
1

Πανεπιστήμιο Θεσσαλίας, 2014-2015

Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Θέμα:

<< Ανάπτυξη διαδικτυακής πύλης πειραματισμού με την

ερευνητική υποδομή του NITOS>>

<< Design and development of the NITOS portal for

experimentation with NITOS facility>>

Ζαμίχος Αλέξανδρος

Επιβλέπων Καθηγητής:

Κοράκης Αθανάσιος (Επίκουρος Καθηγητής)

Συν επιβλέπων Καθηγητής:

Αργυρίου Αντώνιος (Λέκτορας Καθηγητής)

Βόλος, Μάρτιος 2015

2

CONTENTS

CONTENTS ... 2

Ευχαριστίες ... 3

ΠΕΡΙΛΗΨΗ ... 4

ABSTRACT .. 5

1. Introduction .. 6

1.1 Testbed .. 6

1.2 NITOS facility ... 7

1.2.1 Network Experimentation .. 7

1.2.2 Switches .. 12

1.2.3 CM cards .. 13

1.2.4 USRPs equipment ... 14

1.2.5 Enabling WiMAX connectivity to the NITOS testbed..................................... 14

1.2.5 LTE testbed .. 15

1.2.6 Facility architecture .. 16

1.2.7 Broker .. 18

1.3 Motivation .. 20

2. Tools .. 21

2.1 Ruby on Rails ... 21

2.2 Structure and Style ... 21

2.3 Gems .. 22

3. Development of the Portal ... 23

3.1 Design Database and Log in/out Mechanism ... 23

3.2 NITOS Portal Architecture ... 27

3.3 Experimentation Tools .. 28

3.3.1 User's Timezone Detection ... 28

3.3.2 Scheduler Tools ... 30

3.3.3 My Reservations Tool ... 42

3.3.4 Node Status tool ... 43

3.3.5 Other Features .. 45

Conclusion ... 48

References ... 49

3

Ευχαριστίες

Με την εκπόνηση της παρούσας Διπλωματικής εργασίας, φέρνω εις πέρας τις προπτυχιακές

μου σπουδές στο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του

Πανεπιστημίου Θεσσαλίας.

Θα ήθελα αρχικά να ευχαριστήσω θερμά τον κ. Κοράκη Αθανάσιο, Επίκουρο Καθηγητή του

Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, για την ανάθεση της

Διπλωματικής μου εργασίας.

Επίσης, θα ήθελα να ευχαριστήσω ιδιαιτέρως τους Νιαβή Χάρη και Δαδούκη Άρη,

ερευνητές του Πανεπιστημίου Θεσσαλίας, για την συνεχή καθοδήγηση και ουσιαστική

βοήθειά τους, για την ολοκλήρωση της Διπλωματικής μου εργασίας.

Ακόμα, ευχαριστώ την κοπέλα μου και όλους τους φίλους μου, για την υποστήριξη και την

συμπαράστασή τους καθ' όλη τη διάρκεια των σπουδών μου.

Τέλος, ευχαριστώ θερμά την οικογένειά μου για τη βοήθεια, τα εφόδια και την αμέριστη

συμπαράσταση που μου παρείχε όλα αυτά τα χρόνια.

Στην οικογένειά μου

4

ΠΕΡΙΛΗΨΗ

Η παρούσα Διπλωματική Εργασία ασχολείται με την υλοποίηση ενός πειραματικού

Portal για την ερευνητική εγκατάσταση NITOS.

Το πρώτο μέρος της εργασίας περιέχει μια γενική εισαγωγή για τα testbeds και μια

πιο ειδική για το testbed NITOS, αλλά και το κίνητρο για την υλοποίηση του

πειραματικού Portal.

Στο δεύτερο μέρος παραθέτουμε τα εργαλεία που χρησιμοποιήθηκαν για την

ανάπτυξη του Portal και τους λόγους που επιλέχθηκαν.

Στο τρίτο μέρος βρίσκεται η υλοποίηση του Portal. Αρχικά παρουσιάζουμε την

αρχιτεκτονική του και στη συνέχεια αναλύουμε κάθε κομμάτι του ξεχωριστά. Τέλος,

δίνουμε μερικά screen shots του Portal.

5

ABSTRACT

The present Final Project Dissertation – Thesis is an implementation of an

Experimental Portal for the NITOS research facility.

The first part of the project, consists of an introduction about testbeds in general

and more specifically about NITOS testbed and the motivation for implementing this

Experimental Portal.

