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Abstract

Video applications are used widely nowadays, supporting different aspects of our life,

such as entertainment, security, medicine e.t.c.. However, the increasing number of video

contents yields issues in its storage and transmission, since it conveys high volume of

data. High Efficiency Video Coding (HEVC) is the new video compression standard,

reducing bitrates nearly at half compared to its predecessor the H.264, supporting high

demanding video contents. This reduction in bitrate is achieved by a series of computa-

tionally expensive algorithms, thus making imperative to implement some complex parts

of HEVC into hardware, so as to meet the real-time constraint of video coding applica-

tions. Unfortunately, hardware design maintains large cycle for design and verification

processes and therefore many man-months have to be spend for a hardware video codec

implementation.

High-Level Synthesis (HLS) draws much attention from industry lately, because of the

short time-to-market value that it offers. Describing an algorithm with C/C++, is much

easier than writing Hardware Description Languages (HDLs), while lets to explore dif-

ferent architectures for the same algorithm. Also, HLS is used widely for Digital Signal

Processing (DSP) applications, one of them being video coding. Therefore, the subject of

this thesis is the design space exploration of the HEVC Inverse Integer Transform (IIT)

using the Vivado HLS tool, for synthesis on FGPAs. Different code versions and direc-

tives, yields different RTLs in terms of latency and device utilization. All these RTLs,

are extensively analyzed according to their throughput performance, identifying the dif-

ferent video contents that each of them can support. Finally, a throughput comparison

is conducted among other levels of implementation, in order to find how efficient are the

RTLs from a HLS tool. Results, show that HLS tools provide great flexibility for design

space exploration and verification of RTL, but their efficiency (performance/area) is

still far, when compared with RTLs written by human’s hand.



Περιληψη

Οι διαφορες χρησεις του βιντεο στις ημερες μας, πληθαινουν ολοενα και περισσοτερο κυριως

σε τομεις οπως η ψυχαγωγια, η ασφαλεια, η ιατρικη κ.τ.λ. Ο αυξανομενος αριθμος των

εφαρμογων που χρησιμοποιουν βιντεο, δημιουργει προβληματα τοσο στην αποθηκευση του,

οσο και στην μεταδοση του διαμεσω καναλιων επικοινωνιας, καθιστωντας την συμπιεση

των δεδομενων βιντεο ιδιατερα σημαντικη. Το τελευταο βιντεο στανταρντ Η.265 προσφερει

σημαντικη συμπιεση στα δεδομενα, σχεδον διπλασια απο το προηγουμενο Η.264 σταντα-

ρντ. Ωστοσο, το διπλασιο κερδος σε συμπιεση, επιτυγχανεται χρησιμοποιωντας μια σειρα

πολυπλοκων αλγοριθμων, αυξανοντας την συνολικη πολυπλοκοτητα στον αποκωδικοποι-

ητη περιπου στο διπλασιο, ο οποιος σημειωτεον, πρεπει οπωσδηποτε να τρεξει σε πραγ-

ματικο χρονο και να επεξεργαζεται δεδομενα με συγκεκριμενο ρυθμο. Ως εκ τουτου, γινεται

σαφες οτι καποιοι περιπλοκοι αλγοριθμοι, θα πρεπει να υλοποιηθουν σε υλικο ετσι ωστε να

επιταγχυνουμε την αποκωδικοποιηση. Οσων αφορα τωρα την αναπτυξη υλικου, τελευταια

απο τη βιομηχανια εχουν αρχισει να εξερευνωνται εργαλεια συνθεσης απο υψηλο επιπεδο,

λογω του μικρου κυκλου εργασιας που απαιτουν για την σχεδιαση και επαληθευση κυκλ-

ωματων. Ειδικοτερα, τετοια εργαλεια χρησιμοποιουνται ευρεως για αλγοριθμους ψηφιακης

επεξεργασιας σηματων –οπως ειναι η συμπιεση του βιντεο– επιτρεποντας διαφορετικες αρ-

χιτεκτονικες λυσεις για εναν αλγοριθμο σε μικρο χρονικο διαστημα. Ετσι, το αντικειμενο

αυτης της εργασιας ειναι η εξερευνηση του χωρου λυσεων διαφορων κυκλωματων για τον

αντιστροφο μετασχηματισμο του αποκωδικοποιητη Η.265 με χρηση καταλληλων εργαλειων

για συνθεση απο υψηλο επιπεδο. Οι διαφορετικοι κωδικες και οι διαφορετικες οδηγιες που

δοθηκαν στο εργαλειο, μας εδωσαν διαφορετικα κυκλωματα, με βαση τον χωρο που κατα-

λαμβανουν σε μια επαναπρογραμματιζομενη συσκευη με βαση τον ρυθμο των δεδομενων που

επεξεργαζονται καθε δευτερολεπτο. Ολα ται διαφορετικα κυκλωματα που μας εδωσε το ερ-

γαλειο, διευρενωνται ως προς την αποδοση τους, ωστε να διαπιστωσουμε ποσο αποδοτικες

ειναι οι λυσεις που βγαζουν αυτα τα εργαλεια, σε συγκριση με αλλα επιπεδα υλοποιησης.

Τελικα, στοχος μας ειναι να δουμε ποια ειναι τα ορια αυτων των εργαλειων και ποιο ειναι

το μεγαλυτερο αναλυσης βιντεο που μπορει να υποστηριχθει απο τετοια κυκλωματα. Τα

αποτελεσματα δειχνουν, οτι τα εργαλεια συνθεσης απο υψηλο επιπεδο, προσφερουν μεγαλη

ευελιξια, τοσο στην συνθεση οσο και στην επαληθευση των κυκλωματων, αλλα ειναι μακρια

σε αποδοση, σε σχεση με κυκλωματα, στα οποια η αρχιτεκτονικη περιγραφεται απευθειας

απο τον ανθρωπο.
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Chapter 1

Introduction

In 21st century, digital video applications are used widely in a huge variety of daily con-

sumer products. Desktop PCs, laptops, cell phones, tablets, TVs and watches, are only

a some small part of the high volume of applications that use video technology. However,

video is not only used for entertainment purposes, but its objective span in many other

fields. Video surveillance, video tracking and medicine are some of the aspects that

video enhances our life, out of entertainment reasons. In previous decade, some of the

previous applications were using analog video signal to perform their various processing

tasks. In this thesis work, we are occupying only with digital video, since analog seems

to be the predecessor of it, because most –if not all– of today video applications, are

using digital technology.

Unfortunately, digital video has a huge volume of data that must be stored, processed

and submitted, thus making imperative the compression of those big data. To realize

the magnitude of video data, we quote that according to CISCO, “2/3 of the internet

traffic, will belong in video by 2018” [3]. Video standards that are used in order to

compress video data, remain an open field the last three decades, for both research and

industry development and therefore they attract quite deliberation from research com-

munity. Progress in video compression technology, results in higher compression ratio,

while retaining same perceptive quality –in terms of dB– from human eye. Every video

compression standard is characterized as lossy compressor, because it cannot retrieves

all primary information, although, this loss is not perceivable many times from human

eye. Hence, each video standard incorporates itself many years of research, to attain

better compression ratio while keeping video reconstruction quality in as much as possi-

ble standard levels. Although each new coming video standard has better performance

in video coding, the complexity that is introduced in each of them constantly increases,

1
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because more and more complex algorithms are used to achieve improved results in com-

pression. High Efficiency Video Coding (HEVC) or H.265-ITU is the new video coding

standard, was introduced in 2013 that reduces bitrates at half in video streaming, in

comparison with its predecessor the H.264/AVC (Advanced Video Coding) standard.

The module which we are implementing in this work, is a part of HEVC decoder.

Video coding, except for the large data that has to manage, has also another character-

istic that video implementations have to take into account before their design. Video

coding/decoding can be considered as critical tasks, because of the high complexity of

their algorithms and also the requirement that they need to be performed in a real-time

constraint. Let us assume for instance that a video decoding application has to decode

30 fps –which is a typical frame rate– in a dedicated resolution, but it has performance

only for 20 fps. One can be easily deduced from this assumption, video playback shall

stalls, something that it is an undesirable effect. Consequently, video coding and decod-

ing applications have to be implemented under certain specifications, regarding video

resolution and frame rate, so as to achieve a minimum performance requirement.

Several video coding applications that have been developed so far, are implemented en-

tirely either in software or in hardware. Software solutions, running on several types

of processors, provide very flexible solutions for video coding in terms of design cost

and portability, but they have poor performance for high content videos. Optimization

can be performed in software solutions, exploiting hardware resources that are called

“hardware accelerators”, accelerating critical algorithms from video codecs. On the

other side, exclusively hardware implementations, are very efficient in performing video

coding tasks, achieving high throughput performance, while running in relatively low

operating frequencies. Having although high design life cycle (design, simulation, de-

bugging, verification, fabrication and testing), the disadvantages comes from design cost

considerations, as concerning time-to-market value.

High Level Synthesis (HLS) concept, last yeas have been introduced more aggressively

in industry, in order to overcome the high cost disadvantage of custom-hardware imple-

mentations. Describing an algorithm with a software level language, such as C/C++ is

much easier than writing Hardware Description Languages (HDLs) and leads to quicker

exploration of design space. Moreover, the simulation of C/C++ code is faster, because

writing a C/C++ testbench to verify module’s functionality, is much quicker than writ-

ing it into Verilog or VHDL. As a consequence and as already implied, HLS takes as

input an algorithm in C/C++ and exports RTL (Verilog or VHDL). The RTL that is ex-

ported can be easily verified, only if we assure that C algorithm has proper functionality.

Hence, an HLS tool guarantees that if C/C++ code works properly, then the exported

RTL shall have the same behavioral functionality. Therefore, one needs to verify our
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design in RTL level, only write a piece of code in software that will verify the algorithm

in software level. After that, a reference output has to be used for comparison and

eventually if output results match, we do know that RTL will have the same behavioral

functionality. Now, as concerning the performance of HLS implementations, it does not

reach those of custom hardware RTLs, because RTL is outputted from a tool which fol-

lows standard templates and techniques. Nevertheless, the shorter time-to-market value

that they provide, has special worth in industry, thus drawing inevitably as much atten-

tion from research community. Further details on HLS concept and Vivado HLS tool,

are explained in Chapter 3 and in Chapter 6 we will ascertain where HLS performance

stands among others.

Video codecs have several different modules that perform compression algorithms. In

almost every video and image codec, there is a module that converts a block of pixels

from its spatial representation to frequency domain, in order to evaluate a block of pix-

els according to its frequency components, so to reject those components that are not

perceivable to human eye. The algorithm that is shouldered in performing this task,

is called Integer Transform and is essentially the same with Discrete Cosine Transform

(DCT) algorithm. One difference that exists, integer only numbers are now used replac-

ing floating point arithmetic of DCT. DCT is based on Fourier’s family transforms and

its usage is not limited to video coding. Other applications such as video processing,

computer vision, audio coding, speech recognition and communication, also use some

kind of DCT algorithm. This thesis, conducts a HLS implementation, regarding the

HEVC Inverse Integer Transform in particular, which is used in video decoding appli-

cations and converts frequency coefficients back to spatial domain. Further details are

extensively discussed on this interesting algorithm in Chapter 3.

1.1 Motivation

The number of video applications increases day by day for a variety of reasons, in many

different aspects of our life. Also, the big amount of video data that are transmitted

worldwide has to be reduced, for bandwidth saving reasons and so as to store video using

less storage space. This problem of huge data gets worse, as the video content increases.

Today video applications have the trend to use more and more higher resolutions and

frame rates, in order to provide better visual quality to users, requiring as much less

inherited distortion from compression process. HEVC, achieves best results among prior

standards, regarding compression ratio for a standard video quality and definitely will

be used in future video applications.
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Adopting future applications HEVC standard, have to deal with a variety of issues that

will be presented. The high complexity that have been introduced in this more sophis-

ticated codec, is the major concern about HEVC adoption. According to a survey [4],

HEVC decoder is roughly twice more complex than AVC decoder and HEVC encoder

is expected to be several times more complex than H.264/AVC encoder. For this rea-

son, future researches should propose optimized implementations in different platforms,

thus supporting different target video contents according to the specifications of the

target device. Software implementations, have low granularity levels for optimization,

in comparison with the hardware ones. Some complex modules of HEVC have to be

implemented using hardware accelerators, in order to enhance software implementations

and to achieve demanding performance, for supporting high video contents.

Another incentive of this work, HLS, as already mentioned, has attracted a lot of at-

tention in recent years from industry, because it provides shorter design cycle and even-

tually smaller time-to-market when compared to traditional hardware implementations,

though it doesn’t achieves the performance of custom RTLs. In other words, it provides

great flexibility to explore hardware design space of a specific algorithm, in comparison

with custom RTLs. Hardware accelerators that can be created with HLS tools, may be

used from embedded systems, in order to enhance some critical parts of HEVC decoder

and encoder. If a HLS implementation meets a certain performance requirement and

the specifications of the circuit (area, power, delay) are also met, HLS could be a quick

and efficient solution, for creating a hardware accelerator. Afterwards, this accelerator

can be placed onto FPGAs or in embedded systems, or to create an ASIC hardware

accelerator, which is going to enhance parts from software codecs. Hence, future video

implementations may use HLS, so to explore more efficiently and rapidly the design

space of the HEVC video codec implementation, which requires as much speedup as

only hardware can provides.

Finally, the HEVC Inverse Integer Transform module that we got hands-on, is among

the most complex modules of a video decoder and in HEVC decoder its complexity has

further increased at 9% according to [4], due to the higher number of transform sizes.

So, the acceleration of inverse transform is valuable, in order to accelerate the HEVC

video decoder.

1.2 Objective

� Design space exploration of the HEVC Inverse Integer Transform (IIT) algorithm

using Vivado HLS tool, so to realize the pros and cons from different RTLs that
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tool derives and how HLS tool reacts on different directives and sources, describing

the same algorithm.

� Deciphering the Vivado HLS tool, on how it manipulates latency on different

architectures and data paths and how RTL architecture changes, forcing design to

meet as much lower delay constraints.

� Throughput exploration analysis, so as to identify the different architectural plans

for the algorithm, what throughput performance will they have. The outer pur-

pose of this exploration, how a HLS tool is compared with other implementations

in terms of throughput performance, such as software (x86), SIMD-accelerated

software and custom-hardware RTL implementations.

� Realize when each different RTL solution becomes a critical component in a video

decoder at the IIT module, thus finding the limits of HLS for decoding demanding

video contents.

1.3 Other Works

In this section we briefly discuss, what other works exist on video codec implementations,

just to have an intuition about the different platforms and levels of implementation and

also the results that other works provide.

Video coding is an open topic in research community and for this reason several papers

have been published all those twenty five years that digital video had a great evolution.

Research works can be distinguished into two major classes. The first category deals

with proposals that induces on video coding field in terms of signal processing, thus

determining algorithms and methods for improving compression. The second category

deals with ways, to implement different video codecs, in different platforms and mak-

ing different trade offs and optimizations. This thesis, is entirely related to the latter

category, so we are going to focus on this, in literature review.

Several implementations have been proposed so far for every new standard. starting from

pure software. up to custom hardware RTL. Software solutions mainly focus, either on

supporting as much higher frame rates and resolutions, exploiting SIMD architectures

on processors [5] and [6] or on performing complexity analysis [4], in order to give useful

information in other researches that will use them.
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Other implementations are based on software, but gain a lot of performance from hard-

ware features. Configurable microprocessors are such a solution because the Instruction

Set Architecture (ISA) of those low-power microprocessors, can be extended with new

custom instructions that will reduce total cycle effort and eventually shall increase per-

formance or reduce power consumption. Various works have been proposed on this level

for different video codecs such as [18] for H.264/AVC and [19] for HEVC.

