011.

[86] C. Yang, J. H. Everitt, Q. Du, B. Luo, and J. Chanussot. “Using high-resolution
airborne and satellite imagery to assess crop growth and yield variability for
precision agriculture". Proceedings of the IEEE, 101:582–592, 2013.

[87] C-C Yang, S. O. Prasher, J. A. Landry, H. S. Ramaswamy, and A Ditommaso.
“Application of artificial neural networks in image recognition and classification
of crop and weeds". Canadian Agricultural Engineering, 42:147–152, 2000.

[88] P. J. Zarco-Tejada, R. Diaz-Varela, V. Angileri, and P. Loudjani. “Tree height
quantification using very high resolution imagery acquired from an unmanned
aerial vehicle (UAV) and an automatic 3D photo-reconstruction method". In-
ternational Journal of Remote Sensing, 55:89–99, 2014.

[89] C. Zhang and J. Kovacs. “The application of small aerial systems for precision
agriculture: a review". Precision Agric, 13:693–712, 2012.

[90] C. Zhang, D. Walters, and J. Kovacs. “Applications of low altitude remote
sensing in agriculture upon farmers requests- A case study in northeastern
Ontario, Canada". Plos One, 9, 2013.

[91] N. Zhang and C. Chaisattapagon. “Effective criteria for weed identification
in wheat fields using machine vision". Transactions of the ASAE, 38:965–974,
1995.

Emmanouil Fragkoulopoulos 149

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 13:22:31 EEST - 18.217.200.173

http://en.wikipedia.org/w/index.php?title=Bell%20Boeing%20V-22%20Osprey&oldid=718000997
http://en.wikipedia.org/w/index.php?title=Bell%20Boeing%20V-22%20Osprey&oldid=718000997
http://en.wikipedia.org/w/index.php?title=I%C2%B2C&oldid=716229181
http://en.wikipedia.org/w/index.php?title=I%C2%B2C&oldid=716229181
http://en.wikipedia.org/w/index.php?title=Universal%20Transverse%20Mercator%20coordinate%20system&oldid=717190708
http://en.wikipedia.org/w/index.php?title=Universal%20Transverse%20Mercator%20coordinate%20system&oldid=717190708
http://en.wikipedia.org/w/index.php?title=Universal%20Transverse%20Mercator%20coordinate%20system&oldid=717190708

	Abstract
	Acknowledgment
	Glossary
	Acronyms
	Contents
	List of Figures
	Precision Agriculture
	Precision Agriculture
	Collaboration between UAVs and UGVs

	Robotics Applications on Agriculture
	Overview of the Proposed System
	The Unmanned Aerial Vehicle
	On the Choice of the Most Suitable UAV
	On the Choice of the Autopilot Module
	The ArduPilot Ecosystem
	The Pixhawk Hardware and its Peripherals
	The IRIS+ Platform

	The Image Capture System
	Multispectral Imaging
	The NDVI
	The Multispek Camera
	Connection with Pixhawk
	Communication and Image Transmission

	The Rover
	The Rover Platform
	The Autopilot
	The Laser Scanner
	The Embedded Computer

	Elements of Theory
	Coordinate Frames
	Rover Path Generation
	Obstacle Avoidance

	Software Components
	The Robotics Operating System (ROS)
	ROS Node/Topic Example Network
	The multimaster-fkie Package
	The Image Transport Package
	The Image_Proc Package and Image Rectification
	The OpenCV Library
	The MAVLink Protocol
	The mavros Package
	The dronekit Library
	The MAVProxy GCS
	The wget Program
	k-means Algorithm and Library

	System Integration
	Network Configuration
	Flow Diagram
	Launch Files
	File Monitoring
	Publishing the Image Topic
	Image Processing for NDVI Extraction
	Point of Interest Geolocation
	Generation of Rover Path
	Interfacing with the Laser Scanner and Obstacle Avoidance

	Results
	Typical Mission Description
	UAV Mission Setup
	Image rectification
	NDVI Extraction
	Points of Interest Geolocation and Aggregation
	Rover Trajectory Generation
	Obstacle Avoidance
	Discussion and Future Work

	Conclusions
	Bibliography