At the second part, we present the tools that we used for the development of the

Portal and the reasons that we used them.

At the third part lies the implementation of the Portal. Firstly we present the

architecture of the Portal and then we resume with a detailed presentation of every

component of the Portal. Finally we give some screen shots of the Portal UI.

6

1. Introduction

1.1 Testbed

Wireless networking experimentation is commonly used for protocols benchmarking

and validation. In this direction, experimentation platforms have created, commonly

known as testbeds. The aim of testbeds is to provide means for the experimentation

definition and performance evaluation.

A testbed is a platform for experimentation of many different projects. Testbeds

allows the research community to test and evaluate the scientific theories, new

technologies and applications. Testbeds are a critical tool for evaluating ongoing

development.

Research in wireless networks include theoretical analysis as also experimentation.

And although the theoretical analysis is the key to efficient solutions,

experimentation will confirm the results to real world scenarios.

A common way to perform wireless experimentation is by using simulations. Various

simulators have been developed such as NS-3 and GloMoSim. While such simulators

can define the exact environment where the theoretical model will be testing, they

cannot emulate the phenomena that may take place in real world. As an example,

simulators include inaccurate representation of the wireless medium and ignore

several aspects such as computational overhead.

Due to this limitations, real platforms preferred from researches for testing the

theoretical analysis. Indeed, use of testbeds in networking as evaluation platforms

has steadily increased over the last years, something that occurs from the increased

number of testbed development.

Moving from simulation to real testbed experimentation more realism rather than

abstraction is experienced, while also advantages of applicability on real case

scenarios are offered. Moreover, while in simulation/emulation, scalability and

reproducibility of an experimentation is more likely to be controlled, in a real

wireless testbed, a service/framework that can provide means for scalability and

reproducibility becomes more enticing for offering advanced instrumentation

features.

The latest trend in testbed's community is federating between testbeds, in Europe

and all over the world. Testbed's community tries to take advantage of the distinct

7

infrastructures, of the numerous wireless testbeds, and provide federated wireless

testbeds through the interconnection of various facilities and the adoption of similar

tools and methodologies. Giving the opportunity to users to have access to a larger

amount of resources and making experiments more complicated.

1.2 NITOS facility

Among the wireless testbeds, Network Implementation Testbed Laboratory (NITlab)

of the Computer and Communication Engineering Department at University of

Thessaly, has a testbed named NITOS, which stands for Network Implementation

Testbed using Open Source platforms. NITOS testbed currently consists of 100

operational wireless nodes, which are based on commercial Wifi cards and Linux

open source drivers. The testbed is designed to achieve reproducibility of

experimentation, while also supporting evaluation of protocols and applications in

real world settings.

NITOS facility is open to the research community 24/7 and it is remotely accessible

through the NITOS reservation tool. Different users can use this platform parallel,

through the utilization of the NITOS scheduler software. The testbed is based on

open-source software. The control and management of the testbed is done using the

cOntrol and Management Framework (OMF) open-source software. Users can

perform their experiments by reserving slices (nodes, frequency spectrum) of the

testbed through the NITOS scheduler.

1.2.1 Network Experimentation

NITOS facility is comprised of 2 wireless testbeds for experimentation. An outdoor

testbed, featuring WiFi, WiMAX and LTE support and an indoor isolated testbed

comprised of advanced powerful nodes.

8

1.2.1.1 Outdoor testbed

NITOS outdoor testbed consists of powerful nodes that feature multiple wireless

interfaces and allow for experimentation with heterogeneous (WiFi, WiMAX, LTE)

wireless technologies. It is deployed at the exterior of the University of Thessaly

(UTH) campus building.

Figure 1: Outdoor testbed

More specifically, it consists of 45 nodes of different types, namely 10 Orbit - like

nodes, 20 custom made outdoor nodes (hereafter referred as Outdoor nodes) and

15 diskless nodes.

9

1.2.1.1.1 Wireless nodes

Orbit – like nodes

Figure 2: Orbit – like Node

UTH’s Outdoor Nodes

The outdoor nodes are equipped with a Chassis Manager (CM) card in order to

enable remote control of their operational status.

Figure 3: UTH's Outdoor Node

10

Diskless nodes

The basic characteristic of diskless nodes is the lack of a local disk, due to their low

cost nature.

