
Department of Electrical and Computer Engineering
University of Thessaly,

Volos,Greece

Μηχανισμοί παρακολούθησης
πληροφορίας επίδοσης και ελέγχου της

διαμόρφωσης του συστήματος σε
συστήματα εικονικών μηχανών /

Performance monitoring and
configuration control mechanisms on

virtualized systems

Athanasios Gkantsidis

Supervisors:
Christos D. Antonopoulos, Assistant Professor

Spyros Lalis, Associate Professor

Dedicated to my family

A C K N O W L E D G E M E N T S

I would like to thank my advisors Christos D. Antonopoulos
and Spyros Lalis for their help and guidance throughout this
work. It is due to their inspiration and continuous encour­
agement that I was able to successfully complete this work.
Also I would like to thank my family for their continuous sup­
port throughout these years and my colleague and friend Rania
Tsilomitrou for all the moral and psychological support.

11

A B S T R A C T

Recent developments in virtualization technologies, have led to
the adoption of virtualization server, which increases the work­
load of datacenters. Increasing the workload on the servers in
a data center, we also increase energy consumption. Prior work
[i] has shown that, the cost of powering the servers on a data­
center, is 30% of the total cost of a datacenter. Associated costs
have shifted the research focus from optimizing performance to
finding a tradeoff between performance and energy efficiency.

Quantifying the power consumption of individual applica­
tions running in parallel on a server, is a key component to
administrators of datacenters to extract useful conclusions and
be able to implement policies to reduce consumption at peak
times. Furthermore, this will help the companies to design
their billing policy based on power consumption of each vir­
tual machine.

The main purpose of this thesis was to describe the API
extensions implementation process on Libvirt. We have imple­
mented a Libvirt extension that extracts a number of useful
counters, which are useful for an application that uses these
counters in order to estimate the power consumption of every
running virtual machine. Also we have implemented Libvirt
API extensions enabling host configuration. More specifically,
we offer Libvirt users the functionality to control frequency in
order to reduce energy consumption.

111

Π Ε Ρ Ι Λ Η Ψ Η

Οι πρόσφατες εξελίξεις σε τεχνολογίες virtualization εχουν οδη­
γήσει στην υιοθέτηση virtualization server οι οποιοι αυξάνουν το
φόρτο εργασίας ενος datacenter. Αυξάνοντας το φόρτο εργασίας
στους servers σε ένα κέντρο δεδομένων (datacenter) παράλληλα
αυξάνεται και η κατανάλωση ενέργειας. Έρευνες [1] δείχνουν ότι
το κόστος τροφοδοσίας ενός datacenter είναι περίπου το 30% του
συνολικού κόστους του datacenter. Το κόστος έχει μετατοπίσει
την εστίαση της έρευνας από τη βελτιστοποίηση της απόδοσης στην
αναζήτηση καποιας ισορροπίας μεταξύ της απόδοσης και της ενερ­
γειακής απόδοσης.

Η ποσοτικοποίηση της κατανάλωσης ενέργειας των επιμέρους ε­
φαρμογών που τρέχουν παραλληλα σε ενα server ειναι βασική παρα-
μετρος για να μπορουν οι διαχειριστές ενος datacenter να εξάγουν
χρήσιμα συμπεράσματα και να μπορούν να εφαρμόσουν πολιτικές για
μείωση της κατανάλωσης σε ώρες αιχμής ή ακόμα και για να εξάγουν
συμπεράσματα για τη χρέωση των υπηρεσιών τους.

Βασικός σκοπός της διπλωματικής ήταν η περιγραφή της δια­
δικασίας προσθήκης λειτουργικότητάς στη βιβλιοθήκη Libvirt. Οι
προσθήκες αφορούν μια επέκταση της βιβλιοθήκης Libvirt για την
εξαγωγή μετρικών που χρησιμοποιήθηκαν σε μια εφαρμογή για τον
υπολογισμό της κατανάλωσης ενέργειας εικονικών μηχανών που λει­
τουργούν παράλληλα στο ίδιο εξυπηρετητή,καθώς και επεκτάσεις του
API της Libvirt για τη διαμόρφωση του host ώστε να ελέγχουμε τη
συχνότητα λειτουργίας του επεξεργαστή με στόχο την μείωση κα­
τανάλωσης ενέργειας.

iv

C O N T E N T S

1 in trod u ctio n 1
1.1 Problem Description 1
1.2 Thesis structure 2

2 background 3
2.1 Qemu/KVM 3
2.2 Libvirt library 5
2.3 Running Average Power Limit 6
2.4 Linux Performance Evaluation Tool
2.5 Power estimation model 8

3 im plem en tatio n 9
3.1 Define public API 9
3.2 Implement the internal driver methods
3.3 Implement the RPC client 13
3.4 Implement the server side dispatcher
3.5 Virsh extension 17
3.6 Power estimation application 18

4 experim ental valid atio n 21
4.1 Experimental Setup 21
4.2 CPU 21
4.3 Memory 23
4.4 IO 25
4.5 Combination 26

5 related work 27
6 co n clu sio n 28

6.1 Future Work 29
a host configuration 30

7

11

15

v

LIST OF FI GURES

Figure i

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure i i
Figure 12
Figure 13
Figure 14
Figure 15

Architecture of the Kernel-based Virtual
Machine (KVM) [2] 3
Libvirt Architecture 5
RAPL power domains [3] 6
MSR_PKG_POWER_LIMIT Register [4] 7
Libvirt domains 9
Cores power consumption(CPU) 22
Package power consumption(CPU) 22
Power attribution (CPU) 23
Package power consumption (RAM) 23
Cores power consumption (RAM) 24
Power attribution (RAM) 24
Package power attribution (IO) 25
Cores power consumption (IO) 25
Power attribution (IO) 26
Cores power consumption 26

vi

L I S TI NGS

2.1 Basic flow of a guest C P U 4
2.2 perf_event_open s y s c a ll...................................... 7
3.1 virNodeSetGovernor function.............................. 10
3.2 virPerfRdtEnable function................................... 13
3.3 remote_protocol_structs function........................ 14
3.4 remoteNodeSetGovernor fu n ction 15
3.5 remoteDispatchNodeSetFrequency function . . . 15
3.6 virsh frequency command function 17
3.7 get_the_power fu n ctio n 19
A.1 virhostcpu.c.. 30