The lower level of implementation is hardware RTL that is going to be used, either

as a hardware accelerator onto an embedded system or as a module in a hardware

video codec on FPGA or ASIC. Hardware implementations, due to the high design’s

complexity often are focusing in a specific module of a video codec and they provide

different optimization results about performance, area and power. In general, hardware

RTLs before turn in logic synthesis flow, can be distinguished as “custom-made”, where

architecture is designed from engineers or it can be exported from a HLS tool. Some

good hardware references regarding some complex modules of HEVC are: [12] and [13]

that they implement motion compensation module, [8], [9], [10] and [11] for integer

transform module and [14], [15] and [16] that they are touching the difficult CABAC–

entropy coding module of HEVC.

Hardware implementation proposals are countless, because video codecs are so complex

applications and therefore they have a strong requirement in hardware, that their ex-

amination cannot be limited in this small section. We have to say that most of them,

deal with a specific type of optimization and finally provide results to prove what they

achieved. For instance, most hardware implementations that deal with throughput per-

formance, aiming to reach the limits of highly demanding videos with upper limit the

8K @ 120 fps, keeping area and power as much low as possible.

Finally, except for custom-made RTLs, also have been proposed papers for implementing

video codecs with HLS and now except to performance, area and power, man-month work

is also used, in order to show how HLS tools can short time-to-market, thus showing its

comparative advantage against custom RTLs. One HLS implementation for ASIC have

been proposed regarding H.264/AVC codec [17] and to our knowledge this is the first

effort that implements a module of HEVC with a HLS tool for FPGA.

1.4 Thesis Structure

This thesis is organized in several different chapters, each of them analyzes a small

division or a theoretic background of our work. The outline of the thesis is organized as

follows:
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• Chapter 2 provides some background theory about video coding and finally it

briefly presents the more important video codecs that have been used so far, in

video applications. The objective of this chapter, only show the general concept

that video codecs inherent through years without give a lot of details about each

video standard. The reader may understand some fundamentals about video cod-

ing theory, having read this chapter, so to be able to follow up some basic notions

in rest parts from this work.

• Chapter 3 presents forward and inverse integer transform algorithms and all the

mathematical background behind them, aiming primarily on how they work. Also,

discusses how we get faster computational versions of the same algorithm and how

they help in video coding process, which is a critical task.

• Chapter 4 initially clarifies the idea of High Level Synthesis for digital circuits

and why it is so valuable in industry. Additionally, Vivado HLS tool is presented

extensively on how it works and what options can be selected in order to explore

hardware design space of an algorithm, meeting different latencies.

• Chapter 5 shows the way we set up the experiment and how we are using Vivado

HLS tool to obtain results and to see as much aspects of total design space of

algorithm.

• Chapter 6 contains all results and is structured with several different results in

tables and diagrams, thus helping to understand better how tool reacts on different

inputs. Finally, throughput performance is extensively explored for all the different

configurations and is compared with other implementations.

• Finally, Conclusion further discusses on results, paying attention on the big picture

of the problem and makes a total inference on this thesis. Alongside, future work

discusses what other surveys may follow up this work.



Chapter 2

Video Coding Background

As briefly discussed in introduction, video data has a quite big volume that leads in two

important problems. At first, a large storage space has to be reserved in order to store

a video file and secondly when we want to transmit a video sequence, we require huge

bandwidth to do so. To better understand this problem, we present a simple example.

A typical video movie has length roughly 90 minutes. If assumed HD resolution and

frame rate at 30 fps, then we have 1920x1080x30x3x90x60 bytes to store information for

3 color channels (e.g. RGB or YUV) with 8-bit color depth. Thus, we need about 900

GB (1 TB is a typical hard disk size) to store a typical Blu-Ray movie, without include

audio data. Now, one needs to transmit this content in a live streaming application,

send 1920*1080*3*30*8 bits per second, in order to see video without stall effects. This

volume is translated into 1.5 Gb/sec, which requires huge bandwidth that is difficult

to be found in daily consumer products. Finally, according to Cisco surveys, 2 of 3

data packets that are send every time over internet network, belong to video content.

Consequently, we realize that video compression is a big deal in our digital epoch and

how it directly affects our lives, because video is everywhere among us.

2.1 Video in Signal Processing

Initially, compression algorithms can be distinguished in two categories according the

type of elaboration that they perform on camera data. The two categories are called

lossy and lossless compressors. Lossless compressors are those that reconstructed data

on decoders side, are exactly equal with those that inserted as input in encoder side.

Lossy compressors are those that reconstructed data, are slightly different from input, in

that way that human eye cannot perceive it. Lossy compressors attain high compression

rates and provide different levels of trade offs, between compression and reconstruction

8
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quality. Every almost video standard that is used in products, utilizes a lossy codec, thus

attaining great compaction results. In next sections, we are showing the basic stages

that modern video codecs utilize, in order to compress video content.

A still image, is represented as a 2-D signal –in terms of signal processing– with one

dimension denoting color change in horizontal direction and the other dimension, color

change in vertical. In this approach, video is a 3-D signal, with 3rd dimension being

the temporal factor, to wit the color change between different frames in time, because

video is actually a sequence of frames or still images. Video and image compression

standards, exploit spatial and temporal correlation from frames, in order to compress

data. If we carefully pay attention in ordinary images, we will realize that some parts

of the image, have about same intensities with others and therefore image signal has a

spatial correlation between different regions in image. In video, except for the spatial

correlation in one frame of it, different neighboring frames are very similar between them

and so video has a temporal correlation as well. Realizing this correlation, prediction

algorithms can be performed in video codecs, so to predict some parts of video signal,

thus do not requiring to send all information in decoder’s side. Even more, video and

image codecs exploit one more attribute that is based on a property of human’s eye.

Human eye cannot perceive high frequency changes in color, similar to ear which has a

restricted bandwidth in acoustic frequencies. So, rejecting some of the high frequency

components, we reduce information, without eye realize this degradation. In next Section

3, all these notions about frequency components, will be clarified further, to see how

they are translated into signal processing.

2.2 Typical Compression Diagram

All renowned video compression standards that have been introduced so far, are based

on a certain structure with same stages as shown in Fig. 2.1. The general scenario is

the following. At first, a frame is declared as an intra or inter frame. In the former

case, only spatial correlation is utilized to remove content redundancy, while in latter

case, both spatio-temporal may be used. In either cases, an arrived frame get stored

in frame buffer and is divided into small blocks of pixels. Each of the following stages

from now on, refers to block operations. The first frame of video, must be declared as

an intra (I-frame), because there aren’t previous frames to make predictions, so it is

encoded without having references from other frames. In Subsection 2.2.1 we provide

further details on intra prediction. Other frames except intra, can be declared as P or

B frames. P frames, use temporal prediction from previous frames, in order to reduce

temporal redundancy, while Bi-directional frames are capable of using both previous
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and future frames as reference, thus exploiting correlation from both future and past

frames. Of course, future reference frames –from which B-frames take prediction– have

to be decoded beforehand, so current B-frame have in memory the reference block of

pixels, so to perform prediction – Fig. 2.2. Refer to Subsection 2.2.2 for further details

on inter prediction.

Figure 2.1: Architectural diagram of a typical video codec [44]

Figure 2.2: A group of pictures with I, P, B frames [39]

After removing redundancy for both intra and inter cases, we have the error that is
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called residual of pixels or distance from prediction. The predictors from inter predic-

tion are called motion vectors. Prediction error, will be send for transformation and

quantization, in order to retain only low frequency components of error, thus requiring

to send fewer information. Quantization process, introduces the lossy notion, because

for those coefficients that have low energy in frequency domain, they will become zero.

In this step, we have lost information, because decoder cannot retrieve zero coefficients

in their primary value, before quantization step. First video standards, such as MPEG-1

and 2, that haven’t exploited intra prediction, utilize transformation in a block of pixels

–not in residual error– for I-frames. This concept that transforms a block of pixels with-

out prediction and discard high frequency components, is used in image compression

from JPEG standard (see Fig. 2.3). We have to say here that there are video codecs

such as Motion-JPEG that do not exploit neither spatial nor temporal correlation. All

frames are encoded as still images (JPEG coding is performed in each one) and only

by rejecting high frequency components in block of pixels, we achieve some compression

ratio. After all this procedure, the final stage of a video encoder in called entropy cod-

ing (Huffman, CAVLC, CABAC). The entropy module, undertakes the task to compress

information according with the likelihood of each syntax element, which can be one of

the following: motion vector, quantized coefficient, intra predictor, various indices and

flags. Entropy encoder operates in bit level, using small length codewords for symbols

with high likelihood and large codewords for more infrequent symbols.

Figure 2.3: Basic stages of JPEG codec for still image compression [40]

Decoder, have to follow same steps in reverse order, starting with entropy decoding and

so on. Encoder, have to decide about several parameters in order to encode a video, but

decoder needs only to follow what encoder have decided on. This scenario and the “com-

munication” between encoder and decoder, is indicated via encoded bitstream. Hence,

video encoders are considerably more complex than decoders, due to many decisions

that they have to try. Also, some high complex algorithms, such as motion estimation,

performed in encoder’s side, so they increase further the computational complexity of

encoder.
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A very strong feature that is met in later video standards, is some filters from image and

video processing fields, that their task is to remove blocking artifacts that video codecs

introduce, due to the block-based structure that they have. The in-loop filter or else

de-blocking filter, applies a filtering in all vertical and horizontal edges, thus removing

blocking artifacts. Other such filters that have been introduced in HEVC standard like

Sample Adaptive Offset (SAO) filter [20], gives an offset in pixel values, after reconstruc-

tion process in decoder side. Visual results in order to compare differences are illustrated

in Figures 2.4 and 2.5.

Figure 2.4: Deblocking Filter [41]

Figure 2.5: Sample Adaptive Offset (SAO) filter [20]

2.2.1 Spatial Correlation

Spatial correlation, exploited at first in H.264/AVC standard. Until then, only temporal

was exploited by video codecs and so I-frames (intra frames or frames without temporal

prediction) were using only transformation and quantization in block of pixels, in order

to reduce input information. The basic idea is that in many frames, there are some

regions that can be predicted from other already decoded. Therefore, some blocks can

be predicted from other co-located blocks, according to a certain direction. Direction,
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indicates the algorithm that we take pixels from up and left blocks and how we use

them in order to best predict pixels in our current block. Let us assume that a quite

spread area into one frame has about the same color information. Then, it is easy to

predict some blocks from other neighboring already decoded blocks, just by coping pixel

information either in horizontal or in vertical direction. Of course, there will be an error

from prediction that is going to be transformed and quantized. Fig. 2.6, shows the

nine different possible directions for intra prediction that is maintained in AVC codec.

We can see vertical prediction (just copying information from upper adjacent block),

horizontal (from left block), diagonal predictions with different angles and finally DC

prediction that finds the mean, between the two rows of pixels. In real life, most of real

objects have vertical correlation, so we can notice that respective mode has number zero,

because this is the number that has the smallest entropy information in a video codec.

Hence, modes with high likelihood are represented by numbers with small entropy in a

video codec, as long as it is a rational practice, in order to achieve high compression.

Figure 2.6: Possible directions for intra prediction in H.264/AVC standard [2]

As long as a frame is declared as an I-frame in the GOB, then its blocks proceed for

finding best intra prediction mode. First intra block (upper-left in frame) that has

no predictors is the only that in encoded just by transformation and quantization on

pixel intensities, like to JPEG. A greedy approach, it could be this: try all possible

directions and find what is this with the smallest prediction error. Although, some

early termination algorithms can be utilized, so under a threshold condition according

to Mean Square Error (MSE) value, prediction is over. Finally, intra prediction can be

used also from inter frames, because if one block cannot be predicted well from other

frames, then an intra block may be used to give better prediction. If so, this block in the

inter frame, has to be declared as intra via some flag, so decoder knowing the predictors,

in the reconstruction process of the block.
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2.2.2 Temporal Correlation

Temporal correlation is a common attribute in video sequences and thus it is exploited

largely from video codecs, for reducing the coding information. The third dimension

of a video signal is the temporal factor and as already mentioned, different frames in

time have a strong correlation between them. Temporal correlation is occurred in video

signals, due to the short time that frames are captured from the camera. Capturing a

video at 30 fps for instance, means that a new frame is captured every 33 millisecond.

It is rather straightforward to see that those frames, shall have a strong relationship

between them and temporal prediction can be used to predict each other.

A simple approach of such a procedure is this: a current block that is going to be

predicted is searched in different frames in a certain search range and the frame with

the smallest error, is declared as best. The motion vector that refers to the best block, is

transmitted to decoder’s side. Motion vector, is a vector in (X,Y ) format that declares

how far from current block we have to go, in order to find the best predicted block.

Additionally, an index is encoded in bitstream, which declares from which frame we

have used the block for prediction. In Bi-directional frames, there is also option to find

two prediction blocks, from different temporal frames and find their average or weighted

average with some pre-defined weights, thus constructing the prediction block that will

be used to calculate the prediction error.

The module that elaborates the previous demanding task, is the popular motion estima-

tion algorithm, which is the most complex algorithm in a video encoder, since it takes

many cycles to find the best motion vector. The greedy algorithm or else the full search,

takes all possible blocks in a specific search range and finds the best error between

them in terms of MSE. As we can realize, operations are performed pixel by pixel for

the entire block, thus making motion estimation a computational demanding algorithm.

Some researchers such as [22], have proposed different schemes for early termination,

making trade-offs, between time for prediction accuracy. After motion estimation is

accomplished, a motion vector, an index and a residual block (prediction error), are

yielded from this module. Fig. 2.7 illustrates motion estimation between two frames.
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Figure 2.7: Motion estimation algorithm. Finds best match block in different tempo-
ral frames. Motion vector indicates how far from current position best block is located

[42]

In typical videos, the very smooth motion that exists frame by frame, induces another

attribute that video codecs take into account. In actual video sequences, there is a big

probability that motion doesn’t matches so well on integer pixel distance. What we are

trying to say, many times block’s motion, doesn’t match with integer pixels, because

motion goes in sub-pixel distances and therefore integer block options, don’t give as

much accurate prediction as it could, if sub-pixel values were exploited.

Figure 2.8: All possible sub-pixel values that can be found in quarter distance. Dif-
ferent filters are used to obtain values in each position [43]

Motion in sub-pixel values can be captured only by moving in distance lower than pixel.

Of course, a prediction block in half pixel distance is not in memory, because only

integer pixel values from already decoded frames are in there. So, in order to find new

pixels in sub-pixel distance, interpolation process has to be performed, with input the

integer pixel values from integer part of motion vector. Most of video codecs are using

quarter pixel interpolation values, thus enabling accuracy at quarter pixel distance. Fig.

2.8, shows all quarter pixel positions that can be found from already decoded integer

values. Each new video codec, adopts new techniques on interpolation method. As the

accuracy of interpolation goes higher, it leads to better coding efficiency because energy

of motion’s prediction error gets decreased.
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Table 2.1: Popular video standards that have been used in video applications

Year Standard Applications Bitrate (Mbps) (720x480)

1993 MPEG-1 VCD 7

1995 MPEG-2 DVD 6

1999 MPEG-4 DivX, XVid 5

2003 H.264/AVC BluRay, DVB-TS 4

2013 H.265/HEVC next of H.264 2

2.3 Video Standards

Video standards through years, aim on better coding efficiency, so to delivering video

at lower bitrate, trying to retain a good quality in video content in terms of PSNR.

Peak Signal to Noise Ratio (PSNR) is a metric that evaluates how much faithful is the

reconstructed video sequence after the video decoding process. PSNR, in terms of signal

processing, is the amplitude of true video signal in respect to noise. Noise in video is

declared as the MSE, between pre-encoded and post-decoded frames. So, each new video

coding standard, aims on achieving better PSNR for same bitrate or reduced bitrate for

same PSNR. In next subsections 2.3.1, 2.3.2, 2.3.3 and 2.3.4, we shortly present some

of the most popular video standards that have been used in daily consumer products so

far 2.1, via architectural diagrams and their key innovations.