Figure 4: Diskless Node

1.2.1.1.2 Servers and Racks

In NITOS outdoor testbed's server room there are two racks. These are responsible

for interconnecting the wireless nodes. The first rack contains the server of the

testbed, a UPS and the nodes’ plugs connected to the power supply.

The server machine hosts multiple virtual machines, each one standing for a

different service providing by the NITOS facility. Namely, the NITOS server for

wireless experimentation, the OpenFlow controller and 2 web site servers.

The NITOS server is used to run experiments on the testbed through OMF, and to

host various network services including DHCP, DNS, NTP, TFTP, PXE, Frisbee, MySQL,

OML and Apache. Furthermore, it is responsible for scheduling of the testbed’s

11

resources and for handling users’ requests to access the testbed. It also keeps

valuable information for experimentation.

The second rack contains all necessary switches of the testbed interconnected with

the nodes.

1.2.1.2 Indoor testbed

1.2.1.2.1 Wireless nodes

The new NITOS indoor testbed consists of 40 Icarus nodes and is deployed in an

isolated environment at a University of Thessaly's campus building. Experimenters

are able to run and evaluate power demanding processing algorithms and protocols

in a large scale testbed. It is also equipped with directional antennas.

Icarus Nodes

To control and monitor Icarus node's operation NITOS uses UTH’s Chassis Manager

Card. A tiny web server is running on CM card and serves http requests such as

power on/off and reset commands. Furthermore, the CM card can support real time

sensor measures.

Figure 5: Icarus Node

12

1.2.1.2.2 Server machine

The NITOS indoor testbed’s server machine is a HP ML350p G5

1.2.2 Switches

NITOS testbed operates two HP 2510-48 Switches, in order to enable remote control

of the wireless nodes. The first switch is used for sending control messages in order

to manage the execution of an experiment through OMF, as well as to collect all

measurements defined by the user. The second one is used for interconnecting the

CM cards attached on each node, in order to remotely control their operational

status.

Figure 6: HP 2510-48 switch

It also features two OpenFlow Ethernet switches – Pronto 3290, in order to

interconnect the wireless nodes through a wired network, providing software

defined networking (SDN) experimentation to the experimenters.

13

Figure 7: Pronto 3290

1.2.3 CM cards

UTH has an essential device to control the operational status of NITOS testbed,

named Chassis Manager (CM) Cards. The CM cards consists of an Arduino based

board and an Arduino compatible shield. The Arduino board includes a general-

purpose microcontroller and an Ethernet microcontroller, while the shield includes a

couple of relays, a set of sensors and several electronic components. The relays are

used to short the power on/off and the reset pins of the node’s motherboard. The

sensors provide information about the environmental conditions, such as the

temperature the humidity and the light intensity, as well as the internal temperature

of the node. The CM card runs a tiny web-server which is responsible for receiving

incoming commands via http requests, parsing the commands, making the

appropriate actions and responding back to the client with a standard http response.

Part of this thesis was to make a web-based tool that controls and shows the status

of the nodes according to user's reservation. Throw this tool user is able to turn

on/off reset and see the status of the nodes that has reserved. We discuss node

status tool, more detailed, later on this presentation.

14

Figure 8: Chassis Manager Cards

1.2.4 USRPs equipment

NITOS has a software defined radio (SDR) testbed that consists of 10 Universal

Software Radio Peripheral (USRP) devices attached to the NITOS wireless nodes.

USRPs allow the researcher to program a number of physical layer features (e.g.

modulation), thereby enabling dedicated PHY layer or cross-layer research.

1.2.5 Enabling WiMAX connectivity to the NITOS testbed

WiMAX (Worldwide Interoperability for Microwave Access) is a wireless

communications standard designed to provide 30 to 40 megabit-per-second data

rates, and had been adopted as a 4G technology worldwide. NITOS team added a

WiMAX Base Station and enabled WiMAX connectivity of the nodes.

15

Figure 9: WiMAX installation components

1.2.5 LTE testbed

LTE (Long Term Evolution), marketed as 4G LTE, is a standard for wireless

communication of high-speed data for mobile phones and data terminals. It is based

on the GSM/EDGE and UMTS/HSPA network technologies, increasing the capacity

and speed using a different radio interface together with core network

improvements. UTH in cooperation with COSMOTE, has acquired and configured

several components. The core units are two LTE Access Points and the SIRRAN’s

LTEnet core network.

