
1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Διπλωματική Εργασία

Θέμα: “Υλοποίηση και αξιολόγηση πρωτοκόλλων δικτύωσης με χρήση της

OpenFlow τεχνολογίας”

Ραδουνισλής Αναστάσιος

Επιβλέπων καθηγητής : Κοράκης Αθανάσιος (Επίκουρος καθηγητής)

Συνεπιβλέπων καθηγητής : Αργυρίου Αντώνιος (Λέκτορας καθηγητής)

Βόλος, 2016

2

UNIVERSITY OF THESSALY

Department of Electrical and Computer Engineering

Thesis

Title: “Implementation and evaluation of network protocols using

OpenFlow technology”

Radounislis Anastasios

Supervisor professor: Korakis Athanasios

Co-supervisor professor: Argyriou Antonios

Volos , 2016

3

Ευχαριστίες

 Η παρούσα διπλωματική εργασία πραγματοποιήθηκε στα πλαίσια του

προπτυχιακού προγράμματος σπουδών του τμήματος Ηλεκτρολόγων

Μηχανικών και Μηχανικών Υπολογιστών για την απόκτηση του αντίστοιχου

διπλώματος. Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή

και λέκτορα του τμήματος κ. Κοράκη Αθανάσιο που μου έδωσε την ευκαιρία

να ασχοληθώ με το θέμα. Επίσης , θα ήθελα να ευχαριστήσω τον υποψήφιο

διδάκτορα του τμήματος Χούμα Κωνσταντίνο , για τον χρόνο του, τις

συμβουλές του και την καθοδήγηση του καθ’όλη την διάρκεια της εργασίας.

Τέλος , θα ήθελα να ευχαριστήσω την οικογένεια μου και τους φίλους μου ,

για την στήριξη που μου παρείχαν όλα αυτά τα χρόνια.

4

Περιεχόμενα

Ευχαριστίες 3

Περιεχόμενα 4

Περίληψη 5

Abstract 6

1. Introduction 7

 1.1 Switching Loop Problem 7

 1.2 Example 7

 1.3 Spanning tree protocol 10

 1.4 Our Solution 11

2. Tools 11

 2.1 OpenFlow 11

 2.2 Mininet 15

 2.3 Trema 17

3. The Controller 18

4. Experiments 20

 4.1 Experiment 1 21

 4.2 Experiment 2 27

 4.3 Conclusion 30

5. Future work 30

6. References 31

5

Περίληψη

 Σκοπός της διπλωματικής εργασίας είναι η υλοποίηση ενός Openflow

Controller ο οποίος θα λύνει το switching loop πρόβλημα και θα καθιστά

δυνατή την επικοινωνία ανάμεσα στους κόμβους ακόμη και εάν υπάρχει

κύκλος στην τοπολογία. Αυτό γίνεται χρησιμοποιώντας τον αλγόριθμο του

Kruskal για την εύρεση του ελάχιστου επικαλύπτον δέντρου και με απόρριψη

των πακέτων που κινούνται στις ακμές οι οποίες δεν ανήκουν σε αυτό. Σαν

βάρος ακμών χρησιμοποιούμε 3 διαφορετικές τιμές: 1)το delay κάθε ακμής,

2) το bandwidth κάθε ακμής και 3) τον λόγο bandwidth/delay.

Στη συνέχεια τρέξαμε τον controller σε 2 διαφορετικές τοπολογίες και

μετρήσαμε το συνολικό μέσο RTT και το συνολικό μέσο Bandwidth για κάθε

βάρος.

6

Abstract

 The purpose of this thesis is the development of an OpenFlow

controller that solves the switching loop problem and allows the

communication between the nodes in non loop free topologies. This is

achieved thanks to Kruskal's algorithm finding the minimum spanning tree

of our topology and by dropping the packets a switch receives in a port

that doesn’t belong in the tree. As weight we use 3 different values: 1)

delay of links , 2) bandwidth of links and 3) the result of

Bandwidth/delay of each link.