2.3.1 MPEG-1/2

MPEG-1 is the first video codec that exploited temporal correlation using motion es-

timation techniques. I-frames, don’t have spatial prediction and are coded like JPEG,

only using transformation and quantization to reduce information before entropy cod-

ing. P and B frames, use motion estimation in order to find best prediction block and in

these frames, only error of prediction is sending to decoder, along with motion vectors.

MPEG-1, utilizes Huffman algorithm [21] for the entropy coding stage. MPEG-2, has

small differences when compared to MPEG-1. Different scanning order of quantized

coefficients, standard half-pel motion estimation and support for other color formats,

are some of the small difference between the two standards. A typical diagram of an

MPEG-1/2 video codec, is depicted on Fig. 2.9.
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Figure 2.9: Typical diagram of an MPEG-1/2 encoder [44]

2.3.2 MPEG-4

MPEG-4 is the most interesting video standard from academic and research aspect.

The video coding process, differs a lot in comparison with other standards, because

everything is consisted from multimedia objects and background. True objects, faces

and mesh can be considered as multimedia objects and also transparency of each object,

can be used in coding process. Scalability of video content is used as well, either spatial

or temporal, thus enabling video delivery in different bandwidths and qualities. MPEG-

4 supports now color bit-depths from 4 up to 12 bits, in comparison with MPEG-1/2,

where only 8-bit was permitted. Quarter pixel accuracy in interpolation, is now an

option that leads to better coding efficiency. Besides, there are schemes for prediction

on DC and AC coefficients, among adjacent transform blocks. Finally, a great advantage

of MPEG-4, is the error resilience tools and techniques that utilizes, in order to be more

robust in errors that are introduced in video streaming over networks.

2.3.3 H.264/AVC

H.264 or Advanced Video Coding (AVC) is also known as MPEG-4 part 10, because it

was developed as an amendement of MPEG-4 standard. Here, coding methods return

back into block-based structures, without having any more notions, such as multimedia

object, background and transparency.

Spatial correlation is exploited for the first time and is called intra prediction, following

what we described on Subsection 2.2.1, giving up to four times better compression in

I-frames. Quarter pixel motion accuracy, is now a standard method for more accurate

motion prediction, thus providing better coding efficiency. A 6-tap sync-based FIR filter,

is now used for half pixel values; for quarter values, a bi-linear filter is used, taking half-
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and integer-pixel values as inputs. Blocks of pixels, have also greater degree of freedom,

for partitioning into smaller blocks, giving more accurate prediction. Additionally, DCT

transform has altered in integer transform with the same properties, but using now only

integer arithmetic, avoids rounding errors between encoder and decoder. Moreover,

a deblocking filter is used for the first time in order to alleviate blocking artifacts as

explained in Section 2.2. Finally, except for Huffman entropy encoder, now there is

option for CABAC, which has about 15% better compression performance, since it is a

superior entropy algorithm than Huffman, in terms of coding theory.

Figure 2.10: Typical diagram of an H.264/AVC codec [2]

2.3.4 H.265/HEVC

The latest video standard is the H.265 or High Efficiency Video Coding (HEVC), which

is the AVC’s predecessor and is expected to be adopted in future multimedia products,

because it reduces bitrates at half compared to its predecessor. This directly implies

that better video quality can be delivered over the same bitrate or for the same video

quality, bitrate can be halved.

HEVC has further improved the block-based video coding structure that existed so far,

adopting a quad-tree structure called Coding Tree Unit (CTU) that starts from the

largest block of pixels (typically 64x64) and recursively splits into smaller blocks for

prediction (Prediction Unit - PU) and transformation (Transform Unit - TU). More-

over, blocks not only allow symmetric partitions but asymmetric ones are also utilized,

allowing for a better match with actual visual-object shapes, thus reducing motion resid-

ual energy [23]. Interpolation filters, has quarter-pel accuracy with longer tap FIR filters

for improved prediction. AVC was using only 4x4 and 8x8 integer transform sizes, while
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in HEVC, 16x16 and 32x32 have been introduced, enabling higher energy compaction in

high resolution videos. Here, CABAC is standard algorithm for entropy coding module

and also besides to deblocking filter, SAO [20] is also used, to ameliorate the quality of

reconstructed frames. The diagram of HEVC is presented in Fig. 2.11.

Figure 2.11: Typical diagram of an H.265/HEVC codec [1]
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HEVC Inverse Integer Transform

HEVC integer transform, is the module that undertakes the task to change a block

of samples from spatial to frequency domain. Therefore, forward integer transform is

used by encoder, in order to evaluate frequency components of a block of samples and

how much energy has each of them. Inverse integer transform, is the inverse procedure

that takes coefficients and converts them back to spatial domain, thus reconstructing

pixel information at decoder’s side. The integer transform module, uses essentially the

same algorithm with Discrete Cosine Transform (DCT), but it manipulates only integer

arithmetic instead of floating point, so to avoid rounding errors that leads on a slight

mismatch between encoder and decoder. Video standards up to MPEG-4, use DCT

instead of integer transform, but after that, only integer transform is used.

There are several transforms in general, out of DCT, that are used in order to decompose

samples from spatial to frequency domain. Karhunen-Love Transform (KLT) [24] is a

unitary and orthogonal transform that attains best energy compaction among all, but

its high complexity, constraints the implementation for real-time applications. Discrete

Fourier Transform (DFT) [25] is a separable transform for different dimensions. It is

also a unitary and orthogonal transform that is used to decompose the original data

into its sine and cosine components. DCT transform now, belongs to Fourier-family

transforms, because it is essentially the even part of a DFT, so it is also a separable

transform that we are going to analyze in this Chapter. Hadamard Transform [27] is a

simple low complex algorithm, but it achieves moderate energy compaction and is used

from video codecs in very special cases. Finally, the Discrete Wavelet Transform (DWT)

[30] is a unitary, orthogonal and separable transform that is usually applied to the whole

input data (or large parts of it, called tiles) but typically not to small data blocks like

all the previous transforms.

20
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This Chapter is organized as follows: Section 3.1, shows the basics about DFT algo-

rithm, because DCT and therefore integer transform, is based on it and is going to help

in understanding how DCT was created. Section 3.2 shows the DCT forward and inverse

algorithm that is used in many different video and image compression standards. All

algorithms are based on 2-D transforms, because video standards are using 2-D trans-

forms for the block of pixels, thus capturing both horizontal and vertical signal change.

Final Section 3.3 shows how a Fast Fourier Transform (FFT) is constructed from DFT

and in respect to this method, DCT fast version is deployed as well, which is utilized in

every real-time video application.

3.1 Discrete Fourier Transform (DFT)

As previously mentioned in this chapter, DFT is a separable orthogonal transform, that

converts input data into its sine and cosine components. 2-D algorithm is the same

as two 1-D transforms in row, with the first dimension taking into account horizontal

frequencies and the second the vertical ones. Calculation of 2-D forward and inverse

DFT is based on Equations 1 and 2 respectively.

y(k, l) = 1
N

(N−1∑
m=0

N−1∑
n=0

x(m,n)e−
2πi(km+ln)

N

)
(1)

x(m,n) = 1
N

(N−1∑
k=0

N−1∑
l=0

y(k, l)e
2πi(km+ln)

N

)
(2)

In either equations, x(m,n) represents a block of pixel data which is a 2-D signal and

y(k, l) the output coefficients, each of them representing the energy of a basis frequency

function, according to its position. The y(0, 0) coefficient is called DC, because it rep-

resents the energy of zero frequency in both horizontal and vertical direction. So, if

all pixels in a block have equal values, then all coefficients except for DC become zero

and DC’s energy maximized, according of course to the sample’s intensities. Other co-

efficients than DC, are called AC. Figure 3.1, shows basis functions for each different

frequency component. We can see DC component in upper left corner and also how

horizontal signal frequency increases, while moving left-wise and how vertical increases

for down-wise scanning.
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Figure 3.1: 8 × 8 DFT basis functions [28]

It is straightforward to see someone that DFT produces complex coefficients, with real

and imaginary parts, to wit magnitude and phase, The storage and manipulation of these

complex values it is a disadvantage when compared to other available transforms, e.g.

the DCT which use real and not complex numbers. It is a much better solution than DFT

for real implementations, achieving also better energy compaction for highly correlated

signals, such as image. Higher energy compaction means that with fewer coefficients

we reconstruct signal with less error than DFT. The main reason DCT is used in video

codecs, is that a lot of coefficients will be discarded in quantization process and therefore

we want to reconstruct as better as possible the signal with fewer coefficients. Figure 3.2,

illustrates the main difference between DFT and DCT, as concerning energy compaction

and reconstruction with fewer coefficients.
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Figure 3.2: DFT vs DCT in terms of signal reconstruction [29]

3.2 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a unitary and orthogonal transform, concep-

tually rather similar to the DFT, but only using real numbers (and not complexes any

more). For a NxN block of samples, the forward 2-D DCT is defined by Equation 3

y(k, l) = 4C(k)C(l)
N2

(N−1∑
m=0

N−1∑
n=0

x(m,n) cos (2m+1)kπ
2N cos (2n+1)lπ

2N

)
(3)

and the inverse 2-D DCT is defined by 4.

x(m,n) =
(N−1∑
m=0

N−1∑
n=0

C(k)C(l)y(k, l) cos (2m+1)kπ
2N cos (2n+1)lπ

2N

)
(4)

C(ω) =


1√
2

ω = 0

1 ω = 1, 2, . . . , n− 1
(5)

Like the DFT, since the DCT is also a separable transform, it can be represented as the

product of two 1-D DCTs; the first for the 1-D horizontal and the second for the vertical.

The 2-D basis functions of DCT are presented in Fig. 3.3. Since the cosine function is

real and even, i.e., cos(x) = cos(−x) and the input signal is also real, the inverse DCT

generates a function that is even and periodic in 2N, considering N the length of the



Integer Transform 24

original signal sequence. In contrast, the inverse DFT produces a reconstruction signal

that is periodic in N.

Figure 3.3: 8 × 8 DCT basis functions [28]

In other representation, DCT can be declared also as a multiply of two 2-D matrices,

each one for 1-D stage of transform. The basic algorithm –not the fast version– that

is incorporated in video codecs, is essentially the product of three 2-D matrices: two

of them contain the basis of DCT and the third represents the input signal (block of

pixels). Equation 6, shows the procedure of a 2-D DCT transform. B is the NxN

matrix with transformed coefficients, A is the input NxN pixels or residuals and U the

NxN basis components of DCT. We can see briefly that inverse transform procedure is

this: a block of coefficients is arrived and 1-D transform is applied in each of its rows

capturing horizontal frequency. After that, coefficients from first stage will be the input

after transposition of the second step of transform. The output result from the second

transform, is the 2-D transform of a NxN block of pixels.

B = UAUT (6)

Integer transform of HEVC is essentially the same algorithm with DCT, but U matrices

contains only integer values –not real numbers– making an approximation to basis func-

tions. As we said, DCT and therefore integer transform is an orthogonal transform and

this is the reason that HEVC contains four such transforms the 4x4, 8x8, 16x16 and
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32x23. These four different transforms apply usually to residual of pixels, so to convert

them in frequency domain and by quantization, to discard high frequency components

of error. The bigger size of transform is used, the better energy compaction is achieved

for large blocks of pixels. A typical 4x4 block of pixels-residuals, can be described by 2-3

coefficients if prediction is accurate and error has low energy. We can see that sending

three coefficients, we can reconstruct sixteen pixels. Now, a typical 32x32 block can be

described by ten about coefficients, thus letting to retrieve 1024 pixels sending only ten

coefficients and that is why better energy compaction is achieved.

3.3 Fast Transform Implementation

Having seen the DCT algorithm through equations, it is easy to realize that in order to

transform a NxN block, a computer have to perform N2 operations (multiplications and

additions) for the 1-D stage and one more time the same computations for the second

stage (2-D). So, the complexity of DCT via matrix multiplications is O(N2), which is

a prohibited complexity for real-time applications. Especially in HEVC standard, the

complexity would be very high for the two large transforms (16x16 and 32x32), thus

making difficult the optimization of integer transform module.

Several algorithms have been proposed all those years which reduce DFT-family algo-

rithm’s complexity. The most famous technique-algorithm was carried out from Cooley-

Tukey and the relevant paper was published in 1965 [36]. This is a divide and conquer

algorithm that recursively breaks down a DFT of any composite size N = N1N2, into

many smaller DFTs of sizes N1 and N2, along with O(N) multiplications. The best

known use of the CooleyTukey algorithm, is to divide the transform into two pieces of

size N/2 at each step, (also known as radix-n, where n are the steps) and is therefore

limited to a power-of-two sizes, but any factorization can be used in general. The two

pieces of N/2 transforms, are consisted from the even entries for the first transform and

the odd ones for the second divided transform.

Figure 3.4, shows an 8-point DFT with a radix-4 scheme, according to CooleyTukey’s

algorithm, that splits in smaller transforms up to 2-point DFT. All these diagrams are

called butterfly schemes due to their shapes. The butterfly scheme of the 2-point DFT,

is illustrated in Fig. 3.5. Now regarding the total complexity of the fast algorithm, it

is easy to see that each N-point or each radix, requires N multiplications and additions.

Having logN stages for each fast implementation, the total complexity for the 1-D

transform becomes N logN and 2N logN for the 2-D transform, since it is separable.

By converting a DFT algorithm in FFT, one we achieve, reduce the order’s complexity

from O(N2) to O(N logN) which is a very good performance for an algorithm that
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will be incorporated into a real-time application and also it enhances significantly the

performance of larger transforms such as 16x16 and 32x32. The complete fast DCT

diagram on which our implementation is based on is depicted on Fig. 3.6.

Figure 3.4: Cooley-Tukey algorithm with radix-4 [26]

Figure 3.5: Radix–2 bytterfly [26]

We shown how the DFT algorithm can be modified into FFT, using some techniques

in order to reduce its complexity. On exactly the same way, DCT transform is also

optimized in order to obtain a version of algorithm that can be used from demanding

applications. For DCT and so for integer transform, Chen’s algorithm [38] is utilized

in order to create a more efficient in terms of complexity algorithm that can be used

from video encoding-decoding applications. In HM reference software, the standard
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algorithm that is utilized for integer transform, is based on Chen’s algorithm which

contains the 4x4, 8x8, 16x16 and 32x32 transforms. The multiplicands are contained in

separate arrays for each size of transform and as we have already said, they are integer

approximations of DCT’s ones.

Figure 3.6: Signal flow graph of Chens fast factorization for 4x4, 8x8, 16x16 and
32x32 transforms [38]
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High Level Synthesis on FPGA

The growing capabilities of silicon technology and the increasing complexity of applica-

tions in recent decades, have forced design methodologies and tools to move in higher

abstraction levels. Raising the abstraction level and accelerating automation of both

the synthesis and the verification processes, has allowed designers to explore the design

space more efficiently and rapidly (shorter time-to-market). Essentially, the most valu-

able feature of HLS and that is why industry have started to explore further, is the

short time requirement for developing an algorithm into hardware including synthesis

and verification processes. As it is already known, an algorithm can be mapped onto

a hardware design with different architectural ways considering performance, area and

power. This is called design space of a certain algorithm, changing several hardware ar-

chitectural options, in order to make different Register Transfer Levels (RTLs) designs

of a specific algorithm. HLS tools, are very efficient in this approach, because given an

algorithm description and only changing directives, different RTL designs are produced.

Custom RTL designs, are written by hand with Hardware Description Languages (HDL)

code (Verilog, VHDL), so we have to write down a new code each time, if we want to

explore a different RTL design. Hence, HLS maintains more efficiency for exploring

design space, spending fewer time than classic logic synthesis approach.