1
I N T R O D U C T I O N

1.1 problem d escriptio n

The continuing demand for power within the datacenter indus­
try, has received significant amounts of press in recent years.
These energy intensive industries, are signing contracts with
electricity suppliers, in order to be protected from unexpected
energy price increases and in order to guarantee a low fixed
rate for the full term of the energy supply contract. Power con­
sumption is a continuously changing number, which in peak
hours, may be bigger than the energy that the datacenter itself
provides or exceeds the agreed contracted level. As a conse­
quence, penalties from the energy suppliers may be applied. To
avoid this phenomenon,datacenter administrators should use
techniques such as job suspension and cpu frequency scaling.For
a successful implementation of these techniques, it is important
to use a system that calculates the consumption of each virtual
machine, in order to be able to disable or to migrate virtual ma­
chines to another server, to ensure the proper function of the
system.

The problem that the scientific community is called to solve,
is the attribution of the socket power consumption to the ap­
plications that run simultaneously on server. Because of the
fact that the Linux hypervisor perceives as regular process the
virtual machines [5], we could handle the problem of calcu­
lating the consumption of virtual machines as we do in the
case of simple applications. There are two approaches to solve
the above problem. The first approach refers to cpu counters
that approximate power consumption with statistical models
and the second one refers to measurement of the power supply
and proper attribution of the power consumption to the appli­
cations, through the cpu usage percentage [6].

In this thesis, we develop a system that calculates the en­
ergy consumption per virtual machine by using Libvirt library,
so that the administrators do not need to use specialized tools
to monitor the consumption. Additionally, we could use the
information of the consumption of a VM programmatically for
implementing policies or other monitoring applications.

The main purpose is to describe the API extensions imple­
mentation process on Libvirt. The extensions concerns the ex-

1

i .2. Thesis structure

traction of the individual consumption of a co-running virtual
machine and the implementation of knobs, in order to config­
ure host system.

For the calculation of the socket power consumption, we
use statistical models^]. Moreover, we calculate the power con­
sumption per virtual machine using the model that finds the
cpu-cycles of every virtual machine. For the host configuration
system , we change sysfs values to configure the driver cpu-
freq or the intel p-state driver, in order to be able to change the
frequency or to set a power limit over a time window.

1.2 thesis structure

This thesis consists of three parts. The first part deals with back­
ground issues. More specifically, in section 2.1 we analyze the
architecture of Qemu/KVM ,in section 2.2 we discribe Libvirt
architecture, in section 2.3 we describe Intel RAPL in order to
extracts the counters of socket power consumption and finally
in section 2.4 we describe the Perf profiler.

Second part describes in detail, the development of Libvirt
API extensions that we added. This provides methodology to
developers, who want to add new features to Libvirt API. Also,
we implement an application that uses our extension and ex­
tracts the power consumption per virtual machine. Next,in
Chapter 4, we evaluate our model by using benchmarks. Fi-
nally,in Chapter 6, we describe the conclusions and discuss pos­
sible future work.

2

2
B A C K G R O U N D

For better understanding of the overall procedure of Libvirt
API extension development, in this chapter we describe Qe-
m u/KVM hypervisor, Libvirt API and Perf profiler. Finally, we
analyze the main feature of Intel's RAPL.

2.1 QEMU / KVM

Figure 1: Architecture of the Kernel-based Virtual Machine
(KVM) [2]

KVM (for Kernel-based Virtual Machine) is a full virtualiza­
tion solution for Linux on x86 hardware, containing virtualiza­
tion extensions (Intel VT or AMD-V). It consists of a loadable
kernel module, kvm.ko, that provides the core virtualization
infrastructure and a processor specific module, kvm-intel.ko or
kvm-amd.ko.

KVM focuses on functionalities of lower levels of a virtual
machine. Such functionalities could be processor registers, Mem-

3

2.i . Qemu/KVM

ory Management Unit[4] and controlling switches from guest
to host in hardware.

Qem u[7] is a processor emulator that is able to emulate a
number of processor architectures and deals with handling the
emulated hardware such as hard disks, network cards, audio
interfaces and USB devices. Each core uses a separate instance
of Qemu binary translation engine, with a thin library layer to
handle the inter-core , the device communication and synchro­
nization. Qemu communicates with the KVM module through
the /dev/kvm interface through a series of ioctls. Listing 2.1
shows the basic flow of the KVM module communication in­
side Qemu. First opening the interface and issuing the correct
ioctl to create a new guest. Then the guest accesses a hardware
device register, halts the guest CPU, or performs other special
operations, KVM exits back to Qemu, Qemu handles the exit
and emulates the desired outcome. Each guest virtual CPU is
a Qemu thread that is being scheduled by the OS scheduler as
a regular process. A dedicated iothread runs a select(2) event
loop to process I/O such as network packets and disk I/O com­
pletion. The memory of a guest is allocated by Qemu at launch,
and is mapped into the address space of the Qemu process.
This acts as the physical memory of the guest.

Listing 2.1: Basic flow of a guest CPU
open ("/dev/kvm")
ioctl (KVM CREATE VM)
ioctl (KVM CREATE VCPU)
for(; ;) {

ioctl (KVM RUN)
switch (exit reason) {

case KVM EXIT IO : . . .
case KVM EXIT HLT: . . .

}
}

4

2.2. Libvirt library

2.2 LIBVIRT LIBRARY

According to the website [8] Libvirt is a collection of software
that provides a convenient way to manage virtual machines and
other virtualization functionality, such as storage and network
interface management. These software pieces include an API
library, a daemon (libvirtd), and a command line utility (virsh).
A primary goal of libvirt is to provide a single way to manage
multiple different virtualization providers/hypervisors.