Figure 10: LTE access point

16

Figure 11: LTE installation in UTH premises

1.2.6 Facility architecture

The network architecture of the indoor and outdoor testbeds consists of three

Gigabit Ethernet switches. Two Gigabit Ethernet switches interconnect the nodes

with NITOS server of each testbed. The first one is the Control switch that provide

for control of experiment execution and measurement collection and the second is

the Experimental switch, which can be used for conducting wired experiments. A

third Gigabit Ethernet, namely the Chassis Manager switch, is dedicated in

controlling the operational status of the nodes through the transmission of custom

http requests that control solid state relays on the Chassis Manager cards attached

on each node.

17

Figure 12: Outdoor/indoor testbeds network architecture

The overall architecture of the NITOS facility is demonstrated in Figure 13.

Figure 13: NITOS facility architecture

18

1.2.7 Broker

The broker can been seen as an aggregate manager for a testbed, which keeps the

inventory with the available resources and provides a reference point where services

related to experiment life cycle (resource discovery, reservation, provision) are

concentrated.

The Broker is comprising a communication module with three different

communication interfaces, an authentication and authorization module, a scheduler

module, a database and an AM liaison module responsible for communicating with

other OMF-6.0 RCs over FRCP.

Figure 14: OMF Broker Architecture

The Authentication/Authorization module is adapted to the credentials that each of

the APIs is using. Regarding Authentication, the process is based mainly on X.509

certificates that are used by the SFA authorities to authenticate users of different

testbeds.

19

The module of scheduler, is responsible for scheduling the resources. When a user

requests some resources for reserving them for a specific time, scheduler keeps all

the necessary information in the corresponding database of the Broker. The

database contains information regarding the availability of the resources based on

the reservations done from the users and information regarding the description of

the resources. The Broker was designed in order to be modular. The extension of the

current inventory by adding new resources can easily achieved by defining a Class

with the adequate properties that correspond to the properties of the new resources

Also, the Scheduler allows the usage of different scheduling algorithms depending on

the testbed owner's preferences.

The RESTful API provides interoperability with 3rd party tools or even testbed

specific tools. Such an example is a web frontend of a testbed which enables their

users to perform reservation of resources. The communication between the

frontend and the backend which in this case is the Broker, can be easily made with

the RESTful interface of the Broker.

Above we demonstrate an example of the FRPC messages during an operation of

CMRC.

Figure 15: Interaction between Chassis Manager Card RC and Broker

20

1.3 Motivation

As we see, NITOS testbed provides a variety of technologies. Also, NITOS expands

continuously with new technologies that require the corresponding interface in

order to be configured by the users. This led us to develop a new Portal that

incorporates all the experimentation tools of NITOS. Unlike the previous site of

ΝΙΤlab, our aim was to keep the information about the testbed and its facilities in

NITlab's site and to separate the experimentation tools in a new Portal.

Figure 16: NITlab's site Home Page

Figure 17: Home Page of NITOS Portal

21

2. Tools

In this section we will refer the tools that we use for the development of the Portal

and the reasons that we choose them.

2.1 Ruby on Rails

The basic tool that we used was Ruby on Rails. Ruby on Rails is a web development

framework written in the Ruby programming language. Since its debut in 2004, Ruby

on Rails has rapidly became one of the most powerful and popular tools for building

dynamic web applications.

Ruby on Rails is open-source and free for download and use. One reason that we

chose Rails was its elegant and compact design. By exploiting the malleability of the

underlying Ruby language, Rails effectively creates a domain-specific language for

writing web applications. As a result, many common web programming tasks such as

generating HTML, making data models, and routing URLs are easy with Rails, and the

resulting application code is concise and readable. Rails also, provides a neat

development environment to use MVC model.

A second reason was, that Ruby is the main development language used by the

experimenters of NITlab.

Finally, Rails benefits from an unusually enthusiastic community. A rich variety of

informative blogs and solutions to the most programming problems can be easily

found. Also, a huge number of gems (self-contained solutions to specific problems

such as calendar) can be used.

The version of Ruby that we use for the development was ruby 2.0.0p451 with Rails

4.1.1.

2.2 Structure and Style

For the development of the structure and the style of the Portal, HTML 5, CSS 3,

Bootstrap and jQuery have been used.

22

HTML 5

Hyper Text Markup Language (HTML) is the standard markup language used to create web

pages. For the construction of the Portal we used the fifth version of the HTML the HTML5.