In this chapter, we initially present an introduction Section 4.1 about HLS, in order

to clarify what is the general concept of HLS and what means “raising the abstraction

level”. After that, in Section 4.2, we briefly introduce Vivado HLS tool, which is a tool

for HLS on FPGAs and is available from Xilinx corporation. We explain a few things

about tool’s structure and how it manipulates designs, according to the directives that

are inserted. The most useful directives of Vivado HLS, are presented in Subsection

4.2.1, since some of them were used in our experiment. Finally, in Subsection 4.2.2 we

explain how Vivado controls latency, according to the directives that inserted.

28
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4.1 Introduction

High Level Synthesis, implies a general concept that have been introduced so far, for

both software and hardware developments techniques, despite the matter of fact that

formally it refers to hardware implementations. For example, in software domain until

1950’s engineers were writing directly machine code (bit-level). In 1950’s assembly

language was introduced and assembler had the task to translate into machine code.

Furthermore, after 1960’s first programming languages were utilized for programming

a machine. Languages such as C/C++, Pascal, Lisp and many others, use commands

more close to human cognition and other software tools (compilers), undertake the task

to produce assembly and after that machine code. When someone writes source code

into C for instance, in fact he does not know what exactly will be the machine code

that will be executed. Compiler makes a lot of platform based optimizations, in order

to produce more efficient assembly code. Actually, programmer is based on compiler

program, thus giving him an efficient and functional correct binary code.

In hardware domain now, first Integrated Circuits (ICs) were designed, optimized and

laid out by hand. After that, in 1970’s first gate-level and cycle-accurate simulation

tools enhanced circuit’s design process making more easy the verification which is a

vital factor in hardware design flow. After 1980’s HDL languages were developed in

order to automate the design of a hardware implementation. Engineers now describe

through HDL a specific hardware design that they have decided on and a logic syn-

thesis tool converts HDL into netlist, to wit gates and wires interconnected each other.

Additionally, except for logic synthesis several other tools have been developed such as

place-and-route, timing analysis and formal verification that facilitate and automate the

hardware VLSI design flow.

Using a specific technology library, the Logic Synthesis tool performs the process of

the mathematical transform of RTL description, into a technology-dependent netlist.

This process, is analogous to a software compiler that converts a high-level C-program,

into a processor-dependent assembly-language. Each logic synthesis tool makes some

mathematical transformations in boolean function of circuit, according to area, power

and delay constraints that have been inserted. If high frequency is required then tool

shall trade area (area expands exponentially in order to reduce logic levels) or else

logic levels will be increased in order to share hardware, thus saving area. In every

case of a function transformation, the boolean function will be exactly the same in

every different trade off. Hence, logic synthesis tools explore a very small area of whole

design space of an algorithm, because having determined RTL, they only explore boolean

transformations into a small portion of global design space.
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HLS concept, moves one level higher than logic synthesis, because through HLS we de-

scribe algorithm not RTL (not specific architectural design), thus giving more space into

tool to explore other RTL that satisfy a particular algorithm and meet some specification

constraints better. After desired RTL –which meet some specification requirements– is

exported, it can be inserted into a logic synthesis tool, for mapping design into a netlist,

under some area–delay constraints. Fig. 4.1 illustrates abstraction layers and how HLS

describes algorithm, –not design– thus enabling more efficiency in terms of time for

design space exploration.

Figure 4.1: Abstraction layers on digital circuit design [33]

HLS tools in general take as input a source code in C/C++ or System C and output

a specific RTL (Verilog and VHDL code), according to the directives that inserted.

Directives are declared as some definitions and directions for HLS tool, thus helping it

to output RTL under some specifications. For example, if we want a pipeline or a fully

parallel RTL implementation of our input algorithm, we have to insert some specific

directives into tool, so to know on what architectural plan we are aiming to, thus trying

to best meet our requirements. Several different directives can be given describing the

way that HLS tool will produce RTL, as we are going to see at next. Along with RTL, a

HLS tool also produces a report with results, regarding latency, area or device utilization

and delay that was achieved. Finally, we have to say that a typical HLS tool, aims either

on ASIC designs or FPGA ones. Both are based on the same flow and same concept is

utilized; having although different implementation objectives, hardware resources and
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technology libraries, the outputted RTL may be different. Vivado HLS, aims to FPGA

implementations and all the optimizations and reports are based on the target FPGA

device.

4.1.1 HLS flow

Every almost HLS tool is based on a certain flow. Initially, given a C/C++ source code,

tool makes a parsing in code and compiles the specification. In doing so, it represents

source algorithm in a Control Data Flow Graph (CDFG) in a more formal model after

parsing. Having this model, allocation of hardware resources takes place according to

a standard input library that tool is based on. After that, scheduling is performed in

order to assign different operations in clock cycles (see Fig. 4.2). Furthermore, binding

process, binds different operations with already allocated functional units and also binds

variables in storage elements (FIFOs memories) and transfers into buses. In the final

stage, some architectural optimizations take place according to the directives that have

been introduced in tool, thus creating final RTL architecture close to user specifications.

Fig. 4.3 briefly illustrates a typical HLS flow.

Figure 4.2: Different operations are scheduled in clock cycles [34]
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Figure 4.3: High Level Synthesis general flow diagram [35]

Every RTL that is produced from a HLS process, is consisted from two distinctive parts.

The first one ,as already described, is the data path that produces calculation results

and is consisted from classic hardware components such as: MUXs, ALUs, memories,

arithmetic modules, buses e.t.c. The second basic element of a RTL from HLS, is the

Finite State Machine (FSM) that controls the data path according to input signals. FSM

also controls output signals, thus providing a complete interface on top-module, since it

is considered as a separate IP hardware block – Fig. 4.4. This FSM is also manipulated

some times as a counter, in order to count latency for different data paths in circuit, as

we are going to see at next. According to these counters, FSM controls interface signals

of separate modules.
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Figure 4.4: Typical structure of RTL, produced from a High Level Synthesis tool [35]

4.2 Vivado HLS – Tutorial

Vivado HLS tool from Xilinx, is a tool that produces RTL in three HDLs (Verilog,

VHDL and System C) from a source input, described by C/C++ or System C. Except

for C/C++ code that essentially describes the algorithm that we want to implement on

hardware, directives and constraints are also inserted in order to help tool for outputting

RTL close to user’s specifications. These directives are inserted into a Tcl file or via GUI.

Vivado always targets to a specific FPGA device which is given as constraint, so each

RTL and therefore results, are closely related to device family and number. Different

devices have different clock speeds and paths and also they have different hardware

resources. Hence, HLS tool has to know about what and how many hardware resources

are available and how fast (“fast” refers to signal delay) is the device, because different

delays can be met and different hardware components may be allocated. Along with

RTL, a report with synthesis results is also outputted, in order to realize how close is

outcome to designer’s specifications, in terms of area, power and performance. Report

summarizes device utilization, min and max latency and interval and the clock delay

was achieved. Interval, is the time that a new input can be inserted in a module and

in pipeline implementations, it represents throughput of design, while latency gives the

pipeline depth.
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Typical input constraints can be the clock cycle in ns, the percentage of period’s uncer-

tainty, which is the portion of period that is going to be used afterwards in post-place

and route results and finally the target device.

Directives now, can be large in number, because we have many choices on different types

of directives and also they can be configured by different parameters. In Subsection 4.2.1,

we present some of the most important directives that some of them are used in our

experimental set up.

Vivado HLS, aims on creating hardware blocks in order to use them as separate IP blocks

on FPGA hardware designs. For this reason when Vivado creates RTL, top-module and

all sub-modules on different hierarchy level, have always some standard interface signals,

in order to interact with other hardware modules. Ap start signal, triggers top module,

so to start performing its dedicated task. Ap idle remains high, as long as the module

doesn’t perform any calculation and becomes low, when it starts any operation. This

signal is used, just to know when our hardware block is elaborating a task. Ap done,

indicates when block finishes with its task, to know when output is valid for sampling.

Ap return essentially is the output of top module which of course can have more than

one. Ap rst is a standard reset signal, in order to set the circuit in a known state of FSM.

Ap ready indicates when a new input can be inserted in module. This is a very useful

signal, especially in pipeline designs where a new input can be fed into, before ap done

is asserted. All previous signals are completely controlled from the FSM part (Control

Unit) of RTL, which also undertakes the interaction between sub-modules. Fig. 4.5

shows a small piece of C code inserted into Vivado and all the input and output signals

of top module, after high level synthesis process.

If final RTL result meet target application’s specifications, then it can be easily extracted

as an IP core from HLS tool and so opened as a self-contained design from Vivado Logic

Synthesis tool. After that, design can follow next steps in logic synthesis (synthesis,

map, place-route), till bitstream file will be created, thus transplanting our design onto

the target FPGA device.
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Figure 4.5: A small example of C code and what interface signals are produced at
top module level after high level synthesis process [32]

One needs also to be mentioned in this section, the usage of DSP48E slices, which exist

in some FPGA devices. DSP48E slices are essentially separate hardware modules on

a FPGA and can be used from any design to perform usual DSP operation, thus sav-

ing LUTs reservation. The DSP48E slice supports many independent functions. These

functions include multiply, multiply accumulate (MACC), multiply and add, three-input

add, barrel shift, wide-bus multiplexing, magnitude comparator, bit-wise logic functions,

pattern detect and wide counter. The architecture also supports cascading multiple

DSP48E slices, to form wide math functions, DSP filters, and complex arithmetic, with-

out using general FPGA logic. For instance, in our experiments DSP48E slices were used

for multiply-accumulate operations (due to the origin of algorithm) and later on barrel

shift operations when source code transformed from multiply to shift-add operations.

For further details on DSP48E slices refer to [31].

4.2.1 Directives

Directives as mentioned earlier, are commands that are inserted in a HLS tool, so to

help about what kind of RTL we want to output. We will present some of the most

useful ones that utilized in our experimental set up, but are not limited here.

Except clock period, uncertainty and target device which are determined as input con-

straints , all the rest configurations are declared as directives. Reset style, FSM state

encodings, interface signals, latency constraints for loops and functions, are some basic

directives that designer may use to create RTL as close as possible to his preferences. In

general, almost all directives can be summarized in three categories trying to optimize

the created RTL: function, loop and array optimizations. Following Tables 4.1, 4.2 and

4.3, show some useful directives along with their description.
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Table 4.1: Directives for function level optimizations

Directive Description

Inline
Inlines a function, removing all function hierarchy.

Helps latency and throughput by reducing function call overhead

Instantiate Allows functions to be locally optimized.

Dataflow
Enables concurrency at the function level and

used to improve throughput and latency

Pipeline
Improves throughput of the function by allowing the
concurrent execution of operations within a function

Latency
Allows a minimum and maximum latency
constraint to be specified on the function

Interface Applies function level handshaking

Table 4.2: Directives for loop level optimizations

Directive Description

Unrolling
Unroll for-loops to create multiple independent operations

rather than a single collection of operations

Merging
Merge consecutive loops to reduce overall latency,

increase sharing and optimization

Flattening
Allows nested loops to be collapsed into

a single loop with improved latency

Dataflow Allows sequential loops to operate concurrently

Pipelining Used to increase throughput by performing concurrent operations

Dependence
Used to provide additional information

which can be used to overcome loop-carry dependencies

Latency Specify a cycle latency for the loop operation

In our experiment loop unrolling was used on two different levels of parallelism to realize

how much hardware resources expand and what the gain in latency. We experimented
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Table 4.3: Directives for array-storage level optimizations

Directive Description

Resource Specify which hardware resource (RAM component) an array maps to

Map
Reconfigures array dimensions by combining multiple smaller arrays

into a single large array to help reduce RAM resources and area

Partition
Control how large arrays are partitioned into multiple smaller

arrays to reduce RAM access bottleneck

Reshape
Can reshape an array from one with many elements

to one with greater word-width

Stream Specifies that an array should be implemented as a FIFO rather than RAM

also with pipeline solutions because our aim was the throughput performance, which is

favored from dataflow RTLs.

Figure 4.6: Partial and full loop unrolling example in a small loop. Latency is
improved as level of unrolling increases [32]
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Figure 4.7: Pipelining betweern different operarations and loops examples. Interval
and throughput are directly affected [32]

4.2.2 Latency-Based Control

In this subsection, we describe how HLS tool manipulates latency and interval, in

pipeline and no-pipeline designs. We will realize how latency is computed, so to know

in how many cycles different control paths may produce results. Inferences, are derived

from experiments we conducted in small pieces of code, in order to deduce how Vivado

HLS creates FSM, to control latency.

First, we analyze designs that are no-pipeline directed. If one circuit has only one control

data path, a maximum latency is computed according to scheduling process and this is

used to assert ap done signal. If various different control paths are existed, HLS compute

different latencies for every possible control path that may be used. FSM retains in its

stages this information and according the value of control signals, the appropriate latency

is used to assert ap done. A MUX circuit is used to multiplex control signal’s values

and according its output, correct latency is chosen, according to which control path is

going to be used. Figure 4.8, shows the following code example, if no-pipeline directive

is given.

Regarding now pipeline designs, if one control path is inferred then a latency is computed

witch implies the pipeline’s depth. Also, an interval time is computed, indicating circuit’s
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throughput. At first, FSM counts maximum latency cycles in order to fill pipeline and

after that every interval cycles it produces an output. If many control paths are existed,

then it finds the maximum latency of all. Regardless which control path is used, at

the first time it counts maximum latency to fill pipeline. After that, one input can be

inserted every interval time, thus producing a result according to interval time as well.

For operations with different latencies, tool align all latencies to worst by adding FFs

until meet worst latency. The following code example illustrates what we explain here.

// TEST.cpp

int EXAMPLE (short A, short B, short C)

{

int tmp, res;

if(C == 1){

tmp = A + B; //latency 1 cycle

}

else{

tmp = A*B; //latency 3 cycles

}

if(C == 1){

res = tmp / B; //latency 18 cycles

}

else{

res = tmp - B; //latency 1 cycle

}

return res;

}

In the above code example, two possible control paths may be followed. In former case,

a divider will be used after an adder, while in latter case a subtractor will be used after

a multiplier. In quotes, we show every different latency for different operation. Having

directed this code for pipeline design, all latencies in each sub-module align to the worst

adding more FFs without any logic inside. So, latency of adder path will be 3 cycles

and latency of subtractor 18 cycles. This happens because every time a module begins

a new operation, maximum latency is counted in order to output the first result. Hence,

in this example, we have to wait for 21 cycles before first outcome occurs, but after that
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in every cycle we can give a new input and get a new output. Fig. 4.9 illustrates our

previous analysis.

Figure 4.8: In unpipelined designs, different latency information is stored for different
data paths. According to the input signals, FSM chooses each of them for output in

specific latency cycles

Figure 4.9: Two modules with different latencies are aligned in worst latency by
adding FFs, when RTL is pipelined



Chapter 5

Experimental Methodology

This Chapter presents how we set up the experiment in order to obtain results and to

compare with other different implementations. Vivado HLS tool that was utilized to

explore design space of HEVC integer transform module, targets into FPGA mapping

of RTL, hence, all hardware resources refer to FPGA hardware components.

The basic idea of the experimental set up, is to fulfil the aim of this work which is

the design space exploration. So, we primarily experimented about how many different

RTLs, HLS tool can yields for reference source code (refer to Subsection 5.1.1), so to

capture their performance in terms of throughput. Observing output results from HLS

tool for a certain source code, we can realize how tool reacts on different directives,

input delays and several other characteristics that can be inferred from the HLS output.

After that and having obtained this knowledge, we may know how HLS tool manipulates

source codes and directives in order to output RTL, thus intuitively knowing how tool

will react on future works with different algorithms and directives.

Having finished design exploration of reference source code, we tried to input source

code, having replaced multiplications with shift-add operations. Shift-add operations

are extensively used from custom RTLs, as a technique that replaces pre-defined multi-

plications with shift and add circuits, thus reducing area and critical paths. Thinking

on the same way, we are trying to create RTLs that only use shifts and additions. Pre-

defined shifts on hardware designs utilize only wires; shifts on FPGAs can be mapped

using either LUTs or DPS48E modules. For that reason, we experimented on two differ-

ent source codes. The former code, aims to map shifts on DSP48E slices (see Subsection

5.1.2) and the latter on LUTs (see Subsection 5.1.3).