Then we run the controller on top of 2 different topologies and we

measure the total average RTT and the total average Bandwidth for each

weight.

1. Introduction

 1.1 Switching Loop problem

A switching loop or bridge loop occurs in computer networks

when there is more than one layer

endpoints. The loop creates broadcast storms as

multicasts are forwarded

will repeatedly rebroadcast the broadcast

network. Since the Layer 2 header does not suppor

(TTL) value, if a frame is sent into a looped

forever.

 1.2 Example

Let’s examine the topology

flow tables of all switches are empty.

7

1.1 Switching Loop problem

A switching loop or bridge loop occurs in computer networks

when there is more than one layer 2 (OSI model) path between two

. The loop creates broadcast storms as broadcasts

forwarded by switches out every port, the switches

repeatedly rebroadcast the broadcast messages flooding the

Since the Layer 2 header does not support a time

if a frame is sent into a looped topology,

Let’s examine the topology downwards. We assume that

flow tables of all switches are empty.

1. Full mesh square topology

A switching loop or bridge loop occurs in computer networks

2 (OSI model) path between two

broadcasts and

every port, the switches

messages flooding the

t a time-to-live

topology, it can loop

downwards. We assume that

We are going to see what happen

packet to h2.

unknown destination MAC address the switch will forward the

packet to all ports except the so

The switches will rece

8

We are going to see what happens when h1 sends a

packet to h2. First s1 will receive the packet, because of

unknown destination MAC address the switch will forward the

packet to all ports except the source port.

The switches will receive the packet and acting like s1

s when h1 sends a

because of

unknown destination MAC address the switch will forward the

ive the packet and acting like s1

they are going to forward it to all ports. S2 w

packet to s3,s4

After that once more switches will forward again the

same packet which now exists in all links.

As a result the packet will start circulating the network in a

loop and since it doesn’t have a TTL value (as Layer 2 packet)

it will loop forever.

Also there is additional overhead because h2 will receive

multiple copies

9

they are going to forward it to all ports. S2 will forward the

packet to s3,s4, s3 to s2, s4 and s4 to s2,s3.

After that once more switches will forward again the

same packet which now exists in all links.

As a result the packet will start circulating the network in a

loop and since it doesn’t have a TTL value (as Layer 2 packet)

it will loop forever.

Also there is additional overhead because h2 will receive

multiple copies of the same packet.

ill forward the

After that once more switches will forward again the

As a result the packet will start circulating the network in a

loop and since it doesn’t have a TTL value (as Layer 2 packet)

Also there is additional overhead because h2 will receive

 The same problem occurs for multicasts and broadcasts and is

knows as broadcast storm . The loop creates broadcast storms as

broadcasts and multicasts are forwarded by switches out every port and

switches will repeatedly rebroadcast the messages flooding the network.

1.2 Spanning Tree Protocol

The Spanning Tree Protocol is a network protocol that

ensures a loop

area network. The basic function of STP is to prevent bridge

loops and esnuring broadcast radiation.

 Spanning Tree consists of the following steps:

10

The same problem occurs for multicasts and broadcasts and is

knows as broadcast storm . The loop creates broadcast storms as

broadcasts and multicasts are forwarded by switches out every port and

switches will repeatedly rebroadcast the messages flooding the network.

1.2 Spanning Tree Protocol

The Spanning Tree Protocol is a network protocol that

ensures a loop-free topology for any bridged Ethernet local

area network. The basic function of STP is to prevent bridge

loops and esnuring broadcast radiation.

Spanning Tree consists of the following steps:

 > root bridge election based on bridge ID

> root port election based on the lowest path

cost to root port

> designated port election

The same problem occurs for multicasts and broadcasts and is

knows as broadcast storm . The loop creates broadcast storms as

broadcasts and multicasts are forwarded by switches out every port and

switches will repeatedly rebroadcast the messages flooding the network.