CSS 3

Cascading Style Sheets (CSS) is a style sheet language used for describing the look and

formatting of a document written in HTML. We used CSS3 which is the latest version of CSS.

Bootstrap

Bootstrap is the most popular HTML, CSS and JavaScript framework for developing

responsive, mobile-first web sites. This means the layout of the web pages adjusts

dynamically, taking into account the characteristics of the device used (desktop, tablet,

mobile phone). Bootstrap also provides a number of re-usable components like buttons,

buttons with drop-down option, navigation lists, horizontal and vertical tabs, navigation,

pagination, etc.

jQuery

We also used jQuery which is the most popular JavaScript library in use today. jQuery

is a cross-platform JavaScript library designed to simplify the client-side scripting of

HTML.

2.3 Gems

As we referred Ruby allows us to use gems as solution to specifics problems. Below we give a

list of gems that we used for the development of the Portal.

 gem 'httparty'

 gem 'websocket-rails'

 gem 'momentjs-rails'

 gem 'bootstrap3-datetimepicker-rails'

 gem 'jquery-cookie-rails'

23

3. Development of the Portal

The development of the Portal can be separated into three main sections. The first

section was the design of a database and a log in/out mechanism. The second

section, was the development of four experimentation tools, namely, the Scheduler

tools Reservation and Quick Reservation, My Reservation tool and Node Status tool.

Finally, in the last section we dealt with the customization of the Portal.

In this chapter we discuss the development of the Portal. We separate this chapter

in three subchapters. At first, we deal with the design and the construction of a

database and a log in/out mechanism. Next, we present the architecture scheme of

the Portal. Finally, we examine in detail each tool separately and give screen shots

of the Portal.

3.1 Design Database and Log in/out Mechanism

The first thing that we dealt with, during the development of the Portal, was the

design of a database and a log in/out mechanism. Our purpose was to give users the

ability to sign up for our site and create a user profile page, so that they can use the

experimentation tools.

Figure 18: User's Profile Page

24

The columns of our database are:

 id

 name

 email

 created_at

 updated_at

 password_digest

 remember_token

Figure 19: Database scheme

25

Figure 20: Data in Database

Every user that wants to have access to Portal's tools, has to complete a form with

his/her user name, email and password.

Figure 21: Registration Form

We added some validations about the user's data. User's name should not be blank,

it has to be less than 50 characters and to be unique. Email should not be blank, it

has to be unique and should match the specific format characteristics of email

addresses.

Password should not be blank and it has to be at least 6 characters.

26

Figure 22: Validation check

We added password_digest column to the users table to store a hashed version of

the user's password in the database and use it for authentication. The method for

authenticating users is to take a submitted password, hash it, and compare the

result to the hashed value stored in the database. If the two match, then the

submitted password is correct and the user is authenticated. By comparing hashed

values instead of raw passwords, we are able to authenticate users without storing

the passwords themselves. This means that, even if our database is compromised,

our users’ passwords are still secure.

We also added remember_token, a unique, secure remember token for storing it as

a permanent cookie. We used urlsafe_base64 method from the SecureRandom

module in the Ruby standard library that returns a random string of length 16

composed of the characters A–Z, a–z, 0–9, “-”, and “_”. We store the base64 token

on browser, and then store its hash digest in the database. We can then sign users

in automatically by retrieving the token from the cookie, calculating the hash digest,

and then searching for a remember token matching the digest’s value. The reason

for storing only hashed tokens is so that, even if our entire database is

compromised, the attacker still won’t be able to use the remember tokens to sign

in. To make our remember token even more secure, we change it every time a user

creates a new session, which means that any hijacked sessions will expire the next

time a user signs in.

Id column created automatically, and used by Rails to identify each row of the

database uniquely. Created_at and updated_at are timestamps that automatically

record when a given user is created and updated. Finally, we added the admin

attribute, to identify administrative users of the site.

27

We also give user the opportunity to update his/her data.

Figure 23: Updating Profile Page

3.2 NITOS Portal Architecture

The figure below shows the architecture of NITOS Portal.

Figure 24: NITOS Portal Architecture

28

NITOS Portal gives user the opportunity to use its experimentation tools. All the

tools communicates with Broker to discover the reservations of the users. However,

we can categorize these tools in two groups.

The first group consists of the Scheduler tools (Reservation, Quick Reservation) and

My Reservation tool, which communicate with Broker via http requests. Broker is

responsible for receiving the incoming commands, parsing the commands, making

the appropriate actions - like make or cancel a reservation- and responding back to

the Portal.