41
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5.1 General Flow

For all of the three source codes we experimented on, the same procedure was followed

in order to implement, to verify and finally to take simulation results. The structure of

Inverse Transform source code, is the same for the three different codes. A top function

that performs the inverse transform, switches between the four different size transforms

according to the size of current TU. Each of four functions that are called in order to

perform a fast inverse transform, represent a sub-module of respective size transform. So,

in each case–statement, a sub-module-function is called twice, one for the 1-D horizontal

step and one for the 1-D vertical step (2-D transform). Vertical 1-D step takes as input

the output of horizontal 1-D step as explained in HEVC Integer Transform chapter and

yields a block of pixels after 2-D inverse transformation. Each such function, performs

the fast inverse transform algorithm according to Chen’s diagram [38].

Initially, each source code have to be incorporated into Vivado environment, so to com-

pile it and verify that C++ code works properly, thus continuing in synthesis step. This

is a very important step, because only if we have verified that algorithm works properly,

we can proceed to synthesis; else the outputted RTL will have bugs into behavioural

simulation. The verification of top module in Vivado as mentioned in previous Chapter

4, is carrying out using C-like testbenches, modelling top module for synthesis into a C

function. Afterwards, one needs to verify module’s functionality, give some known input

data and observe output results. Therefore, the first thing we had to do, was to write

a C-testbench in that way that it will be able to take a standard input, create output

based on inverse integer transform and finally compare with a golden output that for

sure has correct data.

Trying to create a model that will be self-checked, we had to fed C-testbench with some

known input, so to compare the output. The HM-15.0 reference source code ported

on Visual Studio environment and into the code segment concerning inverse integer

transform, we added an extra piece of code that writes on a file input data of inverse

transform (coefficients in TUs) and on another file it writes the output of transform.

Input data are declared as standard input and output data as golden output that it

must matches with the testbench one’s. A reference video bitstream was used in HEVC

decoder from JCT-VC database [45], so to obtain input and output data. After that,

C-testbench reads data (to wit TUs) from input file, performs the inverse transform

algorithm and retains its results in a buffer. Finally, it reads golden output data from file

and eventually compares results with the golden output, printing an error in mismatch

case. Having created this testbench and having also golden input and output files for

validation, we can try every change we want from now on at source code, because we

are able to check rightness, thus having correct behavioural RTL after synthesis step.
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Having checked now source code validity, we can proceed to synthesis step. Except for

source code, also directives must be inserted into tool in order to check out how tool

induces. In each of three source codes we have given same directives. Each different

directive leads to different RTL for the same source code; Vivado HLS indicates different

RTLs for the same source as “solution N”, so we are going to use similar terminology.

For this work “Configuration M.N” indicates M source codes with N solutions each,

so both declarations will be used at next chapters. Four solutions tried for each source

code. First solution contains no directives. Second solution is directed to partially unroll

all for loops by a factor of two, in respect to the higher number of iterations. Solution

3, is directed to fully unroll any loop that exists in source code. Finally, solution 4 is

directed for a pipeline design in order to realize how throughput changes with pipeline

implementations. Then, we have four solutions for each source code, to wit twelve

different configurations and RTLs that each of them was tried on different input clock

period constraints, to see what changes tool performs on RTL, trying to meet different

critical paths and delays.

As explained in the previous Chapter 4, every synthesis that is performed from source

code and directives, aims on a certain technology because high level synthesis produces

RTL target to some device for optimized result. Also, the report from HLS shows

the utilization of a specific device. The FPGA device we inserted as target device in

HLS tool throughout the experiment, is from qkintex7 family and the device’s code is

xq7k410trf900-2l. Regarding the hardware resources this device has 1590 DSP48E slices,

508400 number of FFs, 254200 LUTs and 1590 BRAMs.

5.1.1 Reference Source

Reference software is the pure source code of inverse integer algorithm, as extracted

from HM-15.0 reference software [45]. Small changes were carried out in some pointer

variables, because HLS tool have to know what is the exact size that a variable is mapped

on, so to create a buffer in hardware with the same size.

All four sub-modules with fast inverse transforms, use multiplications and additions in

order to calculate the result. If target device has DSP48E modules, then all the multi-

plications and additions are by default forced to be mapped there, for better efficiency

in those more specialized modules. Several for loops are used in functions, so to per-

form tasks that can be accomplished iteratively. The bigger size of transform the more

for-loops we have, having also higher number of iterations. Observing whole dataflow

diagram according to Chen’s algorithm, we may understand how source code works and
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how the complexity of each function–sub-module scales when compared to the other

three.

5.1.2 Inline Shift–Add Source

Custom RTL designs for integer transform algorithm and general for convolution-like

operations with defined multiplicands, usually utilize shift-add operations, because mul-

tiplication modules increase area cost, critical paths and latency. Trying to invoke HLS

tool to deploy RTL using as much less multiplications, we changed source code, so to

don’t use them any more. They replaced from left shift operations in C level. For ex-

ample, if we have to multiply a sample with three, one needs, only make a left shift by

1 on sample and add it once (sample ∗ 3 = (sample << 1) + sample). In hardware,

pre-defined amounts of shifts, are carried out only by exchanging wires without shift-

registers. Besides, arrays with multiplicands of integer DCT, doesn’t need any more

because there aren’t any to be used now. With this change, we expect that all multipli-

cations will be replaced by shift-add operations, thus saving a lot of hardware resources

and giving chances for smaller latency.

Observing results, we will see that DSP48E module’s utilization is considerably decreased

which is a vital factor for enabling a map onto target FPGA device. Although DSP48E

utilization decreased, we would expect that DSP48E modules will not be used at all,

because there is no multiplication operator in source code to invoke such a map. In next

chapter, we are discussing why results show that DSP48E modules are still used.

5.1.3 Function Shift–Add Source

The third source code we tried, was created in order to eliminate DSP48E modules

completely. The modification here is based on the source code with shift-add operations

5.1.2. The problem we tried to solve is the mapping of shift-add operations on DSP48E

modules. So, we created separate function–modules, each of them takes as input a

sample and makes a left shift by some defined quantity, according to which function is

used. Ultimately, we change the hierarchy level for those functions that perform shift,

expecting that tool will map all such functions in LUTs, in order to observe output

results and to see how device utilization and latency get affected.

Indeed, results show that this modification completely eliminates DSP48E modules usage

and LUTs number are increased because all shifts are mapped there now. Finally, as we

are going to see in Chapter 6, this version of source code is the most efficient in terms of
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device utilization (much less hardware resources are now used) and in some sub-modules

latency is also decreased.



Chapter 6

Results

In this chapter we present and analyze the results obtained from the Vivado HLS tool.

They illustrate the performance of the inverse integer transform hardware implementa-

tion, either in terms of an area–latency–delay trade off, or in throughput requirements

for supporting a real time video decoding application. Results are illustrated for all

the different configurations that Vivado HLS tool derived for the three different C++

sources and according to the inserted directives. By examining the raw results from

tool’s report, we can realize how the tool reacts on different directives and different

C++ code in styles, describing the same algorithm. The sections of this chapter are

organized as follows: Section 6.1, provides output results from HLS tool, giving infor-

mation about different implementations on a target FPGA device. The results from the

three different source codes we experimented on, are presented in Subsection 6.1.1 for

the H.265 relevant reference code, in Subsection 6.1.2 for the inline shift–add version

and in Subsection 6.1.3 for the function based shift-add version. Section 6.2, illustrates

results in 2-D and 3-D figures. Final Section 6.3 provides throughput results for all the

different implementations, comparing them in terms of performance. It is also useful,

to identify when each module becomes a critical component into a hardware decoder,

for different video resolutions and frame rates. An overview of the top module block

diagram that HLS tool, yielded for the different RTLs is illustrated in Fig. 6.1. All the

different architecture optimizations, are performed within each of the four sub-modules,

without changing the architecture at top level’s RTL.

46
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Figure 6.1: Block diagram at the top module hierarchy level that Vivado HLS tool
yielded for all the different RTLs.

6.1 Vivado HLS Results

In following tables of this section, sub-module latency refers to the standard latency,

required to accomplish the 1-D stage of each size transform. Latency at the top module

level, refers to the maximum latency that is occurred from 32x32 sub-module transform,

which yields the worst latency among all other sub-modules. Minimum latency on top-

module is zero, which occurs in case of error –if size of requested transform is invalid–

because top module immediately terminates in this case. Other latencies for sub-modules

4x4, 8x8 and 16x16, stand between minimum and maximum values. Because these four

transform sub-modules are mutually exclusive, for each control path, the control FSM

retains latency information and according to the selected path, different latency is used.

Therefore, for the four transforms and the error case, five different latency information

are stored in FSM, so to implement the control interface. Table 6.1, explains each

different configuration that yields different RTL architecture. This terminology is going

to be used throughout this chapter.
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Table 6.1: All different configurations that experiments were conducted

Configuration Source Code Directives

1.1 Reference No Directives inserted except for target period and device

1.2 Reference Directives for partial unroll in all loops, by a factor of 2

1.3 Reference Directives for fully unroll in all loops

1.4 Reference Directives for pipeline design in all sub-modules

2.1 Inline Shift-Add No Directives inserted except for target period and device

2.2 Inline Shift-Add Directives for partial unroll in all loops, by a factor of 2

2.3 Inline Shift-Add Directives for fully unroll in all loops

2.4 Inline Shift-Add Directives for pipeline design in all sub-modules

3.1 Function Shift-Add No Directives inserted except for target period and device

3.2 Function Shift-Add Directives for partial unroll in all loops, by a factor of 2

3.3 Function Shift-Add Directives for fully unroll in all loops

3.4 Function Shift-Add Directives for pipeline design in all sub-modules

6.1.1 Reference Code

The reference software of inverse integer transform, includes only multiplications and

additions as arithmetic operations in order to create results, for each stage of algorithm.

Hence, DSP48E modules are used extensively because as already mentioned in Chapter

4, Vivado HLS tool maps arithmetic operations on DSP48Es modules wherever feasible.

Therefore, it fuses multiplications with additions into a single arithmetic module (multi-

cycle module) that exists on some devices for such arithmetic operations.

Configuration 1.1 is the most optimal implementation, in terms of device utilization (aka

occupancy), because everything are performed in a serial fashion without exploiting any

parallelism. In Table 6.2, we can see the same circuit over five different target periods

and how tool trades area (FF and LUTs) for latency and delay.

Configuration 1.2 now, is directed to partial unroll all for loops by a factor of two,

thus making a parallelism for identify a better latency result. However, unrolling loops

requires more hardware resources, as some operations operate in parallel. Thus, as we

can observe in Table 6.3, the number of FF, LUTs and of course DSP48E modules,

increase significantly due to hardware expansion. The most loops and operations has a

module, the more hardware resources are allocated further for it.

Configuration 1.3, we directed the tool in fully unroll any loop, trying to reach the

minimum latency, while expecting area to be maximized. Indeed, this great level of

parallelism, implies that latency falls significantly and area grows up extensively, as

shown in Table 6.4. Area utilization in this configuration is very large, thus requiring

high capable FPGAs, in order to map the circuit. Completely unrolling on large loops
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Table 6.2: Configuration 1.1 – HLS Report for different delay constraints on the same
configuration

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 20.67 9413 9414 1 52 3649 7258

4x4 17.82 17 17 0 2 161 1209

8x8 14.3 185 185 0 6 518 1453

16x16 17.97 1089 1089 0 14 1114 1952

32x32 20.67 4705 4705 0 30 1838 2244

Top Module 15.58 10949 10950 1 52 3770 7294

4x4 15.48 17 17 0 2 175 1209

8x8 14.3 185 185 0 6 518 1453

16x16 15.58 1217 1217 0 14 1141 1952

32x32 15.58 5473 5473 0 30 1918 2280

Top Module 10.49 13765 13766 1 52 4650 7305

4x4 10.49 21 21 0 2 290 1209

8x8 10.49 249 249 0 6 600 1455

16x16 10.18 1537 1537 0 14 1362 1955

32x32 10.49 6881 6881 0 30 2380 2286

Top Module 5.17 21829 21830 1 52 6546 7350

4x4 5.09 33 33 0 2 451 1212

8x8 5.17 361 361 0 6 877 1464

16x16 5.17 2257 2257 0 14 1829 1964

32x32 5.17 10913 10913 0 30 3371 2310

Top Module 2.39 39309 39310 1 52 8877 7674

4x4 2.39 63 63 0 2 964 1223

8x8 2.39 747 747 0 6 1333 1541

16x16 2.39 4115 4115 0 14 2484 2068

32x32 2.39 19651 19651 0 30 4063 2434

–as some of them exist in 16x16 and 32x32 transforms– leads to huge device utilization

and impractical solutions, since they exceeds the capability of the largest FPGAs.

Architectural plan for configuration 1.4, is to pipeline the circuit of IIT, in order to

achieve max throughput. Pipelining, introduced only in the four sub-modules, that

exist in top-module. As mentioned in Chapter 4, the Vivado tool when pipelining a

design, fully unrolls all loops, in order to create higher parallelism, which again leads

to significant device utilization. Additionally, it utilizes more FF and LUTs –as we

expected to do so– for creating pipeline stages and retain intermediate results (see Table

6.5). However, the main difference between this pipeline version comparing with previous

configurations, time interval is considerably reduced that enables each module to take

faster new inputs without having completed previous operations. Hence, each sub-

module’s throughput is significantly increased, affecting the entire performance of the

top module.
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Table 6.3: Configuration 1.2 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 20.67 6665 6666 1 2908 31583 100559

4x4 17.82 13 13 0 4 198 2238

8x8 13.59 147 147 0 40 1983 7455

16x16 17.97 915 915 0 144 6727 22619

32x32 20.67 3331 3331 0 2720 22657 67847

Top Module 2.39 25041 25042 1 2908 164763 106611

4x4 2.39 37 37 0 4 1786 2254

8x8 2.39 437 437 0 40 7282 7975

16x16 2.39 3877 3877 0 144 23809 24608

32x32 2.39 12517 12517 0 2720 131853 71366

Table 6.4: Configuration 1.3 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.87 1313 1314 1 10104 77434 386039

4x4 17.82 9 9 0 8 234 4246

8x8 21.87 61 61 0 112 2886 13444

16x16 21.87 230 230 0 992 10736 64034

32x32 21.87 655 655 0 8992 63560 303860

Top Module 2.39 2733 2734 1 10104 148084 384845

4x4 2.39 20 20 0 8 457 4248

8x8 2.39 135 135 0 112 4359 13214

16x16 2.39 428 428 0 992 18471 63282

32x32 2.39 1363 1363 0 8992 124779 303646

Table 6.5: Configuration 1.4 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 20.96 1056 1057 1 10104 261020 386947

4x4 17.82 9 8 0 8 411 4248

8x8 15.22 53 32 0 112 5885 13068

16x16 18.26 135 128 0 992 32573 62776

32x32 20.96 527 512 0 8992 220686 301160

Top Module 2.39 2018 2019 1 10104 718501 536280

4x4 2.39 20 8 0 8 3411 4296

8x8 2.39 65 32 0 114 14359 14244

16x16 2.39 252 128 0 992 92263 79000

32x32 2.39 1006 512 0 8992 605753 427672
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6.1.2 Inline Shift–Add Code

This subsection contains all the results, regarding the modified code, without invoke any

multiply operation into source. All multiplications have been transformed into shift–add

operations, a transformation exploited in various hardware designs, so as to reduce area

and critical path or the latency.

Vivado HLS, is directed by default in mapping various usual arithmetic operations on

DSP48E slices, for devices that have this option. We would expect that changing the

code without any symbol for multiply operation, no DSP48E module would be utilized.

However, DSP48Es are still utilized, despite that their number is considerably decreased.