The Spanning Tree Protocol is a network protocol that

for any bridged Ethernet local

area network. The basic function of STP is to prevent bridge

> root bridge election based on bridge ID

on the lowest path

11

> alternative (blocking) port election

1.3 Our Solution

To avoid switching loop we implement an OpenFlow

controller that solves that problem using Kruskal’s Algorithm.

More precisely our controller learns the topology by forcing

the switches to communicate to each other with “discovery”

packets and then when a switch asks the controller what to do

with a packet , the controller using Kruskal’s algorithm ,

discovers the minimum spanning tree of the topology and

blocks the ports that are responsible for loops. This happens

only one time in stable topologies, when the first non-

“discovery” packet arrives or when there is a change in the

topology, for example, a switch connects or disconnects to the

network.

Now let’s explain OpenFlow and other tools that we use

for the experiments and we will see how the controller exactly

works afterwards.

2. Tools

 2.1 OpenFlow

OpenFlow is an open standard that enables researchers

to run experimental protocols in networks we use every day.

OpenFlow is added as a feature to commercial Ethernet

switches, routers and wireless access points and provides a

standarized hook to allow researchers to run experiments,

12

without requiring vendors to expose the internal workings of

their network devices. OpenFlow is currently being

implemented by major vendors, with OpenFlow-enabled

switches now commercially available

The original concept for OpenFlow begun at Stanford

University in 2008. By December 2009, Version 1.0 of the

OpenFlow switch specification was released. Since its

inception, OpenFlow has been managed by the Open

Networking Foundations (ONF), a user-led organization

dedicated to open standards and SDN adoption.

OpenFlow is considered one of the first software-

defined networking (SDN) standards. It originally defined the

communication protocol in SDN enviroments that enables the

SDN controller to directly interact with the forwarding plane

of network devices such as switches and routers.

To work in an OpenFlow environment, any device that wants to

communicate to an SDN Controller must support the OpenFlow

protocol. Through this interface, the SDN Controller pushes

down changes to the switch/router flow-table allowing

network administrators to partition traffic , control flows for

optimal

performance , and start testing new configurations and

applications.

An OpenFlow switch is a software program or hardware

device that forwards packets in a software-defined

networking (SDN) enviroment. OpenFlow switches are either

based on the OpenFlow protocol or compatible with it. In a

conventional switch, packet forwarding (data plane) and high-

level routing (control plane) occur on the same device. In

software-defined networking, the data plane is decoupled

from the control plane. The data plane is still implemented in

the switch itself but the control plane is implemented in

13

software and a separate SDN controller makes high-level

routing decisions. The switch and controller communicate by

means of the OpenFlow protocol.

Εικόνα 2. An OpenFlow switch

Εικόνα 3. A rule in flow-table

OpenFlow switches must be capable of forwarding

Ethernet frames based in rules that are stored in one or more

flow-tables. Each flow table entry contains:

 Header fields to match against packets

 Counters to update for matching packet

 Actions to apply to matching packets

When a packet arrives at the

header fields are compared to flow table entries. If a match

is found, the packet is either forwarded to specified port(s)

or dropped depending

When an OpenFlow switch receives a packet that does not

match the flow table entries, it encapsulates the packet and

sends it to the controller. The controller then decides how the

packet should be handled and notifies

drop the packet or make a new entry in the flow table to

support the new flow.

The controller is responsible for maintains all of the

network rules and distributes the appropriate instructions for

14

Header fields to match against packets

Counters to update for matching packet

ctions to apply to matching packets

When a packet arrives at the OpenFlow switch, the

fields are compared to flow table entries. If a match

is found, the packet is either forwarded to specified port(s)

or dropped depending on the action stored in the flow table.