The second group consists of the Node Status tool, which communicates with the

Chassis Manager (CM) cards. The CM cards runs a tiny web-server which is

responsible for receiving incoming commands via http requests, parsing the

commands, making the appropriate actions - like turn a node on/off or reset a node

- and responding back with a standard http response.

3.3 Experimentation Tools

In this section we discuss detailed the development of the experimentation tools.

We display some screen shots of the new web interface and we compare it with the

previous version of the tools.

To use the experimentation tool user requires to have an account on Broker with

the same user name as on Portal. Furthermore, a user should has at least one slice

for being able to experimenting. To create slices and an account on Broker, user

should has to contact with NITlab's team.

3.3.1 User's Timezone Detection

All the experimentation tools display every information according to user's

timezone. To achieve that we have to detect correctly the user's timezone. We

chose that, from explicitly ask them to tell their timezones, because if a user travels,

he/her will has to change his/her timezone setting again. Since computer already

has a timezone setting, and the browser (via Javascript) already knows what it is, we

should take that info pass it to the server when a request is made.

The Javascript Date object has a getTimezoneOffset method which returns an

29

integer timezone offset, but daylight savings time complicates things. We also

wanted the timezone represented as a string to hand to Rails, like “Europe/Athens”,

not an integer offset. For that purpose we used jsTimezoneDetect library. This let us

get the timezone like this:

 var tz = jstz.determine();

 tz.name(); // returns “Europe/Helsinki”

The next step was to send that information to server. For that purpose we use

“jquery-cookie-rails” gem, for sending the user's current timezone via a cookie.

Then in Rails app, we use an arround_filter in ApplicationController to set the

timezone for one request only, and reset it after the request is done. The whole

code that we use:

<script>

 jQuery(function() {

 var tz = jstz.determine();

 $.cookie('timezone', tz.name(), { path: '/' });

 });

</script>

def set_timezone

 default_timezone = Time.zone

 client_timezone = cookies[:timezone]

 Time.zone = client_timezone if client_timezone.present?

 yield

 ensure

 Time.zone = default_timezone

 end

end

If something goes wrong we set the default timezone as the user's timezone. We set

the default timezone to Athens timezone (GMT +2).

30

As Broker stores all the information about the reservations of the resources in UTC,

every time that we make a GET request to Broker we convert the times to user's

timezone.

3.3.2 Scheduler Tools

Experimenting on NITOS depends on using its resources (nodes, channels). For that

purpose NITlab's team had created NITOS Scheduler, a tool which is responsible for

managing the testbed's resources. NITOS Scheduler was mainly consisting of two

components, a web-based user interface and a server component compromising of

some scripts and a database.

Figure 25: Previous NITOS Scheduler's web interface

In this thesis we tried to develop a new way for managing the testbed resources.

We developed a new web-based interface, consisting of Scheduler's tools

(Reservation and Quick Reservation), which communicates with Broker. Then, the

Broker's module of scheduler, is responsible for scheduling the resources and for

keeping all the necessary information in the corresponding database of the Broker.

Since NITOS objective is to serve as many users as possible without any complicated

procedures, our scheduler is developed in that spirit.

3.3.2.1 Reservation Tool

Reservation tool is the main tool to discover the available resources (nodes,

channels). The experimenter also has the opportunity to compare the technical

characteristics of the resources and reserve some of them.

31

By accessing the Reservation tool, user has the opportunity to discover the available

resources for the next 24 hours (in time slots of 30 min), according to the

information stored in the database of Broker. All the information is displayed

according to user's timezone. We chose to display that information in a two

dimensional table with the names of the resources as rows and the time slots as

columns. Every cell of that table represents the availability of a resource in a specific

time slot. If a resource is reserved, a lock is shown in the corresponding cell,

otherwise the cell is empty.

Figure 26: Reservation Tool – First Page

We also give the opportunity to the experimenter to choose a specific date in the

future and discover the schedule of the resources for that day.

32

Figure 27: Reservation Tool - Choose Date

Figure 28: Reservation Tool – Schedule of chosen date

Reservation tool also displays information for the technical characteristics of every

resource. So, the users can compare the resources and select the appropriate

resources for experimenting. The characteristics that we chose to display for nodes

are hardware type, domain, cpu type, ram, hd capacity and the interfaces, while for

channels we chose frequency and domain.