So, an obvious profit we have from this approach, DSP48E module’s utilization is atten-

uated significantly and now our circuit can be mapped on a device requiring less DSP48E

resources. Besides, reducing DSP48E modules, it is rather straightforward to see that

LUT utilization is increased, because some arithmetic operations now, performed from

LUTs.

Obtaining the output report from HLS, even though no multipliers are used in code,

DSP48E modules are still used, to manipulate the various amounts of shifts and adds.

We do know, that shift operations in ASIC hardware, cost only wires for fixed- length of

shift operations. So, for circuits on FPGA, shifts cost in LUT utilization. Vivado HLS,

for a certain number of different shifts decides to perform them on DSP48E modules and

to combine with adders, thus saving LUTs and utilizing properly the existing device’s

hardware resources.

This mapping on DSP48E slices, yields a small increase in latency due to the greater

number of FFs that utilizes, in order to control the DSP48E modules, and to perform

shift-add operations. This increase in FFs becomes greater to lower target periods. This

serial approach, with all the shifts going to DSP48E slices, produces higher latency to

design, as a few modules have to perform many shift and add operations, which are

FFs controlled. As we can see in Tables 6.6, 6.7, 6.4 and 6.9, having changed the input

source code, despite latency has been increased, it drops down in bigger modules such

as 16x16 and 32x32, in comparison with reference code implementation. Hence, using

the RTL from the new source code, throughput of specific modules is increased, as long

as their latency diminish.
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Table 6.6: Configuration 2.1 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.39 9413 9414 1 12 7582 19698

4x4 18.48 17 17 0 1 161 1324

8x8 19.28 113 113 0 1 416 2132

16x16 21.39 673 673 0 2 1167 5669

32x32 17.68 4705 4705 0 8 5838 10573

Top Module 2.39 47053 47053 1 12 66380 21714

4x4 2.39 79 79 0 1 2298 1360

8x8 2.39 667 667 0 1 5738 2387

16x16 2.39 3171 3171 0 2 18921 6511

32x32 2.39 15682 15682 0 4 39423 11456

Table 6.7: Configuration 2.2 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.39 5769 5770 1 50 22786 157455

4x4 18.48 17 17 0 1 161 1324

8x8 19.28 113 113 0 1 461 2553

16x16 21.39 515 515 0 16 6617 49674

32x32 20.47 2883 2883 0 32 15529 103480

Top Module 2.39 21457 21458 1 50 524301 184476

4x4 2.39 79 79 0 1 2298 1360

8x8 2.39 443 443 0 1 6542 2849

16x16 2.39 2797 2797 0 16 164900 57309

32x32 2.39 7150 7150 0 32 350528 122526

Table 6.8: Configuration 2.3 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.51 1061 1062 1 162 49510 356772

4x4 18.58 17 17 0 1 161 1324

8x8 19.28 65 65 0 1 419 3237

16x16 21.57 137 137 0 32 15930 111235

32x32 21.31 529 529 0 128 32982 240497

Top Module 2.39 3097 3098 1 162 1275214 253537

4x4 2.39 79 79 0 1 2298 1360

8x8 2.39 251 251 0 1 7596 3523

16x16 2.39 360 360 0 32 366376 127985

32x32 2.39 1545 1545 0 128 898944 120669
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Table 6.9: Configuration 2.4 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.51 1058 1059 1 162 89520 394576

4x4 17.39 9 8 0 4 471 4705

8x8 20.22 56 32 0 8 3350 19205

16x16 21.51 240 128 0 32 26110 109969

32x32 20.38 528 512 0 128 59589 260697

Top Module 2.39 2026 2027 1 162 1380302 618716

4x4 2.39 24 8 0 4 8636 4813

8x8 2.39 68 32 0 8 55205 20909

16x16 2.39 256 128 0 32 359532 123089

32x32 2.39 1010 512 0 128 956938 458705

6.1.3 Function Shift–Add Code

Our final modification to the source code, was based on the approach of the previous

Subsection 6.1.2. If we recall previous results, we can see that though the usage of

DSP48E modules is decreased, they are still mapped on FPGA device, thus conveying

a higher latency especially to modules 4x4 and 8x8. Here we have modified the source

code, trying to completely eliminate the usage of DSP48E modules and force tool, to

make all shift and add operation using LUTs, instead of DSP48E slices. We try this,

so as to find how latency is affected from different mapping on hardware resources,

concerning shift and add operations.

Elaborating towards this direction, we created small functions, each of them performs

a predetermined amount of left shift. Essentially, with this approach, we change the

hierarchy level of shift functions as separate modules. In doing so, we evoke tool to map

all shift and add operations in LUTs, without using any DSP48E module.

Results in Tables 6.10, 6.11, 6.12 and 6.13, depict that our approach (moving on different

hierarchy layer the shift functions) worked, as we expected to do so. DSP48E slices

utilization is removed, thus saving a lot of valuable hardware resources. Now, we leave

more space to other video modules, to utilize DSP48E slices. Even more, another great

benefit from this approach, the elimination of DSP48E slices, has decreased the number

of FFs, thus reducing latency and eventually improving throughput performance, as we

shall see in Section 6.3.

Comparing our latest effort, about the modification of source code, trying to optimize

further the outcome RTL, we realize that the two great benefits are: the large diminish
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Table 6.10: Configuration 3.1 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.78 9413 9414 1 0 3491 12332

4x4 16.63 17 17 0 0 161 1361

8x8 15.28 113 113 0 0 416 2265

16x16 21.41 673 673 0 0 1069 6661

32x32 20.67 4705 4705 0 0 1838 2244

Top Module 2.39 39309 39309 1 0 15571 14274

4x4 2.39 63 63 0 0 1117 1421

8x8 2.39 435 435 0 0 2449 2510

16x16 2.39 2131 2131 0 0 7909 7501

32x32 2.39 9825 9825 0 0 4063 2434

Table 6.11: Configuration 3.2 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.41 5769 5770 1 0 30299 164565

4x4 16.63 17 17 0 0 161 1361

8x8 15.25 113 113 0 0 461 2685

16x16 21.41 515 515 0 0 6130 57834

32x32 20.67 2883 2883 0 0 23529 102285

Top Module 2.39 17825 17826 1 0 230371 179374

4x4 2.39 63 63 0 0 1117 1421

8x8 2.39 291 291 0 0 2769 2965

16x16 2.39 2101 2101 0 0 66655 64863

32x32 2.39 6258 6258 0 0 159797 109717

Table 6.12: Configuration 3.3 – Solution 3 HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 21.87 1313 1314 1 0 79850 436993

4x4 16.67 17 17 0 0 161 1361

8x8 17.42 65 65 0 0 373 3363

16x16 21.87 230 230 0 0 15738 127954

32x32 21.87 655 655 0 0 63560 303860

Top Module 2.39 2733 2734 1 0 696677 478978

4x4 2.39 63 63 0 0 1117 1421

8x8 2.39 171 171 0 0 3106 3624

16x16 2.39 399 399 0 0 141023 139744

32x32 2.39 851 851 0 0 551398 333726

of device utilization regarding DSP48E slices and the lower latency that achieved as

well.
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Table 6.13: Configuration 3.4 – HLS Report

Solution Period(ns) Latency Interval BRAM DSP48E FF LUT

Top Module 20.96 1056 1057 1 0 250443 459496

4x4 16.63 9 8 0 0 319 4856

8x8 18.95 46 32 0 0 3112 20436

16x16 20.56 225 128 0 0 24695 126744

32x32 20.96 527 512 0 0 220686 301160

Top Module 2.39 2018 2019 1 0 774626 604844

4x4 2.39 20 8 0 0 3991 5072

8x8 2.39 61 32 0 0 20134 22260

16x16 2.39 250 128 0 0 142025 138808

32x32 2.39 1006 512 0 0 605753 427672

6.2 Area – Delay – Latency

In this section, we present previous results, in terms of an area-delay-latency trade off.

The 2-D diagrams that presented in Subsection 6.2.1, provide results about how HLS

tool trades area and latency for delay, in order to realize how it performs in target period

changes. 3-D diagrams, show that area and latency change alongside, as period changes.

In general, in this subsection we shall make a quick discussion, based on the results we

obtained later, about how tool reacts on different inputs of period, creating different

RTLs. Thus, we will try to understand how tool is designed and decipher its behaviour

about input delay changes.
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6.2.1 2-D Diagrams

It is a well known rule, that every EDA tool which creates a netlist either from a high-

level language or a HDL, is based on a pareto curve that makes a trade off between

area and delay. According to results that are presented in this subsection, Vivado HLS

tool is based on such a curve as well. Area utilization in FGPAs, is declared as what

portion of existing resources is reserved from the current device, for a specific RTL.

In order to normalize utilization from different data (DSP48Es, FF, LUTs, BRAMs),

we calculated the final normalized utilization which is depicted on following figures as

the average, of all secondary utilizations. In doing so, we can compare different RTLs

from different configurations, only using the averaged utilization, which depicts the

comparison between them. This number is quite close to real device’s utilization and

represents a median value that device is utilized. This number gives a more general view

of device utilization, but it doesn’t depict accurately if a RTL design can be mapped

onto a device. Every secondary utilization has to be taken into account, in order to

realize if a design doesn’t exceed the available hardware resources.

Figures 6.2, 6.4 and 6.6, show the area-latency trade off, for all the configurations we

experimented on. Essentially, in each figure we can see the design space for each different

source code, in terms of area-delay trade off. Observing carefully these figures or tables

from previous section, we can realize that reducing target period, tool introduces more

FFs, in order to reduce the delay of critical paths and divide them in smaller pieces. As

the number of FFs increases, –for the reason that already described– as we can see the

number of LUTs increases as well, because FFs in fact correspond directly to structures

created from LUTs. Considering all the tables from previous Section 6.1, we may safely

support the argument that the more hardware resources are allocated, the more rapid

is the rate on which FFs and LUTs increase, while moving on shorter target periods.

This means that in configurations x.2 and x.3 where hardware resources are huge, due

to the loop unrolling directive, the rate that number of FFs and LUTs is growing up is

increased, when compared to solution 1 for example that have allocated lower resources.

This happens because fewer FFs and LUTs are required to get increased while lessening

input delay constraint in solution 1. Hence, we have to pay attention on the delay

constraint that we will utilize on the design, because in circuits with high amount of

hardware modules and resources, device utilization (FFs and LUTs) increase largely and

may exceeds the area capabilities of the target device.

With respect to the latency-delay trade off, we can see how it directly connects to the

number of FFs. When tool is directed to achieve shorter period, it actually tries as

already mentioned, to cut critical paths in smaller ones, thus creating smaller delay

between FFs. The more pieces we divide the logic, the more latency increases, as circuit
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requires more cycles in order to complete the task. Although, this in not happens when

we are considering latency for pipeline designs, because by the time the pipeline get filled,

after that, in each cycle we can create a new result if it is possible. Configurations x.1,

x.2 and x.3, are not directed to give a pipeline RTL, so they have to wait until one TU

completely get finished, before take another input. In this particular case, designer has to

take into account that reducing the clock period, except for device utilization, latency is

affected as well, in a trade off scenario that may reduce throughput performance. In next

Section 6.3, we shall see in further detail issues about throughput and we will dive deeper

in its analysis. By the time, it is straightforward to see that if latency increases sub-

linearly with delay, then throughput grows up, while in the opposite situation throughput

is getting worse. So, we are expecting to find better throughput results, from RTLs with

the lowest time delay.

Concluding this subsection, each designer has to carefully consider following diagrams,

in order to have a knowledge about how tool take decisions on area and latency, when

the input target period changes and even more, how throughput maybe get affected from

this. So, before we insert directives in HLS tool, we have to know about the diagrams

on which it is based on and the decisions about the area and latency that is going to be

used, in order to meet a specific delay constraint.
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Figure 6.2: Normalized Utilization – Delay diagram for reference code experiment

Figure 6.3: Latency – Delay diagram for reference code experiment
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Figure 6.4: Normalized Utilization – Delay diagram for inline shift-add code experi-
ment

Figure 6.5: Latency – Delay diagram for inline shift-add code experiment
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Figure 6.6: Normalized Utilization – Delay diagram for function based shift-add code
experiment

Figure 6.7: Latency – Delay diagram for function based shift-add code experiment

6.2.2 3-D Diagrams

Just in order to have a more complete picture of Pareto curves that we discussed on

them earlier, we show here the 3-D diagrams with area and latency for delay trade-off.
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The close relationship of area and latency when we are changing the target delay for

our design, is depicted in following 3-D diagrams. In this subsection, area-utilization

is presented as the sum of all secondary percentages –not the averaged as in previous

subsection– only for visual reasons at the interpolation in 3-D plots. So, the averaged

utilization can be obtained by dividing area’s axis by three.

3-D diagrams in Figures 6.8, 6.9 and 6.10, show Pareto surface for some notional config-

urations. They depict that when design is evoked to work on higher operating frequency,

to wit shorter period, number of FFs and LUTs are increasing in order to create shorter

critical paths with fewer logic levels. Hence, this increases design’s latency, thus nega-

tively affecting throughput for unpipelined circuits. Each of five dots in each diagrams,

indicate a specific RTL that exported from tool, with different target delay. As we mov-

ing on lower delays, dots move higher (latency increases) and have a direction at right

(device utilization increases as well). So, following diagrams show up the cost in device

utilization and latency that we pay, forcing our algorithm, to be implemented in higher

frequency.

Figure 6.8: Configuration 1.1 – Trafe off Surface from Vivado HLS – Latency, Area,
Delay
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Figure 6.9: Configuration 1.2 – Trafe off Surface from Vivado HLS – Latency, Area,
Delay

Figure 6.10: Configuration 1.3 – Surface from Vivado HLS – Latency, Area, Delay

6.3 Throughput Exploration

Having seen all previous results, obtained from the Vivado HLS, we can now proceed to

throughput analysis, which is the outer purpose of this work.

Throughput calculation requires three variables: (i) latency of design, (ii) delay and (iii)

the number of elements that are processed from every module. For pipelined implemen-

tations, interval must be used instead of latency, since we consider that pipeline is full,

in order to calculate throughput. Interval, is number of cycles for a module to accept a

new input. So in configurations x.4, we calculate throughput according to the interval,

instead of latency.

In Subsections 6.3.1 and 6.3.2, we present two kind of tables regarding throughput.

The first one, are tables with pixel/cycle metrics and the second kind on samples/sec

results which are based on the former tables. When we refer to term “samples”, we

mean residuals, because as mentioned in prior chapters, the output in most cases of IIT

module is the error of pixels in spatial domain. It is straightforward to see, that the

entire performance of the IIT module, depends on the throughput performance of the

1-D transform sub-modules. Thus, we present their throughput results to identify how

affect the performance of the top module.

Subsection 6.3.1, provide results about the worst and best case of throughput that is

based on sub-modules 4x4, 8x8, 16x16 and 32x32. Additionally, in Subsection 6.3.2,
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weighted results are presented in order to have a more realistic view of design’s through-

put. Actually, weighted throughput determines the real specifications of the design,

since min and max throughput are unattainable performances.

In two final Subsections 6.3.3 and 6.3.4 we use throughput results, in order to compare

them with other software and hardware implementations and also to realize for which

video resolutions and fps, inverse transform module becomes a critical component for a

hardware video decoder application and in which degree, it constraints the throughput

performance of a video decoding application.

6.3.1 Min–Max Throughput

Here we provide results, regarding minimum and maximum throughput performance, in

order to realize the limits of the implementation that HLS outputted, always having in

mind the area cost that we pay for each solution, according to results from Subsection

6.2.