Libvirt, as we can see in Figure 2, consists of two parts, a
public API for applications that use the library and a driver
API, that contains the drivers, which are useful in order to com­
municate with various hypervisors. The drivers implement an
API to communicate with Libvirt that matches the API they use
to communicate with hypervisors and the API that hypervisors
use to communicate with Libvirt. The goal is to call a function
that starts a virtual machine with the same way, regardless of
the hypervisor and the driver that we use. However, when an
external application communicates with the Libvirt, it uses an
URI, that defines ,via the virInitialize API, which driver to use.

Furthermore, Libvirt offers remote managment facilities by
implementing a remote driver on the client and a deamon for
handling requests from the server side, called libvirtd. Re­
quests from a client are tunneled through the remote driver
to the server, where the specific hypervisor is running. The
libvirtd on the server receives the requested commands and lo­
cally calls the specific driver. The last piece of Libvirt software
is virsh, which is a virtualizations shell built on top of Libvirt.
This shell permits use the libvirt functionality, but in an inter­
active (shell-based) fashion. Finally, Libvirt uses xml files to
configure the virtual machines. This configuration could be
permanent, which indicates that it will remain the same after a

5

2.3. Running Average Power Limit

restart of the domain, or it could be temporary, which means
that maintains the configuration only during the session.

2.3 running average power lim it

Intel RAPL[4] provides counters that show the socket power
consumption. Nevertheless, it is not an analog power meter
and for this reason the estimation of the energy is being calcu­
lated approximately, by using performance counters and I/O
models.

M
e

m
o

ry
 D

IM
M

 0

5
Έ
Ω

£ ­
0
E

M
e

m
o

ry
 D

IM
M

 2 m1
Q

o
£
4)
>

) package power plane

ρρθ/core power plane (all cores on the package)

) ppl/graphics power plane (client only)

DRAM power plane (server only)

Figure 3: RAPL power domains [3]

As shown in Figure 3, the counters are divided into domains
for precise control. These domains include core power plane,
which refers to the energy that the cores are consuming and
graphics power plane, which refers to the energy that embed­
ded graphic card is consuming. Both these domains are parts
of the package power plane that refers to the socket. Finally,
the DRAM power plane refers to the DRAM energy consump­
tion. We can access these hardware counters through /sys/fs
[9]. Another RAPL's functionality, is the ability to limit the av­
erage consumption of the socket at a time window.

As we can see from Figure 4, the fields of register
MSR_PKG_POWER_LIMIT, include the pkg Power Lim it, which
refers to the limit of the average energy consumption, at the
time period we defined at the field time_window_power_limit.
There are two zones that we can customise by putting different
limits in each one.

6

2.4. Linux Performance Evaluation Tool

Figure 4: MSR_PKG_POWER_LIMIT Register [4]

2.4 linux perform ance evaluation tool

With the advent of technologies such as Symmetric Multi Pro­
cessing (SMP) and Non-Uniform Memory Access (NUMA) de­
velopers notice issues with the performance of their programs
because of the new hardware. Thus, Intel developed the PM U[io],
a special unit providing information through counters in mi­
croarchitecture level like the number of machine cycles or even
the number of instructions executed on the CPU. In Linux there
are several interfaces that provide access to these counters. The
perf_event [i i],a key tool of the kernel, is the interface that we
are going to use during the development. There are two modes
that perf event counts events. The first calculates the collective
events during the period of profiling program operation and
the second mode creates a hardware interrupt after a specific
number of events. In our case we use the first mode. The fol­
lowing function enables the perf event described by the first
argument which is a struct perf_event_attr.

Listing 2.2: perf_event_open syscall
int perf_event_open(struct perf_event_attr *attr, pid_t

pid, int cpu, int group_fd, unsigned long flags);

The second argument is the profiling application thread id,
the third argument limits counting events in a particular kernel
thread. Finally the group_fd is the file descriptor that we use if
we want to count events from a group of threads. Since there is
not a libc wrapper for the particular syscall we use the function
syscall() with first argument the NR_perf_event_open.

7

2.5. Power estimation model

2.5 power estim atio n model

Model for attributing power consumption of each running vir­
tual machine is as follows:

Power (Taski) TotalActivePower *
Cycle(Taski)

j Cycle (Taskj) (1)

Model (i)[i] is not hyperthreading aware and is based in hy­
pothesis that the power consumption of a task is proportional
to the amount of computation CPUs perform for that task. We
can estimate the amount of CPU computation using hardware
events, such as CPU cycles and instructions. Authors examined
other metrics, including instruction count, last-level cache refer­
ence and miss, through a wide range of microbenchmarks and
conclude that non-halted cycle is the best to correlate power.
Therefore, the virtual cpu threads will be pinned to separate
physical cores, which will be selected during the creation of the
xml configuration file of each virtual machine. Consequently,
we need to calculate the total power consumption of the socket
(Total_Active_Power) and also the cpu-cycles, that each virtual
machine has consumed. These are estimated by using the two
events that we added in Libvirt.

8

3
I M P L E M E N T A T I O N

In this chapter, we will describe the process of implementing a
new API in Libvirt. We will add further functionality to perf-
events API , which is implemented by Intel,that triggers perf-
events, in order to monitor cpu-cycles per VM for virtual ma­
chine's qemu threads and socket 's power consumption. Also,
we will implement API extensions for host configuration about
cpu frequency scaling.The above changes will be made in ver­
sion 2.0.0 of Libvirt.

3.1 define public api

Figure 5: Libvirt domains

Firstly, we should define the public API. In case our changes
contains new functions, we should import these functions into
the Libvirt library headers and also import the export symbols,
in order to make the new function visible to external programs.
Developers as shown in Figure 5, have divided the library in
order to be able to search code more conveniently. In our case,
since the extension refers to the host, we add functions to /in-
clude/libvirt/ libvirt-host.h .