When an OpenFlow switch receives a packet that does not

match the flow table entries, it encapsulates the packet and

sends it to the controller. The controller then decides how the

packet should be handled and notifies the switch to either

drop the packet or make a new entry in the flow table to

support the new flow.

Εικόνα 4. General flow chart

The controller is responsible for maintains all of the

network rules and distributes the appropriate instructions for

Header fields to match against packets

Counters to update for matching packet

ctions to apply to matching packets

OpenFlow switch, the

fields are compared to flow table entries. If a match

is found, the packet is either forwarded to specified port(s)

the action stored in the flow table.

When an OpenFlow switch receives a packet that does not

match the flow table entries, it encapsulates the packet and

sends it to the controller. The controller then decides how the

the switch to either

drop the packet or make a new entry in the flow table to

The controller is responsible for maintains all of the

network rules and distributes the appropriate instructions for

15

the network devices. In other words, the OpenFlow controller

is responsible for determining how to handle packets without

valid flow entries, and it manages the switch flow table by

adding and removing flow entries over the secure channel

using OpenFlow protocol.

OpenFlow controllers can operate in different modes

depending on:

 Location: we have the choice of centralized

configuration, where one controller manages and

configures all the switches , or distributed

configuration such as one controller for each

switch

 Flow : we can have one flow entry for each flow

(flow routing) or one flow entry for large groups of

flows.

 Behavior: Here there are two choices.

o Reactive: The controller is designed initially

to do nothing until it receives the first

message

o Proactive: Rather than reacting to a packet an

OpenFlow controller could populate the flow

tables ahead of time for all traffic matches

that could come into the switch.

For our experiments we chose a centralized

configuration with flow routing and a reactive behavior.

 2.2 Mininet

Mininet is a network emulator which creates a network

of virtual hosts, switches, controllers, and links. Mininet hosts

run standard Linux network software, and its switches support

16

OpenFlow for highly flexible custom routing and Software-

Defined Networking.

Mininet supports research, development, learning, prototyping,

testing, debugging, and any other tasks that could benefit

from having a complete experimental network on a laptop or

other PC.

Mininet:

 Provides a simple and inexpensive network

testbed for developing OpenFlow

applications

 Enables multiple concurrent developers to

work independently on the same topology

 Supports system-level regression tests,

which are repeatable and easily packaged

 Enables complex topology testing without

the need to wire up a physical network

 Includes a CLI that is topology aware and

OpenFlow-aware, for debugging or running

network-wide tests

 Supports arbitrary custom topologies, and

includes a basic set of parametrized

topologies

 Is usable out of the box without

programming

 Provides a straightforward and extensible

Python API for network creation and

experimentation

Mininet provides an easy way to get correct

system behavior (and, to the extent supported by your hardware,

performance) and to experiment with topologies.

Mininet networks run real code including standard Unix/Linux

network applications as well as the real Linux kernel and network

stack (including any kernel extensions which you may have available,

as long as they are compatible with network namespaces.)

17

Because of this, the code you develop and test on Mininet, for

an OpenFlow controller, modified switch, or host, can move to a real

system with minimal changes, for real-world testing, performance

evaluation, and deployment. Importantly this means that a design

that works in Mininet can usually move directly to hardware

switches for line-rate packet forwarding.

 2.3. Trema

Trema is an OpenFlow controller programming framework

that provides everything needed to create OpenFlow

controllers in Ruby. It provides a high-level OpenFlow library

and also a network emulator that can create OpenFlow-based

networks for testing on your PC. This self-contained

environment helps streamlines the entire process

ofdevelopment and testing

Goals for Trema project:

 Provide good quality OpenFlow controller

platform to researchers/developers and a

continuous development, maintenance, bug

fixes and user support from the project

team.

 Researchers develop their own controllers

on top of Trema and contribute to the

community.

Ruby is an object-oriented programming language,

written in C and that combine some of the best features of C,

Perl and Python. Is a portable programming language and runs

under GNU/Linux as well as DOS, MS Windows and MAC.