The calculation of these results are based on the best and worse in terms of pixel/cycle

modules, in order to find the maximum and minimum throughput respectively. One

always needs to keep in mind, the delay that have been used for throughput calculation

is 2.39 ns, where it is the smaller possible delay that HLS could achieve. In previous

Section 6.2, we showed that while latency increases sub-linearly with delay, through-

put increases as well. Hence, we considered the smallest delay (2.39ns), to maximize

possible throughput of each sub-module. The calculation of pixel/cycle results is based

on equation 1. Pipelined RTL, provide for each sub-module, 2samples/cycle for both

worst and best case (all sub-modules have the same performance), because the number

of samples that each module process, increases linearly with the level of pipeline that

HLS tool achieves. Thus, in each sub-module the throughput is the same and equal with

2samples/cycle.

Samples/Cycle = Samples
Latencycycles

(1)

Samples/Second = Samples
Cycle × 1

Delay (2)

The above Equation 1, is used to calculate which of the sub-modules have the best and

worst performance, so to be used in final throughput results for the limits of the design.

Using previous results, we can now proceed to calculate the throughput results. One
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needs, only multiply previous results with the frequency of the design, because having

samples/cycle results, we have to multiply with the number of the cycles in one second,

thus translating into samples/second domain. Calculation of Msamples/sec is based

on Equation 2.

In Tables 6.14, 6.16 and 6.18, we present results about throughput for both 1-D and

2-D transform modules. One can be easily inferred from those tables, 2-D modules have

about the half throughput of 1-D. This is a rational outcome, because 2-D transform is

essentially the same as using twice the 1-D and therefore the worst and best cases for

2-D and 1-D differ by a factor of two, in most configurations.

Considering all the configurations, we can see how throughput is affected from the

architectural choice that have been made, according to directives we have given in HLS

tool. As the level of parallelism get increased, throughput increases as well, because

latency falls down. In configurations x.4, which are directed for a pipeline design, in

each 1-D sub-module, throughput is maximized, because instead of latency, we have

used interval time. Hence, while moving in higher solutions for the same source code,

throughput is increased according to the level of parallelism and whether the design is

pipelined or not. However, moving on higher throughput, we pay higher cost in terms

of device utilization, as extensively discussed in Section 6.2.

Throughput in pipelined RTLs, is four up to ten times the throughput of other config-

urations, where HLS tool tries the same techniques, in order to decrease latency and

therefore the number of hardware resources is roughly the same. Paying an additional

small cost in averaged device utilization –about 5% when we move from configurations

x.3 to x.4–, the pipeline version provides up to 10 times better performance, when com-

pared with a non-pipeline version.

Comparing now the three different codes we tried on, we can see that in most cases

the 4x4 module gives the best throughput and 32x32 the worst, because latency is

increased according to sub-module’s complexity, unlike to custom implementations that

their latency increases sub-linearly with module complexity. This implies that in custom

implementations, 32x32 module gives best throughput and 4x4 gives worst, while in

implementations that are based on HLS RTL outputs, 4x4 gives best and 32x32 worst

throughput performance. In some cases, for example in configurations 3.1 – 3.4, we

can see that 32x32 module becomes best in throughput, because latency in decreased

compared to other input code’s implementations.

At first, comparing the reference source code with the inline shift-add one, we realize

that in best throughput case, reference code gives better results, because its 4x4 module

achieves lower latency than shift-add code in 2.39 ns delay. This happens, because inline



Simulation Results 65

shift-add code, uses DSP48E modules in order to perform shift-add operations and this

results in higher latency. Now, considering worst case results we again faced the high

latency due to the way that Vivado tool manipulates shift-add operations. Comparing

results from solution 2 at Tables 6.14 and 6.16 we can see that throughput in latter

case is better. Concluding this comparison, we realize that reference code has better

throughput results in most cases, when compared to inline shift-add code results. So, the

only benefit we have from this second source code configuration, is the device utilization

and especially the reduced number of DSP48E slices.

This paragraph, compares the third source code (function shift-add) with previous re-

sults. Here DSP48E slices are disappeared and then all shift and add operations are

implemented on LUTs and FFs. One can be inferred by observing Table 6.18, through-

put is increased because latency has considerably reduced. In all worst cases, throughput

has been increased, when compared with the other two source codes. In best cases, it

has been significantly improved, in comparison with inline shift-add code and in some

cases it is better than reference code implementation. This improvement for the third

code we have given, is noticed because 4x4 is not always the best module in terms of

throughput. Other modules such as 16x16 and 32x32 gives now better results due to

the smaller latency that achieved. Hence, function shift-add code, is the most close

approach to custom integer transforms implementations when throughput is a critical

factor for design’s compatibility. The most valuable result in this latest change of source

code, DSP48E module utilization is completely eliminated, thus giving more available

resources to other components of a video decoder. In order to realize what we have

gained, if we consider throughput results in solution 3 for Tables 6.14 and 6.18, for ref-

erence and function shift-add codes respectively, we can see that throughput is doubled

without using any DSP48E slices.

To conclude, we can see that pipeline RTLs has exactly the same throughput perfor-

mance in all different source codes, because HLS tools seems to make same pipeline

depth, for all the different source codes. Although, in function shift-add code that

doesn’t use DSP48E slices, performance is achieved using very few hardware resources

and this makes implementation more power friendly and area non-demanding.



Simulation Results 66

Table 6.14: Top Module Throughput in Msamples/sec Min–Max results from refer-
ence code implementation

Msamples/sec 2-D Worst 2-D Best 1-D Worst 1-D Best

Config–1.1 10.89 53.13 21.8 106.26

Config–1.2 13.81 90.46 27.62 180.93

Config–1.3 99.17 167.36 192.35 334.72

Config–1.4 418.41 418.41 836.82 836.82

Table 6.15: Sub-Modules Throughput in Samples/cycle Min–Max results from ref-
erence code implementation

Samples/cycle Config–1.1 Config–1.2 Config–1.3 Config–2.4

4x4 0.25 0.43 0.8 2

8x8 0.08 0.14 0.47 2

16x16 0.062 0.066 0.6 2

32x32 0.052 0.08 0.75 2

Table 6.16: Top Module Throughput in Msamples/sec Min–Max results from inline
shift-add code implementation

Msamples/sec 2-D Worst 2-D Best 1-D Worst 1-D Best

Config–2.1 9.1 42.37 27.32 84.74

Config–2.2 19.14 42.37 59.92 84.74

Config–2.3 42.37 148.76 84.74 297.53

Config–2.4 418.41 418.41 836.82 836.82

Table 6.17: Sub-Modules Throughput in Samples/cycle Min–Max results from inline
shift-add code implementation

Samples/cycle Config–2.1 Config–2.2 Config–2.3 Config–2.4

4x4 0.2 0.2 0.2 2

8x8 0.09 0.14 0.25 2

16x16 0.08 0.09 0.71 2

32x32 0.06 0.14 0.66 2
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Table 6.18: Top Module Throughput in Msamples/sec Min–Max results from func-
tion based shift-add code implementation

Msamples/sec 2-D Worst 2-D Best 1-D Worst 1-D Best

Config–3.1 21.8 53.13 43.6 106.26

Config–3.2 34.23 53.13 68.46 106.26

Config–3.3 53.13 225.5 106.26 451.1

Config–3.4 418.41 418.41 836.82 836.82

Table 6.19: Sub-Modules Throughput in Samples/cycle Min–Max results from func-
tion based shift-add code implementation

Samples/cycle Config–3.1 Config–3.2 Config–3.3 Config–3.4

4x4 0.25 0.25 0.25 2

8x8 0.14 0.21 0.37 2

16x16 0.12 0.12 0.64 2

32x32 0.14 0.16 1.07 2
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6.3.2 Weighted Throughput

Weighted results are provided in order to see a more realistic throughput performance

of the Inverse Transform top module. As already mentioned in the introduction of

Section 6.3, min and max throughput performance is determined from best and worst

sub-module respectively. A video bitstream cannot contains entirely one kind of TU

and so using only one sub-module from top module. What we try to clarify, in a video

sequence all the sub-modules are used in some percentage that fluctuates according

to video’s resolution and the Quantization Parameter (QP) which is used in encoding

process. Therefore, min and max throughput are practically unattainable performances,

and are calculated only to see the limits of different RTLs.

The calculation of weighted results, is based on the occurrence’s likelihood for every

type of TU. In order to make this state crystal clear to reader, let us consider the

following scenario. Let us assume that we design a circuit that is going to be integrated

in a video decoder top module. If we take best throughput for the specifications of

design –that is based on the best sub-module’s throughput– is an erroneous practice.

In a true video sequence, definitely will be used in some percentage all other modules,

thus reducing top module’s throughput performance, because the rest sub-modules will

have poorer performance. Hence, in order to calculate a more truthful and realistic

throughput performance, which is going to be used for the specifications of top module,

we have to obtain statistics from several videos. In doing so, we can find the average

percentage of TUs that occur in different video resolutions and upon these results, to

make an estimation about the average throughput that must have the module of Inverse

Transform. As we can see in Tables 6.15, 6.17 and 6.19, the throughput performance

of sub-modules 4x4, 8x8, 16x16 and 32x32 differs and since top-module’s throughput

depends on them, the average throughput of top module is depend on the percentage

of sub-module’s utilization, or else the percentage of TUs that exist in the encoded

bitstream.

For this purpose, we trained a lot of different reference video bitstreams in resolution

and QP that were obtained from JCT-VC database [45], in order to acquire statistics

about the percent of usage for each TU. Statistic results are shown in Table 6.20. Results

that are cited in Tables 6.21, 6.22 and 6.23, show the weighted performance according

to likelihood of each size of TU that is based on throughput (samples/cycle) of each of

four sub-modules. Results on these tables are calculated according to Equation 3, where

i variable chooses current TU, W is the corresponded weight and samples/cycle refers

to throughput of each TU.
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Weighted Throughput =
(

1
delay

3∑
i=0

Wi ∗ (Samples/cycle)i

)
(3)

Obtaining statistics from several videos, we have found some interesting clues regarding

video coding that it is worth to mentioned here. In low resolution videos, most com-

mon TUs are the two smallest 4x4 and 8x8 and as moving in higher video resolution,

the percentage of 16x16 and 32x32 TUs get increased. This is a rational outcome, be-

cause videos in higher resolutions have wider areas that can be predicted, thus making

larger TUs more efficient, to transform the residual error. Another interesting result we

observed, as QP increases the percentage of larger TUs such as 16x16 and 32x32 also

increases because encoder tries to achieve better compression result using larger TUs,

in order to make greater energy compaction. Hence, we do know now that the more

resolution and QP increases, the more large sub-modules are utilized and their weight

to averaged throughput of top-module becomes greater.

Observing tables in this subsection, it is easy to realize that throughput increases when

best sub-module in terms of throughput gets more weight. Comparing these results with

Tables 6.15, 6.17 and 6.19, where we show the throughput of sub-modules, we can see

that the greater percentage it takes the best module, the more weighted throughput is

increased in top-module. In following tables, we illustrate throughput results, for dif-

ferent configurations of HLS design space exploration and for different video resolutions

that are commonly used in video technology. Different video resolutions, use in differ-

ent percentage the TUs and therefore weights change, resulting in different throughput

performance of top-module. A general observation that can be made from these tables,

as video resolution increases, the percentage of 4x4 TU which has the best performance,

falls down resulting in lower throughput at top module. Of course, in configuration 3.3

for example, where 32x32 sub-module has the best performance, moving in higher video

resolutions, throughput increases because more 32x32 TUs are used, when compared to

lower video resolutions. Hence, designer has to take into account, the video resolution

of the application and the variation of QP, to decide among the various configurations,

which of them best fits to application’s throughput requirements.
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Table 6.20: Results from several reference video bitstreams, regarding TU utilization
for different resolutions and QPs

Video / TU-size 4x4 8x8 16x16 32x32

240p-QP=22 70.5% 24% 4.5% 1%

240p-QP=37 45.5% 32.5% 17% 5%

480p-QP=22 56.3% 30.3% 10.6% 2.8%

480p-QP=37 20% 40% 27.6% 12.4%

720p-QP=22 36% 41% 19% 4%

720p-QP=37 4% 33% 39% 24%

1080p-QP=22 18% 38% 28% 16%

1080p-QP=37 8% 27% 37% 28%

Table 6.21: Reference code weighted throughput for different video resolutions

Msamples/sec Config–1.1 Config–1.2 Config–1.3 Config–1.4

240p 75.21 126.24 286.51 836.82

480p 59.82 98.52 269.57 836.82

720p 45.11 71.66 256.92 836.82

1080p 38.72 59.94 258.47 836.82

Average 54.71 89.09 267.87 836.82

Table 6.22: Inline Shift–add code weighted throughput for different video resolutions

Msamples/sec Config–2.1 Config–2.2 Config–2.3 Config–2.4

240p 64.66 71.54 119.59 836.82

480p 54.33 64.23 148.14 836.82

720p 44.14 56.01 181.53 836.82

1080p 40.63 54.08 228.18 836.82

Average 50.94 61.41 169.36 836.82

Table 6.23: Function Shift–add code, weighted throughput for different video resolu-
tions

Msamples/sec Config–3.1 Config–3.2 Config–3.3 Config–3.4

240p 85.73 95.16 153.62 836.82

480p 75.18 87.93 195.37 836.82

720p 64.71 79.67 245.19 836.82

1080p 59.75 75.35 290.46 836.82

Average 71.34 84.53 221.12 836.82
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6.3.3 Comparing Other implementations

In this subsection, we carry out a small survey, in order to realize how our implemen-

tation is compared to other implementations from research community. In doing so, we

are trying to find out, where Vivado HLS tool stands, among other levels of implemen-

tation such as pure software, SIMD and custom hardware RTLs, in terms of throughput

performance.

6.3.3.1 Reference Software Implementation (x86)

In order to find the throughput of a software implementation that is ported on an AMD

processor, we had to carry out a profiling on HEVC video decoder, thus obtaining results

about how much time takes each of four sub-modules to finish with its task. Finding this

execution time, from a classic profiling process, it is easy to find the latency in terms

of cycles for each sub-module, just by multiplying with the operating frequency of the

processor that was used Eq. 4. The operating frequency of the processor that utilized

is 1.8 GHz.

Latency = (TimeExec) × (Frequency) (4)

Having now latency, we can proceed to throughput results in order to compare with our

HLS implementation. Table 6.27 illustrates all the results regarding the performance of

four sub-modules. We compare here only results of 1-D sub-modules, just to compare

the two different implementations without calculating min, max and weighted results,

because it is an easy task, having these results to find everything. The best metric we

have to use in order to compare two different implementations is Msamples/sec which

directly depicts the throughput performance. For this reason, we present here three Ta-

bles 6.24, 6.25 and 6.26 which are the same with Tables 6.15, 6.17 and 6.19 respectively,

but now they have results in Msamples/sec domain instead of Msamples/cycle.

Comparing our HLS implementation with a software running on a general purpose pro-

cessor, we can see that each of them has some pros and cons. Processors running in high

GHz frequencies, executing much more cycles in time unit, comparing with an FPGA

that is impossible to reach that frequencies. On the other hand, FPGA implementations

using HLS tool, may create better architecture for each sub-module, thus requiring less

cycles to perform their task and despite running in relatively lower frequency, to provide

better throughput results.
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Table 6.24: Reference code sub-module’s throughput

Msamples/sec Config–1.1 Config–1.2 Config–1.3 Config–1.4

4x4 106.26 180.93 334.72 836.82

8x8 35.84 61.27 198.35 836.82

16x16 26.02 27.62 250.26 836.82

32x32 21.8 34.23 314.34 836.82

Table 6.25: Inline shift-add code sub-module’s throughput

Msamples/sec Config–2.1 Config–2.2 Config–2.3 Config–2.4

4x4 84.74 84.74 84.74 836.82

8x8 40.14 60.44 106.68 836.82

16x16 33.77 38.29 297.53 836.82

32x32 18.21 39.94 277.31 836.82

Throughput of 4x4 module-function running on AMD processor is 81.63 Msamples/sec,

while HLS implementation provide solutions that their performance are slightly or up

to ten times higher than software. Module 8x8, has also better performance in FPGA

expect for Solution 1 which in reference and inline shift-add implementation has worse

performance. Module 16x16, seems that in solution 1 and solution 2 have lower through-

put than software, but in solution 3 and 4, it is considerably higher. Finishing, module

32x32 seems that in software cannot be executed efficiently, because it has lower per-

formance than every solution, so in higher resolution videos it will go back the entire

performance of xITrMxN which is the function that performs the inverse transformation.