We implement the functions of public API in file libvirt-
domain.c. The implementation of the public API according to
the site[i2] is largely a formality in which we wire up pub­
lic API to the internal driver API. The public API implemen­
tation takes care of some basic validity checks before passing

9

3.i . Define public API

control to the driver implementation. In RFC 2119 vocabulary,
this function:

1. Should log a message with VIR_DEBUG() indicating that
it is being called and its parameters.

2. Must call virResetLastError()

3. Should confirm that the connection is valid with virCheck-
ConnectReturn() or virCheckConnectGoto()

4. If the API requires a connection with write privileges,
MUST confirm that the connection flags do not indicate
that the connection is read-only with virCheckReadOnly-
Goto()

5. Should do basic validation of the parameters that are be­
ing passed in, using helpers like virCheckNonNullArgGoto()

6. Must confirm that the driver for this connection exists and
that it implements this function

7. Must call the internal API

8. Should log a message with VIR_DEBUG() indicating that
it is returning, its return value, and status.

9. Must return status to the caller.

Listing 3.1: virNodeSetGovernor function
int
virNodeSetGovernor(virConnectPtr conn,

int core,
int governor)

{
VIR_DEBUG("conn=/p, core=/d, governor=°/0d", conn, core,

governor);

virResetLastError();

virCheckConnectReturn(conn, -1);
virCheckNonZeroArgGoto(governor, error);

if (conn->driver->nodeSetGovernor) {
int ret;
ret = conn->driver->nodeSetGovernor(conn, core,

governor);
if (ret < 0)

goto error;
return ret;

}

10

3.2. Implement the internal driver methods

virReportUnsupportedError();

error:
virDispatchError(conn);
return -1;

}

3.2 im plem ent the intern al driver methods

The core of the process is to add the new functionality in the
drivers of Libvirt. The purpose of Libvirt, as we mentioned
in section 3.1, is to make the functionalities general for all the
hypervisors and to be able to use them in the same way regard­
less of the different underlying implementation. We add our
function to header file of hypervisor /src/driver-hypervisor.h
and also, we add the respective fields to struct virHypervisor-
Driver , in order to declare that our functions refer to hypervi­
sor functionality. The next step is to implement the functions
at a specific hypervisor drivers. In our case, since we will add
functionality to qemu, we have to add our functions to the file
/src/qemu/qemu-driver.c and the appropriate fields to struct
qemuHypervisorDriver as well.

Furthermore, if we add new files with internal functions
which driver functions use ,we add the names of the files to
src/makefile.am, for the purpose of being included in the com­
pile and lastly we add symbols in the /src/libvirt_private.syms.
The files that contain the main functionality of our API exten­
sions are the following: src/util/virperf.h,
src/util/virperf.c ,/src/virhostcpu.h,/src/virhostcpu.c .

For the implementation of host configuration extentions, we
add three functions to the file virhostcpu.c. The first one, virHost-
SetFrequency, aims to change the operating cpu frequency of
the corresponding physical core and has two arguments. The
first argument is the id of a physical core and the second one
is a string that contains the value of frequency. We use the in­
terface of sysfs to change the value of scaling_setspeed. This
specific functionality demands the driver of cpu-freq to be acti­
vated and governor "userspace" to be enabled. The next func­
tion, virHostSetGovernor, aims to change the governor, either
cpu-freq or intel- pstate driver is being used. As far as cpufreq
is concerned, we have two choices of governors, "ondemand"
and "userspace". As for the intel-pstate, there are also two
choices of governors, "powersave" and "performance". The last
function that we implemented, is virHostSetRaplLimit, which
has two ways to reduce the host's energy consumption. The
first way uses the intel-pstate driver and changes the value of

11

3.2. Implement the internal driver methods

max_perf_pct through sysfs. Intel - pstate driver does not gives
us the ability to choose a specific operating cpu frequency. A c­
cording to the workload, it chooses, each time, a specific p-
state. Max_perf_pct limits the maximum P-State that will be re­
quested by the driver. It states it as a percentage of the available
performance. The second way uses the power caping frame­
work. As we have mentioned in the section 2.3, we set a limit
of average consumption for a specific time window.

In order to add functionality to the existing API of perf-
events, we expand the function virPerfRdtEnable. In order to
add the first event, providing that there is no wrapper at libc
for the specific syscall, we use the function syscall, with pa­
rameters NR perf event open, to call the function we need, a
structure rdt_attr as detailed below, an ID thread that we want
to monitor and finally, a kernel thread ID, which in our case is
-1, and indicates that it monitors all the kernel threads that the
specific thread runs. The function syscall, returns a file descrip­
tor through which we will be able to read the counter value.
The struct rdt_addrt provides configuration for the event being
created. The struct fields that we change are, the general type
of the event,that could be software or hardware, the hardware
event ID that we want to enable, which in our case is the cpu cy­
cles, and lastly the inherit field, which if is enabled, the counter
includes also the events of the children of the main thread. Con­
sidering that a vm consists of more than one threads, the inherit
field should be enabled. The disabled field refers to whether
the event will begin once we activate it or later. In our case, we
prefer to initiate it manually. In order to activate the event we
created, we call the function ioctl and change the enable state
of the event in the Libvirt, as well.

12

3·3· Implement the RPC client

Listing 3.2: virPerfRdtEnable function

if (event->type == VIR_PERF_EVENT_CYCLES){
memset(&rdt_attr, 0, sizeof(rdt_attr));
rdt_attr.size = sizeof(rdt_attr);
rdt_attr.type = PERF_TYPE_HARDWARE;
rdt_attr.config = PERF_COUNT_HW_CPU_CYCLES;
rdt_attr.inherit = 1;
rdt_attr.disabled = 1;
rdt_attr.enable_on_exec = 0;

event->fd = syscall(_NR_perf_event_open,
&rdt_attr, pid, -1, -1, 0);

if (event->fd < 0) {
virReportSystemError(errno,

_("Unable to open perf type=%d for
pid=%d"),

event_type, pid);
goto error;

}

if (ioctl(event->fd, PERF_EVENT_IOC_ENABLE) < 0) {
virReportSystemError(errno,

_("Unable to enable perf event for
%s"),

virPerfEventTypeToString(event->type));
goto error;

}

event->enabled = true;
return 0;

}

A s for the second event that we want to activate, there are some
differences. We begin to read the type of the event from the
sysfs and then we create the event with the call of the function
syscall. The only difference in comparison with the first event is
that there is neither a specific thread ID nor a physical core, as
the counter is not only for a specific kernel thread but generally
for the socket.