18

3. The Controller

In this chapter we will describe in details how our

controller works.

 The purpose of our controller is to solve the switching loop

 problem and achieve communication in non loop free topologies.

So, starting, the controller must learn the topology. This is

achieved by “discovery packets” that the controller forces the

switches to send to their neighbors. Each switch sends to it’s

neighbors a packet with it’s ID and a string “disc_packet”. The

controller provides special handling for these packets. They

aren’t forwarded to next switch. Each switch that receives a

“discovery_packet” updates the global graph variable with an

entry consisting sender’s ID, receiver’s ID and the receiver’s

port. ([sender_s id, receiver’s id, message.in_port])

After little time, the controller has an overall view of

the topology as a graph and knows the port numbers of a pair

of switches that are neighbors.

Then the controller waits for the first packet to be

delivered in a switch.

Taken as fact that the flow tables are empty in the

beginning, when the switch receives the packet it will ask the

controller what to do with it.

Same as flow tables, the forwarding database of the

controller will also be empty so there is not an entry for the

MAC destination address of the packet. Now the controller

19

will order the switch to flood the packet out of all it’s ports

except the source port.

But before that, and here comes our contribution, the

controller will apply Kruskal’s algorithm in the topology to find

it’s minimum spanning tree.

Knowing the tree the controller knows which links are

responsible for loops and it “blocks” the ports of each switch

in the pair that consists the link.

For example if the link between (1,2) is not in the

minimum spanning tree the controller will force switch 1 to

drop the packets coming from the port that it connects with

switch 2. Exactly the same goes for switch 2.

Now that we have a loop free topology there is no

problem for a packet to loop in the network. So the switch

floods the packet out of all it’s ports except the source port.

 Kruskal’s Algorithm is used to find the minimum spanning

tree of a graph(in our case of a network topology) with the

least cost.

 For our experiments we used three different values as

weights

 Link delay

 Link bandwidth

 Bandwidth/delay value

Downwards there is a flow chart to help you understand

better what happens when a switch receives a packet.

Also, it’s good to know that switches in this experiment

will act like an L2 switch. They will examine each packet, learn

the source-port and associate it with the source MAC address.

If the destination MAC address of the packet is already

associated with a port, the packet will be sent to the given

port, else it will be flooded on all ports of the switch.

The controller was built upon

Trema examples in Ruby programming language.

If there is a change in the topology (a new switch connects or

a switch disconnects) the controller will run again Kruskal’s

algorithm to find the new MST.

4. Experiments

After the development of the controller

experiments and examine the overall performance of our

20

it will be flooded on all ports of the switch.

The controller was built upon the multi-learning switch of

Trema examples in Ruby programming language.

If there is a change in the topology (a new switch connects or

a switch disconnects) the controller will run again Kruskal’s

algorithm to find the new MST.

r the development of the controller

experiments and examine the overall performance of our

it will be flooded on all ports of the switch.

learning switch of

If there is a change in the topology (a new switch connects or

a switch disconnects) the controller will run again Kruskal’s

r the development of the controller we run several

experiments and examine the overall performance of our

topology depending on what we choose as a weight in Kruskal’s

algorithm.

As weight values we use, delay, bandwidth and the

bandwidth/delay ratio of

python script we execute in Mininet to create the topology

and we provide them manually to the controller.

So the topologies are created in a Mininet VM using

python. All nodes of each topology are wired connected.

The Trema controller runs on the host OS.

Mininet VM are bridged connected.

 4.1 Experiment 1.

In the first experiment we examine a full mesh square

topology. Each switch is connected to a host

21

topology depending on what we choose as a weight in Kruskal’s

weight values we use, delay, bandwidth and the

bandwidth/delay ratio of each link. These values are set in the

python script we execute in Mininet to create the topology

and we provide them manually to the controller.