Software implementations, when compared with an HLS implementation, seems that are

scaled on the same way, moving in more complex modules such as 16x16 and 32x32.

Only function shift-add configuration retains latency in low levels for these sub-modules,

thus achieving satisfactory throughput results. Of course, we do expect that custom RTL

architectures shall have much more performance –especially for sub-modules 16x16 and

32x32– because latency doesn’t scales linearly with sub-module’s complexity. This is

going to be further discussed in Subsection 6.3.3.3.
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Table 6.26: Function shift-add code sub-module’s throughput

Msamples/sec Config–3.1 Config–3.2 Config–3.3 Config–3.4

4x4 106.26 106.26 106.26 836.82

8x8 61.55 92.02 156.59 836.82

16x16 50.26 50.98 268.45 836.82

32x32 43.60 68.46 451.1 836.82

Table 6.27: Throughput results from reference code running on an AMD processor

TU-Size Time (µsec) Latency Samples/cycle Msamples/sec

4x4 0.196 353 0.045 81.63

8x8 1.15 2070 0.03 55.65

16x16 6.17 11106 0.023 41.4

32x32 60.07 108000 0.0024 17.04

6.3.3.2 SIMD–Reference Software

Single Instruction Multiply Data (SIMD) has been extensively used in general proces-

sors such as Intel-AMD, in order to speedup an application that its algorithms have a

vectorized/parallel nature. This technique can be considered as a hardware accelerated

technique because it utilizes wider registers that can perform arithmetic operations in

parallel. In this subsection, we are going to see how much optimization we can gain from

SIMD techniques and how this directly affects into throughput performance.

Taking into account a survey [5], regarding HEVC decoder optimization with SIMD

in several platforms, we focus on results about Inverse Transform module. According

to authors, SIMD implementation of the inverse transform can be either performed

inside one column or row transform, or using SIMD on multiple columns/rows, or a

combination of the two. They have experimented with these approaches and found that

the differences are marginal. The fastest SSE2 implementation uses SIMD over columns,

followed by a transpose for both passes of the inverse transform.

Using previous techniques they are achieving a speedup 3.6× and 4.8× for SSE2 and

AVX2 respectively for the inverse transform kernel. Hence, let us consider an averaged

speedup of 4.2× for both SSE2 and AVX2 to see how it affects throughput. According

to Eq. 4, lessening time execution by 4.2×, results in this amount of latency’s reduction.
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Table 6.28: Throughput results from reference code after SIMD optimization, on
general purpose microprocessor

TU-Size Time (µsec) Latency Pixels/cycle Msamples/sec

4x4 0.046 84 0.189 342.8

8x8 0.274 492 0.126 233.73

16x16 1.47 2644 0.096 173.8

32x32 14.3 25714 0.01 71.7

Therefore, reducing latency, throughput is increased by the same amount of speedup.

Following Table 6.28 is the same with Table 6.27, from previous subsection and shows

the results after SIMD optimization, in order to illustrate how they differ from HLS

performance.

As we can see, 4x4 module of software has better performance now from all the con-

figurations. Only solutions 4 - pipeline RTLs, provide considerably better throughput

results than the optimized software with SIMD. The only comparable throughput from

the other configurations, comes from solution 3 in reference software, because the other

two codes cannot achieve sufficient results in 4x4 sub-module. Module 8x8, in HLS im-

plementation has also poorer performance than software, except of course the solution

4 results. Module 16x16, provide better results only for solution 3 and 4, for all the

configurations, while at solutions 1 and 2 it has lower performance. Module 32x32, is

compared on the same way as 16x16, but solution 2 is more close to software results.

So, we are realizing that increasing the size of module, software yields more inefficient

functions, while HLS makes more efficient –in terms of throughput– modules. As we are

going to see in next subsection, custom RTLs provide even more greater results, as the

size of the sub-module increases.

6.3.3.3 Custom Hardware RTL

In our latest effort to compare our HLS implementation using Vivado, we have to com-

pare with existing custom RTL cores from the research community. In fact, these two

implementations are identical because in either cases, an RTL model will be used either

on ASIC or on FPGA to implement IIT. Software implementations running on processors

have different characteristics from hardware, so we had to convert results in same metric

(Msamples/sec), in order to compare them. Here, results can equally be compared
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Table 6.29: Latency and Throughput results for 4, 8 and 16 core transform for FPGA
@ 251 MHz

TU-Size Latency Pixels/cycle Msamples/sec

4x4 14 1.14 286

8x8 16 4 1004

16x16 20 12.8 3212

because RTL level is tested in either cases with one difference; HLS, derives RTL from

standard templates that have been exported from a software tool, while custom RTL, is

designed from engineers, thus being more efficient in terms of performance, power and

area. The only comparison that will be conducted in this subsection is about through-

put performance because we desire to understand how far Vivado HLS tool stands, from

custom RTL implementations with HDL.

We have to declare here that all researches have been conducted mainly for the direct

transform. However, direct and inverse transform have the same complexity and struc-

ture, as discussed in prior Chapter and therefore their performance can be compared

like being the same module. All surveys that have been carried out, essentially provide

throughput results for 1-D core architecture, so we are comparing performance of 1-D

sub-module instead of 2-D, since all implementations utilize two 1-D transform cores

interleaved from a transpose buffer. Also, most of the implementations are convert-

ing multipliers into shift-add operations for area reduction, smaller critical paths and

latency, as we did in software level as well.

At first we are taking into account first results in chronological order regarding Inte-

ger Transform that Ricardo J. et. al. have conducted [7]. A 314.6 Msamples/sec

is achieved in reference implementation and a 1401.6 Msamples/sec in their optimized

implementation, where they are have eliminated multipliers and they share hardware for

16x16 transform. In [8], researchers are conducting an efficient architectural approach

for 4, 8 and 16 transform modules, using some piece of logic to control how often a new

input can be inserted in a sub-module. 32x32 transform wasn’t implemented due to

its complexity and work load and they left it as future work. Their results regarding

latency and throughput are presented in Table 6.29 for the three sub-modules they tried

on.

Other surveys such as [9], [10] and [11], use either folded structures with one 1-D module,

for the 2-D transform, in order to reduce area or use fully parallel implementations using
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two such modules. Also, some of them utilize pruned schemes of integer transform in

order to reduce area and latency. Prune method is used in many papers as a proposed

architecture; to reduce the computational complexity, some of the least significant bits

(LSB) can be pruned before they insert in functional units for calculation. This is

applicable since after inverse transform, a left shift will be performed, so some of LS bits

do not required. In this way, a small error is inserted on calculations but the impact of

the pruning on the final output is not significant. According to those papers, the most

we prune bits, the more big error is introduced into final output of integer transform.

Previous papers achieve sufficient results, regarding throughput for the 1-D core module,

which fluctuates from 0.63 up to 2.99 Gsamples per second (Gsps) as they illustrate in

their results section.

To conclude this subsection, we immediately realize that results from custom-made

RTL architectures, provide better results than our implementation that is based on

HLS synthesis results. The only comparable throughput from our implementations is

Solution 4 (pipeline architecture) for all source codes, which provides throughput of 0.836

Gsps for 1-D transform modules and Pixels/cycle equal to 2. Above custom hardware

implementations, can support video requirements up to 7680x4320 @ 60 fps. Generally,

we can say that in custom RTLs, throughput from 16x16 and 32x32 transforms is better

than 4x4 for example, while in HLS RTL designs, occurs the opposite situation. One

immediately inferred, human can make much more efficient optimizations in complex

algorithms, in comparison with software tools, that scale module’s latency, according to

algorithm’s complexity.

6.3.4 Supporting Different Videos

In this final subsection of this Chapter, we evaluate how our HLS implementation of

HEVC inverse integer transform becomes critical module in a hardware video decoding

application and what is the highest throughput performance that it requires, so to

support a standard video resolution and fps.

A hardware video decoding application has several modules inside, thus performing sev-

eral different tasks of video decoding algorithms. Such modules for instance are: inverse

transform, motion compensation, in-loop filtering, Context Adaptive Binary Arithmetic

Encoding (CABAC) e.t.c. Each of them, can be fully characterized from its perfor-

mance in regards to throughput. According to the type of each module, throughput

can be measured with different metrics. For those modules which have pixel related

operations, throughput is measured in Mpixels/sec or in general with Msamples/sec
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Table 6.30: Throughput requirement in (Msamples/sec) for different resolutions of
video and frame rate for YUV 4:2:0

Resolution FPS=30 FPS=50 FPS=60 FPS=120

416x240 4.49 7.48 8.98 17.97

832x480 17.97 29.95 35.94 71.88

1280x720 41.47 69.12 82.94 165.88

1920x1080 93.31 155.52 186.62 373.24

3840x2160 373.24 622.08 746.49 1492.99

7680x4320 1492.99 2488.32 2985.98 5971.96

which describes pixels, residuals and coefficients. In bit related modules such CABAC,

throughput is measured in Mbin/sec because its input, is on bit level.

For every module which is component of a hardware video decoder, can be calculated a

throughput requirement for different video resolutions and fps, just in order to realize

whether each module satisfies this requirement or not. Hence, the total throughput

performance of the video decoding application is constraint by the poorest module in

terms of throughput. For example, if we have an HEVC video decoder in hardware

and all modules are supporting UHD @ 60 fps, except for one module which supporting

throughput for HD @ 30 fps, then total throughput performance of HEVC decoder

is constraint at HD @ 30 fps, because if we move on higher video resolutions, video

shall stalls, because this module outputting results in lower rate that it is required. In

Equation 5, we show how we are calculating throughput requirement for each video

class and it is the method on which all other surveys base their results. Table 6.30

shows the throughput requirement for different typical video resolutions and frame rates,

considering YUV 3 channels with format of 4:2:0 (it is represented by 1.5× factor), which

is the most prevalent in video sequences.

Throughput = Width×Height× FPS × 1.5 (5)

Having analyzed the method on which we are calculating throughput requirements, let

us see each different RTL from HLS, what videos from table 6.30 can support. In order

to carry out the comparison, we are going to use Tables 6.21, 6.22 and 6.23 because

we consider that it is better to compare with more realistic results than minimum or
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maximum ones and also each video resolution has its own characteristics as concerning

TU-weights; so in each video we are exploiting different statistics.

Videos in resolution of 240p are supported from every different RTL as we can see from

those tables. 480p videos are supported from every solution in function shift-add code

and only at 120 fps there is no module to support it, for the other two source codes.

Videos with resolution 720p are supported from every solution @ 30 fps, but as frame

rate gets increased, higher solutions such as 3 and 4 are the only which support this

demanding performance. Regarding now 1080p video, solution 3 can support all frame

rates except for the highest –to wit 120 fps– and solution 4 supports all the frame rates

of full HD videos. For resolutions higher than Full HD, such as Ultra High Definition

(UHD-video) the upper limit that HLS can reach, is 2160p @ 60 fps as can easily implied

by respective tables. For supporting more demanding videos, higher than UHD or in

higher frame rates, custom architectures should be definitely used, in order to support

those extremely demanding processing rates.

Fig. 6.11, shows the cheapest RTL – configuration –in terms of device utilization– that

can support some of the more usual video contents that can be met in a video appli-

cation. For each video, three configurations from three different codes are illustrated,

because each code has different utilization percentages for different hardware resources,

For example, if a configuration with as much less LUTs is required, one needs, only to

choose configurations from reference code. If on the other side, DSP48Es slice’s utiliza-

tion is required to be eliminated (other video modules may want to utilize this resource

as well), function shift–add code’s RTL would be a good match, while intermediate

requirements are covered by designs from inline shift–add code.
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Figure 6.11: Usual video contens and which congigurations can support them with
minimum device utilization. Solutions from three codes are presented, because each of

them may support a video, reserving different percentages for FPGA resources.
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Conclusion and Future Work

7.1 Conclusion

To conclude this thesis, we are conducting a brief review about the main fulfillments of

this work that were presented mainly in Chapter 6. We accomplished the main objec-

tive of this work, the design space exploration of the HEVC IIT module, exploiting the

high flexibility and automation that Vivado HLS tool enables. This work, provides out-

of-the-box RTLs for FPGA, with different characteristics each of them, implementing

the HEVC Inverse Transform module. Throughput performance, was further explored

for different configurations, at the top- and sub-module level. We showed that in or-

der to calculate a more realistic throughput performance for the HEVC IIT module,

weighted throughput must be used, because min and max throughputs are unattain-

able performances, since all types of TUs and so the respective sub-modules, are used

in some percentage. For this reason, we conducted a profiling process using different

reference video bitstreams, so as to identify how the utilization of TUs change in differ-

ent videos and to create weights for weighted throughput calculation. Besides, a small

survey about different levels of implementation carried out. Software performance was

measured in a x86 architecture via a simple profiling process, to realize the throughput

of the four sub-modules. Moreover, other work’s results from SIMD accelerated soft-

ware were utilized, to figure out how far –in terms of throughput– can reach software

implementations. Other works that deal with custom hardware RTLs were illustrated

and discussed and their results were used to compare our HLS configurations. Finally,

we showed which are the cheapest HLS configurations that can be used for supporting

different video contents and which is the highest video content that our HLS designs can

support (2160p@60FPS). Alongside with the throughput exploration, we identified how

80
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Vivado HLS tool reacts on different target clock periods and how it trades device uti-

lization and latency for delay. The latency control that HLS tool maintains for pipelined

and no-pipelined circuits, have been largely examined (see Chapter 4).

Summarizing, we have to state here some deductions about our experiment, the results

that obtained and an overall review. As concerning the High-Level Synthesis tools for

synthesis and verification of an algorithm, the great flexibility that they provide for

exploring different RTLs quickly, show how time-to-market can be shortened for the

development of a hardware design. The different RTLs from Vivado HLS synthesised

and verified in short time (about 3 man months); if they had been created with an

HDL description, the required time would be much more times higher than that of HLS.

Essentially, the higher amount of this work was spend to learn the HLS tool about how

it reacts in different code versions and different input constraints and directives. After

then, the process was simplified and the high level automation of HLS, let for quick

navigation through different RTL architectures. However, as we can see from results,

HLS provide poor throughput performance, in comparison with custom RTLs, since it

stands close to software performance. In particular, to achieve comparable throughput

with custom RTLs, huge hardware resources have to be allocated, thus requiring big

devices only for this module of HEVC decoder. So, we claim here that HLS RTLs

are inefficient when compared to custom ones, since they require much more area or

device utilization, to achieve a certain throughput requirement. HLS tools, have a long

way to go, in order to derive RTLs comparable with custom architectures, in terms of

efficiency (performance/area). The HLS concept has special worth in industry (shorter

time translates into less expenditures), so in future is expected to be a prominent method

for hardware design, thus overcoming the high design cycle of custom RTLs.

7.2 Future Work

As mentioned in prior chapters, HEVC provides the best coding efficiency, when com-

pared to other standards, but is the most demanding video codec, since it maintains

higher complexity in its modules. Hence, in order to meet a real-time constraint in

video coding, some parts of it should be implemented in hardware. Therefore, this work

could be extended in other HEVC modules such as: Motion Estimation-Compensation,

In-loop filters, CABAC, e.t.c.. Utilizing a HLS tool, we can quickly explore different

architecture solutions for a specific algorithm and to compare them with other level of

implementations, in terms of throughput or power. Finally, it would be interesting to

identify, all these different HEVC modules yielded from a HLS process, how they can be

integrated into a real video coding pipeline that its control unit has been created from a
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HLS tool as well. The total performance of an HEVC video encoder-decoder, exclusively

created from a HLS process, could be compared with other existing works in terms of

total throughput, area, power and design time.
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