3.3 im plem ent the rpc client

The next step is to implement the remote protocol. If our func­
tions return a different value of o or 1, then we need to cre­
ate two structs in /src/remote_protocol.The first struct will be
used to describe the arguments that need to be passed to the re­
mote function and the second one will be used for the returned
values from this function.

13

3·3· Implement the RPC client

Listing 3.3: remote_protocol_structs function

struct remote_domain_set_frequency_args {
int core;
remote_string frequency;

};
struct remote_domain_set_rapl_limit_args {

int value;
remote_string type;
remote_string type_value;

};

struct remote_domain_set_governor_args {
int core;
int governor;

};

enum remote_procedure {

REMOTE_PROC_NODE_SET_FREQUENCY = 374,
REMOTE_PROC_NODE_SET_RAPL_LIMIT = 375,
REMOTE_PROC_NODE_SET_GOVERNOR = 376,

};

Subsequently, we add values to the remote_procedure enum for
each new function added to the API. Once these changes are in
place, it's necessary to run 'make'(rpcgen) in the src directory
to create the .c and .h files required by the remote protocol code.
The remote method calls go in: src/remote/remote_driver.c .
Each remote method invocation does the following:

1. Locks the remote driver;

2. Sets up the method arguments;

3. Invokes the remote function;

4. Checks the return value, if necessary;

5. Extracts any returned data;

6. Frees any returned data;

7. Unlocks the remote driver.

14

3·4· Implement the server side dispatcher

Listing 3.4: remoteNodeSetGovernor function
static int
remoteNodeSetGovernor(virConnectPtr conn, int core, int

governor)
{

int rv = -1;
struct private_data *priv = conn->privateData;
remote_node_set_governor_args args;

remoteDriverLock(priv);

args.core = core;
args.governor = governor;

if (call(conn, priv, 0, REMOTE_PROC_NODE_SET_GOVERNOR,
(xdrproc_t)xdr_remote_node_set_governor_args,

(char *)&args,
(xdrproc_t)xdr_void, (char *)NULL) == -1) {

goto done;
}

rv = 0;

done:
remoteDriverUnlock(priv);
return rv;

}

3.4 im plem ent the server side dispatcher

The next step is the implementation of server side dispatcher,
that is simply a matter of deserializing the parameters passed
in from the remote caller and passing them to the correspond­
ing internal API function. The changes are implemented in:
/daemon/remote.c After all three pieces of the remote protocol
are complete, and the generated files have been updated, it will
be necessary to update the file: src/remote_protocol-structs

Listing 3.5: remoteDispatchNodeSetFrequency function

static int remoteDispatchNodeSetFrequency(
virNetServerPtr server ATTRIBUTE_UNUSED,
virNetServerClientPtr client,
virNetMessagePtr msg ATTRIBUTE_UNUSED,
virNetMessageErrorPtr rerr,
remote_node_set_frequency_args *args)

{
int rv = -1;
char ^frequency;

!5

3·4· Implement the server side dispatcher

struct daemonClientPrivate *priv =
virNetServerClientGetPrivateData(client);

if (!priv->conn) {
virReportError(VIR_ERR_INTERNAL_ERROR, "°/0s",

.("connection not open"));
goto cleanup;

}

frequency = args->frequency ? *args->frequency : NULL;

if (virNodeSetFrequency(priv->conn, args->core,
frequency) < 0)
goto cleanup;

rv = 0;

cleanup:
if (rv < 0)

virNetMessageSaveError(rerr);
return rv;

}

16

3 ·5· Virsh extension

3.5 virsh extension

Virsh, as we mentioned in section 2.2, is a virtualizations shell
built on top of Libvirt. In order to complete the procedure, we
will add a new command for every new function. The code of
virsh is divided, according to which domain of Libvirt it refers
to. Considering that the additions we made refer to host, we
will add the new commands to the file /tools/virsh-host.c.

Listing 3.6: virsh frequency command function

/* *
* "frequency" command
*/
static const vshCmdInfo info_frequency[] = {

{.name = "help",
.data = N_("set frequency")

},
{.name = "desc",
.data = N_("Set frequency of the specific core.")

},
{.name = NULL}

};

static const vshCmdOptDef opts_frequency[] = {
{.name = "core",
.type = VSH_OT_INT,
.help = N_("core id")

},
{.name = "frequency",
.type = VSH_OT_STRING,
.help = N_("frequency number")

},
{.name = NULL}

};

static bool
cmdNodeSetFrequency(vshControl *ctl, const vshCmd *cmd)
{

int core;
const char *frequency = NULL;
int result;

virshControlPtr priv = ctl->privData;

if (vshCommandOptInt(ctl, cmd, "core", &core) < 0)
return false;

if (vshCommandOptStringReq(ctl, cmd, "frequency",
&frequency) < 0)
return false;

*7

3.6. Power estimation application

if ((result =
virNodeSetFrequency(priv->conn,core,frequency)) < 0)
return false;

vshPrint(ctl, "%d\n", result);

return true;
}

As it seems from Listing 3.6, we add a variable vshCmdInfo that
contains informations on the command and a variable vshCm-
dOptDef for the parameters which the function needs,when it
will be called. Finally, we add a command that contains the
main functionality, and an entry on the table vshCmdDef, in
order to be recognised by the shell.