So the topologies are created in a Mininet VM using

python. All nodes of each topology are wired connected.

e Trema controller runs on the host OS. Host OS and

Mininet VM are bridged connected.

4.1 Experiment 1.

In the first experiment we examine a full mesh square

topology. Each switch is connected to a host

Πίνακας 1 Values of each link

topology depending on what we choose as a weight in Kruskal’s

weight values we use, delay, bandwidth and the

These values are set in the

python script we execute in Mininet to create the topology

and we provide them manually to the controller.

So the topologies are created in a Mininet VM using

python. All nodes of each topology are wired connected.

Host OS and

In the first experiment we examine a full mesh square

We will see what happens in the first case in details

we choose delay as weight

h4. H1 will forward the packet

Because of the empty flow tables there will be no flow for the

packet. Also there will be no match between destination’s MAC

22

Εικόνα 5. Full mesh square topology

We will see what happens in the first case in details

we choose delay as weight. For example h1 sends a ping request to

h4. H1 will forward the packet to s1.

Εικόνα 6 First step. Packet arrives in s1

Because of the empty flow tables there will be no flow for the

packet. Also there will be no match between destination’s MAC

We will see what happens in the first case in details in which

. For example h1 sends a ping request to

Because of the empty flow tables there will be no flow for the

packet. Also there will be no match between destination’s MAC

address and a port, so this leads to a flood.

Before order the switch to flood the packet the controller will

apply Kruskal’s algorithm to

the MST with delay as weight.

After finding the MST the controller will order the

flood the packet out of all it’s ports except the source port.

23

address and a port, so this leads to a flood.

rder the switch to flood the packet the controller will

apply Kruskal’s algorithm to the graph to remove. Below you can see

the MST with delay as weight.

Εικόνα 7 Delay MST

After finding the MST the controller will order the

flood the packet out of all it’s ports except the source port.

rder the switch to flood the packet the controller will

Below you can see

After finding the MST the controller will order the switch to

flood the packet out of all it’s ports except the source port.

S1 will flood the packet, but s2 and s4 will drop it because

links (1,2) and (1,4) are not part of the MST. S3 will receive the

packet and as s1 it will forward it out of all it’s

S2 will drop the packet again because link (3,2) does not

include in the MST. S4 will receive the packet and same as s1 and s3

will flood the packet.

24

S1 will flood the packet, but s2 and s4 will drop it because

links (1,2) and (1,4) are not part of the MST. S3 will receive the

packet and as s1 it will forward it out of all it’s ports.

S2 will drop the packet again because link (3,2) does not

include in the MST. S4 will receive the packet and same as s1 and s3

will flood the packet.

S1 will flood the packet, but s2 and s4 will drop it because

links (1,2) and (1,4) are not part of the MST. S3 will receive the

ports.

S2 will drop the packet again because link (3,2) does not

include in the MST. S4 will receive the packet and same as s1 and s3

 S1 will drop the packet, s2 will receive it and flood it to h2.

Now the ping request

from s1 to s4 all switches have match the source port of the packet

with the MAC address of h1.

 So as the ping reply has destination MAC the address of h1

the switches will know in which port to send the pac

will be no flooding. Also flow entries will be added in each flow

table. The ping reply will be forwarded to s4 from h4, then to s3,

then to s1 and finally h1.

In case h2 sends a ping request to h3 the controller will not

apply Kruskal’s algorithm again, the MST is the same, so the packet

will flood to the network.

Below there are the other 2 Minimum

25

S1 will drop the packet, s2 will receive it and flood it to h2.

Now the ping request will finally arrive in h4. In all the way down

from s1 to s4 all switches have match the source port of the packet

with the MAC address of h1.

So as the ping reply has destination MAC the address of h1

the switches will know in which port to send the pac

will be no flooding. Also flow entries will be added in each flow

The ping reply will be forwarded to s4 from h4, then to s3,

then to s1 and finally h1.