33

Figure 29: Reservation Tool – Resource's technical characteristics

Except for discovering the availability of the resources, Reservation tool gives users

the opportunity to make a reservation on the available resources. User may select

the slice which prefers for reserving the resources. Making a reservation requires

from user to check more than one cell of the table. If no resources are checked and

user press the “Make reservations” button a relative message will be shown. A

message will inform the user that he/her should check at least a cell of the table for

making a reservation.

Figure 30: Reservation Tool – Empty Reservation

34

Figure 31: Reservation Tool – Empty Reservation Failure Message

If a cell is checked, a tick symbol is shown in the corresponding cell.

Figure 32: Reservation Tool – Choose time slots

On every reservation there is a limit about the number of time slots which users can

reserve for every resource. One user can reserve until 8 time slots (4 hours) of every

resource, per reservation. If more than 8 time slots are chosen a relative message

will be shown.

35

Figure 33: Reservation Tool – Trying to reserve more than 8 time slots

Figure 34: Reservation Tool – Limitation Failure Message

Furthermore, if user selects a "forgotten time slot", we alert him and urging him to

try again, on the updated schedule. We use the term of the forgotten time slot to

describe the case when an experimenter tries to make a reservation on a time slot

that has gone.

36

Figure 35: Reservation Tool – Forgotten time slots case

Figure 36: Reservation Tool – Forgotten time slot updated schedule

The last case which a reservation may fail is when another user reserve the same

resource before. As the Portal can be used by many experimenters simultaneously,

they may try to reserve a node that has been already reserved by another user. In

that case Portal will display a relative message and the refreshed table.

As a case scenario assume that user A opens the Reservation tool. He/her checks

some time slots of node121 for making a reservation. Simultaneously a second user

(user B) accesses the reservation tool and selects the same or some of the time slots

that the user A tries to reserve. User B presses the "Make reservation" button first

and makes a successful reservation for the node121. When, finally, user A presses

37

the "Make reservation" button a message will be shown which will inform user A

that this resource is unavailable for the selected time slots and the updated

schedule will be displayed to the user.

Figure 37: Reservation Tool – Failure because of other user

If none of the above cases happen, a success message will be displayed.

Figure 38: Reservation Tool – Make Reservation

38

Figure 39: Reservation Tool – Successful Reservation

3.3.2.2 Quick Reservation Tool

The second tool we developed was Quick Reservation tool. This tool offers to the

experimenters a different way for reserving resources. Unlike the Reservation tool

where user has to discover the available resources, here, Quick Reservation tool

does the job.

Once an experimenter enters the tool, he has to complete a form. He should give the

number of nodes and/or the number of channels which he wants to reserve. If none

of the nodes number or the channels number field will be completed, a relative

message will be displayed informing the user that he has to complete at least one of

the two fields. User also has the opportunity to define the start time for the

reservation, the duration (until 4 hours per request) and the domain of the resource.

If none of the above will be completed, tool will search from the next half hour and

for a 1 hour period. After submitting the form, Quick Reservation tool will return

some results. If there are available resources which match to the given criteria, a

table with the resources will be displayed with an option for reserving the resources.

If not, a message will inform user that there are not any resources that suits to the

request.

39

Figure 40: Quick Reservation – Filling the form

Figure 41: Quick Reservation Tool– Returned results

40

Figure 42: Quick Reservation Tool - Select only number of resources

Figure 43: Quick Reservation Tool – Returned results for the next half hour and for 1

hour period

Like Reservation tool, a scenario of a failed reservation is when another user reserve

the same resources just before us. Then a message will be displayed which informs

us that the resources are already reserved and urging us trying again.

41

Figure 44: Quick Reservation Tool – Failure because of other user

Another scenario is with the forgotten time slots. If we try to make a reservation

from a past time slot an error message will be displayed.

Figure 45: Quick Reservation Tool – Forgotten time slots case

Similar as the Reservation tool, Quick Reservation displays all the information

accordingly to the user's timezone. When a user makes a request, we make a GET

request to the Broker. Broker searches for available resources that match the

requests criteria and responds to the back-end. When a user makes a reservation, a

POST request is sent to Broker for reserving the corresponding resources.