For the additions we made to the existing API of perf-events
,we use the API of stats, which already exists, in order to return
the counters we created in the previous steps. We add a field in
enumeration virDomainStatsTypes in header file /include/lib-
virt/ libvirt-domain.h and also the IDs for the created events.
We change the existing command domstats as well, so that it
includes the new counters, in the results that returns.

3.6 power estim atio n a pplic a t io n

For the calculation of the consumption per virtual machine we
have implemented the get_the_power function. The function
arguments are a pointer to the connection with the correspond­
ing Hypervisor that controls the virtual machines and a string
with the name of the virtual machine that we are interested in.
The function returns the corresponding energy consumption
once the events are activated up to the time of the call. We use
the function VirConnectGetAllDomainStats in order to return
the number of cycles that every running virtual machine con­
sumes and the socket total energy consumption. Moreover, this
function calculates the sum of cycles that every virtual machine
consumes and expresses the counter of the socket total energy
consumption in joules by multiplying it by the scaling factor
exposed in .scale file in /sys/ fs. Finally, we use 1 to find the
power consumption for the virtual machine that we are inter­
ested in. As an example of usage of the function get_the_power,
we implemented an application that calls the function period­
ically every n seconds and prints energy consumption in watt
for all running virtual machines.

18

3.6. Power estimation application

Listing 3.7: get_the_power function

double get_the_power(virConnectPtr conn, char
*domain_name){

virDomainStatsRecordPtr *test;

int ret;
unsigned int stats = VIR_DOMAIN_STATS_PERF;
int flags2 = 0;
int i,j;
FILE *fff;
double scale;
char filename[BUFSIZ];
time_t rawtime;
double cycles[30];
double power[30];
double power_cnt;
double sum_cycles;

ret =
virConnectGetAllDomainStats(conn,stats,&test,flags2);

if (ret < 0)
printf("Something going wrong...");

sprintf(filename,"
/sys/bus/event_source/devices/power/events/energy-cores.scale");
fff=fopen(filename,"r");

if (fff!=NULL) {
if(fscanf(fff,"\%lf",&scale) > 0){

fclose(fff);
}

}

sum_cycles = 0;

for(i = 0; i < ret; i++){

for (j =0; j < test[i]->nparams; j++) {
if(strcmp(test[i]->params[j].field,"perf.cycles")

== 0){
cycles[i] = test[i]->params[j].value.ul;
sum_cycles += cycles[i];

}
else{

power_cnt = test[i]->params[j].value.ul;

19

3.6. Power estimation application

}
}

}

for(i = 0; i < ret; i++){
power[i] = (power_cnt * scale *

(cycles[i]/sum_cycles));
if(strcmp(virDomainGetName(test[i]->dom),domain_name)

== 0){
virDomainStatsRecordListFree(test);
return power[i];

}
else{

printf("Something going wrong...\n");
virDomainStatsRecordListFree(test);
return 0.0;

}
}
return 0;

}

20

4
E X P E R I M E N T A L V A L I D A T I O N

4.1 experim ental setup

In this chapter we validate our model in virtualized systems,
using benchmarks to stress the system and check the function­
ality in situations with heavy workload like datacenter environ­
ment. The experimental validation was carried out on a system
equipped with one 4-core Intel i5 4460 processor, clocked at
3.2 GHz, with 8 GB DRAM and SSD with sequential read 540
MB/s and sequential write 490 MB/s. The operating system
is Ubuntu 14.04, using the 4.2 Linux kernel. We will use vir­
tual machines with 1/2/4 vcpus and 1 GB RAM with the same
operating system.

We use the turbostat in order to get reliable measurements
of socket consumption, as it is also uses the rapl counters. We
use Lulesh [13] as cpu benchmark, so that we will be able to
approach the cpu usage on production,the stream benchmark
[14] as memory benchmark and also the iozone [15] as io bench­
mark. We poll the counters periodically every one second, so
that joules be converted automatically to watt because of

E(J)
i(s) (2)

Also we use disjoint sets of physical cores for the virtual
machines running in parallel.Every virtual cpu is pinned to a
physical core, in order to calculate correctly the unhalted cpu
cycles, that a virtual machine consumes.

4.2 cpu

Figure 6 shows the power consumption of the cores, when
Lulesh runs on the host using four physical cores (4p3200), as
well as the power consumption, when Lulesh runs in guest with
four virtual cpus (v4p3200). We observe that the guest VM has
nearly the same power consumption as the host, since both of
them stretch the usage of each used core to its limit, but with
worse performance. The performance degradation in the guest
VM comes from the virtualization, but does not approaching

21

4.2. CPU

Figure 6: Cores power consumption(CPU)

Figure 7: Package power consumption(CPU)

the overhead of a type 2 hypervisor. We have noticed same
behavior in case of two cores (2p3200, v2p320o) and in case
of reduced cpu frequency (i30omhz). Also, we noticed same
behavior testing the system with floating point numbers work­
load. The processing of calculations is slow because the KVM
checks whether the command is an interrupt, a page fault or
a simple command, in order to decide whether to remain in
guest mode or not [16, 17].

Figure 7 shows that the energy consumption of the package
is identical to the power consumption of the cores because of
minimal power consumption on dram and gpu power planes.

In Figure 8 we depict the power attribution, which derives
from the application that we developed. We observe the general

22

4·3· Memory

Figure 8: Power attribution (CPU)

consumption exported from rapl counters (general) ,the con­
sumption of a VM with a vcpu running Lulesh(ivm) and the
remaining four lines which indicate the power consumption
attribution of four VM running alongside running Lulesh.We
approximate correctly the consumption of a vm, depending on
cpu usage(cpu-cycles).

4.3 memory

Figure 9: Package power consumption (RAM)

In Figure 9, we depict package power consumption in case
that the stream benchmark, which is not multithreaded, runs
on the host(bare metal) or runs in a single VM or in two/four

23

4·3· Memory

Figure ίο: Cores power consumption (RAM)

VM running in parallel. An interesting note is that less power
is consumed by the VM compared to the host for the same
test but energy consumption is bigger because of performance
degradation.Also the total power consumption remains nearly
constant,regardless of memory usage. Furthermore, in case that
the stream benchmark runs in four VMs in parallel, we notice
an increase of power consumption, but also a decrease of per­
formance, because of bus saturation.