In case h2 sends a ping request to h3 the controller will not

gorithm again, the MST is the same, so the packet

will flood to the network.

Below there are the other 2 Minimum-Spanning

Εικόνα 8 Bandwidth MST

S1 will drop the packet, s2 will receive it and flood it to h2.

will finally arrive in h4. In all the way down

from s1 to s4 all switches have match the source port of the packet

So as the ping reply has destination MAC the address of h1

the switches will know in which port to send the packet and there

will be no flooding. Also flow entries will be added in each flow

The ping reply will be forwarded to s4 from h4, then to s3,

In case h2 sends a ping request to h3 the controller will not

gorithm again, the MST is the same, so the packet

Spanning-Trees.

In each case we measure the total average Round

and the total average Bandwidth by execute ping and iperf between

all hosts.

In the chart below we can see the results.

9,47

1,08

0

5

10

15

20

25

delay

26

Εικόνα 9 Bandwidth/delay ratio MST

each case we measure the total average Round

and the total average Bandwidth by execute ping and iperf between

In the chart below we can see the results.

19,1

14,82

2,52 1,88

bandwidth bandwidth/delay

each case we measure the total average Round-Trip-Time

and the total average Bandwidth by execute ping and iperf between

RTT(ms)

Bandwidth(Mbps)

 4.2 Experiment 2

 For the second experiment we choose a 6

as shown in the picture below

27

For the second experiment we choose a 6-node mesh t

as shown in the picture below

Εικόνα 10. 6-node mesh topology

Εικόνα 11. Edges of the 6 node topology

node mesh topology

 The 3 different Minimum

28

The 3 different Minimum-Spanning trees are following

Εικόνα 12. MST based on delay

Εικόνα 13. MST based on Bandwidth

Spanning trees are following

Εικόνα

 In the chart below we can see the results.

13,34

1,56

0

5

10

15

20

25

delay

29

Εικόνα 14. MST based on bandwidth/delay ratio

In the chart below we can see the results.

23,71

18,89

3,7 3,17

bandwidth bandwidth/delay

RTT(ms)

Bandwidth(Mbps)

30

4.3 Conclusion

As we can see, we have changes in network performance

depending on what we choose as weight. If we want a fast network

we should choose delay as weight, if we want a “fat” network and

delay is not a problem we can choose Bandwidth as weight. If we

want an average approach we can choose bandwidth/delay ratio as

weight because in this case we achieve lower average RTT contrary

to the Bandwidth case and better average Bandwidth contrary to

the Delay case.

5. In the future

In the future we can apply our algorithm with different values

as weight. Also we can measure how much time needs the controller

to learn the entire topology and find it’s Minimum Spanning Tree

and we can compare with the time STP needs to converge.

31

References

[1] OpenFlow https://www.opennetworking.org/sdn-resources/openflow

[2] OpenFlow Switch http://searchsdn.techtarget.com/definition/OpenFlow-switch

[3] OpenFlow Controller http://searchsdn.techtarget.com/definition/OpenFlow-

controller

[4] Switching Loop https://en.wikipedia.org/wiki/Switching_loop

[5] Spanning Tree Protocol https://en.wikipedia.org/wiki/Spanning_Tree_Protocol

[6] Mininet http://mininet.org/

[7] Trema http://www.fp7-ofelia.eu/assets/Uploads/201203xx-TremaTutorial.pdf

[8] Trema Github https://trema.github.io/trema/

[9] MultiLearning Switch https://github.com/trema/learning_switch/tree/develop/lib

[10] Open V switch http://openvswitch.org/

[11] Kruskal’s Algorithm https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

[12] Network Metrics

https://courses.engr.illinois.edu/cs538/sp2016/Lectures/Lecture8-2.pdf

[13] Iperf command https://iperf.fr/

[14] Ping commnad http://linux.about.com/od/commands/l/blcmdl8_ping.htm