42

3.3.3 My Reservations Tool

As we saw in the previous chapters the user interface that we built allows users to

reserve resources of NITOS. So we had to develop a tool for managing these

reservations. This motivated us to develop the My Reservations tool. My Reservation

gives user the opportunity to observe his/her reservations. If user reserved some

resources and the reservation is active or will be active in future, tool will display the

reservation in a table. We use a tabbed menu for displaying the reservations of every

user's slice. The table doesn't keeps info for reservations that have ended. We

display the active reservations (the current time is among the period time of the

reservation) with a different color, making easier for the experimenter to perceive

which are actives.

My Reservation tool lets user, also, to cancel a reservation. User may cancel a

reservation whether it is active or not, so the resources will be available for reserving

by other users from the next half hour.

The communication schema is similar to the schemes of the previous tools. The

back-end of Portal communicates with Broker and shows all the information

according to the user's timezone. When the user presses the cancel button a delete

request is sent to the Broker. The figures below shows the My Reservation tool.

Figure 46: My Reservation Tool Interface

43

Figure 47: Previous Version of My Reservations Tool

3.3.4 Node Status tool

The last tool that we dealt with was Node Status tool, which is an integrated web-

based tool for controlling and monitoring the status of the nodes according to a

user's reservation. Figure illustrates the developed application where the available

nodes are shown to the experimenter along with the appropriate keys to turn on/off

or reset the reserved nodes. The non-reserved nodes cannot be turned on/off or

reset, since this would lead to inappropriate use of resources.

As in My Reservation tool, we use a tabbed menu which categorizes all the

information in the appropriate slice. We color the non-reserved and the non-active

nodes with gray. A reserved-active node may be colored with red or green. If a node

is closed we use red color, while for an opened we use green.

44

Figure 48: Previous Version of My Node Status Tool

Figure 49: Node Status Tool Interface

Users have the opportunity to turn on/off or reset the nodes, by clicking the

corresponding buttons. These send an HTTP request to the CM card. The CM card's

HTTP response is immediate. In the case of the 'off' command the response may last

from a few milliseconds to 8 seconds, until the node is switched off. In order to avoid

client timeout or the CM card to appear as non-responsive for that period of time,

we chose to execute the on/off and reset commands asynchronously.

For informing the front-end, we built a mechaninm based on websockets, using

websockets-rails gem. We run a separate thread in the back-end, which asks every 2

seconds the CM cards for the status of all nodes. Websockets are used for the

communication between back-end and front-end. When the back-end receives a

45

response from the CM cards, an event triggered to the front-end. Then, we updates

accordingly the information monitoring to the users.

3.3.5 Other Features

In this section we display some basic information that NITOS Portal provides to the

experimenters. Also, we demonstrate the responsive design, which allows the Portal

to be used on small screens, tablets and cell phones.

Figure 50: Contact Page

Figure 51: Information Page

46

Figure 52: PORTAL on Tablet's screen

47

Figure 53: Portal on cell phone's screen

48

Conclusion

In conclusion, our aim was to create a simple, modern and easily expandable Portal

which can be displayed on various screens (small screens, tablets, cell phones) for

gathering the experimentation tools of NITOS. We managed to develop from scratch

the already existed basic tools (Reservation, My Reservations and Node Status tools),

making them to communicate with Broker and also added the new Quick

Reservation tool. We also developed a Portal that can be easily expanded with new

experimentation tools of NITOS.

49

References

1. NITOS Portal, https://github.com/NitLab/NITOS-Portal

2. OpenLab Deliverable D3.2: "Federation of wireless-specific tools and methodologies",

http://www.ict-

openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_2.pdf

3. OpenLab Deliverable D3.3: "Provision of wireless testbeds", http://www.ict-

openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_3_updated

.pdf

4. Michael Hartl, "The Ruby on Rails Tutorial", http://rails-4-0.railstutorial.org/book

5. Scott Nelson, Clientside Timezone Detection

6. Bootstrap, http://getbootstrap.com/

7. Site of NITlab, http://nitlab.inf.uth.gr/NITlab/

8. Vysakh Sreeenivasan, Websocket in Rails4

https://github.com/NitLab/NITOS-Portal
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_2.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_2.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_3_updated.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_3_updated.pdf
http://www.ict-openlab.eu/fileadmin/documents/public_deliverables/OpenLab_Deliverable_D3_3_updated.pdf
http://rails-4-0.railstutorial.org/book
http://thisbythem.com/blog/clientside-timezone-detection/
http://getbootstrap.com/
http://nitlab.inf.uth.gr/NITlab/
http://vysakh0.github.io/websockets-in-rails4/