Figure 11: Power attribution (RAM)

In Figure 11, we depict power consumption per VM when
the stream benchmark runs in two VM running in parallel. We
are able to observe the same behavior as in the experiment of
the previous graph, which is reduction in power consumption,
reduction in yield but increase of energy consumption.

24

4·4· IO

4.4 10

Figure 12: Package power attribution (IO)

Figure 13: Cores power consumption (IO)

In Figure 12, we depict the power consumption in case that
the iozone benchmark runs on the host, using two/four phys­
ical cores and in case that runs in guest VM with two/four
virtual cpus.In case of guest VM, we noticed an increase of
power consumption because of the switch in host mode to pro­
cess io request.Another reason is qemu iothread mutex con-
tention.Threads blocking on average 20 us, when the iothread
mutex is contended.

As in memory intensive benchmark experiment, we are able
to observe reduction in power consumption and degradation of
performance, but also an increase of the energy consumption.

25

4·5· Combination

Figure 14: Power attribution (IO)

4.5 combination

Figure 15: Cores power consumption

In Figure 15, we can see the power consumption extracted
from rapl counters (general). The purple and the green line
show the VM consumption that run the stream and lulesh re­
spectively . Red and yellow lines depict the attributed power
consumption of two running in parallel VM , while running
stream and lulesh simultaneously. We observe that the individ­
ual consumption is properly approached.

26

5
R E L A T E D W O R K

Until today, there has been some progress on the issue of at­
tributing energy consumption for running in parallel applica­
tions and specifically for virtual machines. Some examples are
mentioned below.

Through the Host power Management of Vmware Vsphere
we are able to come to a conclusion about the energy consump­
tion of the virtual machines, and configure the system as well,
in order to reduce the energy which is consumed in a cluster.
However, Vsphere is a closed commercial application.

Intel VTune is another tool, by which we can do static analy­
sis in applications or even in virtual machines. Through VTune
we are able to draw conclusions about code's points, which are
energy-intensive.

Apart from the model that we used in order to do the attri­
bution of the energy consumption, other techniques have been
suggested. One of them is, the [18] wherein consumption is
approached, by grouping the threads of the same category. An­
other one is the [19] where power containers are implemented
and provide an approach of the consumption in every core, in­
cluding mechanisms that isolate the energy consumption of a
multicore server at request level. Finally, energy consumption
is approached in [1], considering the hyperthreading. In par­
ticular, it calculates the cpu-cycles, as they are calculated in
our implementation. In addition,authors calculates the cycles
as well, when one of the two virtual cores of a physical core
is being used. Using the above in a mathematical model, it
approaches accurately the energy consumption of each applica­
tion.

27

6
C O N C L U S I O N

In modern datacenter it is necessary to control the energy con­
sumption. Administrators should be able to properly config­
ure the host to a specific server of the datacenter to reduce
consumption. Controlling virtualization stack demands of use
different API, which for different hypervisor require different
configuration or implementation. This problem is solved by us­
ing Libvirt that implements one API with different underlying
implementation for various hypervisors.

In this thesis we developed a system for power attribution
extracting counters of unhalted cycles and socket power con­
sumption using perf events that will be enabled through Lib-
virt. Furthermore, we developed an application that uses the
counters of these events in order to inform us about the indi­
vidual consumption of virtual machines running in parallel on
a server.The main goal was to describe completely the process
of adding functionality to the library, in order to facilitate fu­
ture development .

In the x86 architecture, energy attribution in individual ap­
plications is challenging. The reason is that the RAPL coun­
ters do not provide measurement of consumption per core. We
used the model i to extract this measurments. The model we
have used is sufficiently simple, but with the appropriate as­
sumptions we can draw useful conclusions. Thus Intel should
implement rapl counters per core in order to make the attribu­
tion easier. Finally based on the validation we did in Chapter 4,
we observed that our approach to the problem of attribution of
the power consumption is working properly and confirm every­
thing we know about a type i hypervisor, ie lower performance
overhead.

28

6.i . Future Work

6.i future work

From the measurements, we notice that the model we used, ap­
proximates correctly the energy consumption of a virtual ma­
chine. In order the model to be accurate, we have made the
assumption that the virtual cpus of a virtual machine should
be pinned to physical cores. Moreover, from model paper we
can see that if we have hyperthreading enabled, the calculation
of this simple model consumption can reach up to 40% devia­
tion from the real consumption. Calculated by the model that
takes into account the hyperthreading. This could be added to
the existing system in the future.Another useful feature would
be DRAM refresh rate scaling ,to help control system power
consumption.

29

A
H O S T C O N F I G U R A T I O N

Listing A .i: virhostcpu.c

int virHostSetRaplLimit(int value,const char *type,const
char *type_value)

{

int fd;
char file[128];
const char *low = "50";
const char *high = "100";

if (value == 0){

sprintf(file,
"/sys/devices/system/cpu/intel_pstate/max_perf_pct");

fd = open(file, O_RDWR);
if(write(fd, low, 7) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else if(value == 1){

sprintf(file,
"/sys/devices/system/cpu/intel_pstate/max_perf_pct");

fd = open(file, O_RDWR);
if(write(fd, high, 7) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else{

if(strcmp(type, "power_limit") == 0) {
sprintf(file,

"/sys/devices/virtual/powercap/intel-rapl/intel-rapl
\\:0/intel-rapl\\:0\\:0/power_limit_uw");
fd = open(file, O_RDWR);

30

i f (write(fd, type_value, 7) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else if(strcmp(type, "time_window") == 0) {

sprintf(file,
"/sys/devices/virtual/powercap/intel-rapl/intel-rapl

\\:0/intel-rapl\\:0\\:0/time_window_us");
fd = open(file, O_RDWR);
if(write(fd, type_value, 7) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else if(strcmp(type, "enabled") == 0) {

sprintf(file,
"/sys/devices/virtual/powercap/intel-rapl/intel-rapl

\\:0/intel-rapl\\:0\\:0/enabled");
fd = open(file, O_RDWR);
if(write(fd, type_value, 7) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
return -1;

}
close(fd);
return 0;

}

int virHostSetGovernor(int core,int governor)
{

int fd;
char file[128];
const char *governor0 = "ondemand";
const char *governor1 = "userspace";
const char *governor2 = "performance";
const char *governor3 = "powersave";

sprintf(file, "/sys/devices/system/cpu/cpu%d/cpufreq/
scaling_governor", core);

fd = open(file, O_RDWR);
if(governor == 0){

if(write(fd, governor0, strlen(governor0)) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}

31

else if (governor == 1){
if(write(fd, governorl, strlen(governorl)) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else if (governor == 2){

if(write(fd, governor1, strlen(governor2)) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else if (governor == 3){

if(write(fd, governor1, strlen(governor3)) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}

}
else{

printf("Wrong governor.\n");
return -1;

}
close(fd);
return 0;

}

int virHostSetFrequency(int core,const char ^frequency)
{

int fd;
char file[128];

sprintf(file, "/sys/devices/system/cpu/cpu%d
/cpufreq/scaling_setspeed", core);

fd = open(file, O_RDWR);
if(write(fd, frequency, 7) < 0){

fprintf(stderr, "%s\n", strerror(errno));
}
close(fd);
return 0;

}

32

B I B L I O G R A P H Y

[1] S. Eranian Y. Zhai, X. Zhang. Happy: Hyperthread-aware
power profiling dynamically. In Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference,
Philadelphia, PA, June 2014.

[2] Khoa Huynh, Stefan Hajnoczi. Kvm /qem u storage stack
performance discussion, 2010. [Online; Retrieved January
3, 2015].

[3] Martin Dimitrov. Intel® power governor. https:
//so ftw are .in te l.co m /sites/d efau lt/ file s/m /d /4/ 1/
d/8/power_domains2.jpg/, 2012.

[4] Intel Corporation. Intel® 64 and ia-32 architectures soft­
ware developer's manual. vol 3, 2016.

[5] Stefan Hajnoczi. Qemu internals: Over­
all architecture and threading model.
http://blog.vmsplice.net/2011/03/qemu-internals-
overall-architecture-and.html, 2011.

[6] Brad Ellison Lauri Minas. Energy Efficiency for Information
Technology: How to Reduce Power Consumption in Servers and
Data Centers. Intel Press, 2009.

[7] Fabrice Bellard. Qemu, a fast and portable dynamic trans­
lator. In Proceedings of USENIX Annual Technical Conference,
pages 41-46, 2005.

[8] Libvirt Developers. Libvirt - the virtualization api. http:
// lib v irt.o rg /in d ex .h tm l.

[9] Mike Murphy Patrick Mochel. sysfs - the filesystem for
exporting kernel objects. https://www. kernel.org/doc/
D ocum entation/filesystem s/sysfs.txt, 2011.

[10] S.Kuo P. Irelan. Performance monitoring unit shar­
ing guide. h ttp :// lin u x -secu rity .cn /eb o o k s/o ls2007/
OLS2007-Proceedings-V1 .pdf.

[11] The performance monitoring interface for linux. https:
/ / p e r f .w ik i.kernel.org/index.php/Main_Page.

[12] Eric Blake. Libvirt API extensions. Redhat, 9 2010.
https://libvirt.org/api_extension.html.

33

https://software.intel.com/sites/default/files/m/d/4/1/d/8/power_domains2.jpg/
https://software.intel.com/sites/default/files/m/d/4/1/d/8/power_domains2.jpg/
https://software.intel.com/sites/default/files/m/d/4/1/d/8/power_domains2.jpg/
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
http://libvirt.org/index.html
http://libvirt.org/index.html
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
http://linux-security.cn/ebooks/ols2007/OLS2007-Proceedings-V1.pdf
http://linux-security.cn/ebooks/ols2007/OLS2007-Proceedings-V1.pdf
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://libvirt.org/api_extension.html

Bibliography

[13] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L.
Chamberlain, Jonathan Cohen, Zachary DeVito, Riyaz
Haque, Dan Laney, Edward Luke, Felix Wang, David
Richards, Martin Schulz, and Charles Still. Exploring tradi­
tional and emerging parallel programming models using a
proxy application. In 27th IEEE International Parallel & Dis­
tributed Processing Symposium (IEEE IPDPS 2013), Boston,
USA, May 2013.

[14] John D. McCalpin. Stream: Sustainable memory band­
width in high performance computers. Technical re­
port, University of Virginia, Charlottesville, Virginia,
1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream /.

[15] W. Norcutt. Iozone benchmark program. http://www.
iozone.org/, 1991.

[16] Q. Gao J. Che, Q. He and D. Huang. Performance mea­
suring and comparing of virtual machine monitors. In Em­
bedded and Ubiquitous Computing, page 381 -386, EUC '08.
IEEE/IFIP International Conference on, December 2008.

[17] M. A. Murphy M. Fenn and S. Goasguen. A study of a
kvm-based cluster for grid computing. In Proceedings of the
47th Annual Southeast Regional Conference, page 34:1-34:6,
New York, NY, USA, 2009.

[18] B. Urgaonkar J. Choi, S. Govindan and A. Sivasubrama-
niam. Profiling, prediction, and capping of power con­
sumption in consolidated environments. In Proceedings of
Modeling Analysis and Simulation of Computers and Telecom­
munication Systems (MASCOTS), pages 1-10, 2008.

[19] S. Dwarkadas X. Zhang K. Shen, A. Shriraman and
C. Zhuan. Power containers: An os facility for fine-grained
power and energy management on multicore servers. In
Proceedings of 18th Int'l Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), Houston, Texas, 2013.

34

http://www.cs.virginia.edu/stream/
http://www.iozone.org/
http://www.iozone.org/

