
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΤΥΧΙΑΚΗ ∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΣΥΝΑΙΣΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΒΑΣΙΣΜΕΝΗ
ΣΤΑ ΚΟΙΝΩΝΙΚΑ ΔΙΚΤΥΑ

του
 ΖΑΜΠΟΥΝΗ ΦΙΛΙΠΠΟΥ

Επιβλέπων : Βάβαλης Μανόλης, Καθηγητής
Μέλη Επιτροπής : Κατσαρός ∆ηµήτριος, Λέκτορας

Βόλος, Σεπτέμβριος 2013

UNIVERSITY OF THESSALY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

THESIS

SOCIAL MEDIA
BASED ON SENTIMENT ANALYSIS

by
 ZAMPOUNIS FILIPPOS

Supervisor: Vavalis Manolis, Professor
Committee Members: Katsaros Dimitrios, Lecturer

Volos, September 2013

Filippos Zampounis
University of Thessaly & Skype Communications

© 2013 – All rights reserved

ABSTRACT

This thesis concerns the wide area of sentiment analysis that is based on text found in social
media on the World Wide Web. Besides the general exposition to the emerging scientific and
technological area of sentiment analysis this thesis should be considered also as an initial effort
to examine whether sentiment analysis practices and tools will be beneficial to web based
Question and Answer (QA) communities. We exclusively focus on web social structures which are
“thematic closed”. Such structures drastically restrict the question so they truly belong to a
relatively restricted topic. We introduce a general framework, examine the various
characteristics of QA communities that are related with our sentiment analysis viewpoint,
elucidate on those which seem to be the most import ones and draw our conductions which we
attempt to validate through an actual implementation concerning the Stack Overflow site.

Keywords: Information Retrieval, Sentiment Analysis, Web Science, Q&A Systems, Stack
Overflow.

ΠΕΡΊΛΗΨΗ

Σε αυτήν την διατριβή κάνουμε μια αρχική προσπάθεια να εξετάσουμε εάν τεχνικές και
εργαλεία συναισθηματικής ανάλυσης μπορούν να είναι ωφέλιμα για ιστοσελίδες
ερωτήσεων και απαντήσεων (Q&A). Εστιάζουμε κυρίως σε ηλεκτρονικές κοινότητες με πολύ
συγκεκριμένη θεματική ενότητα, αναλύουμε τα ιδιαίτερα χαρακτηριστικά αυτών και
φτιάχνουμε ένα γενικό πλαίσιο για την ανάλυση τους με βάση τις ιδιομορφίες τους σε σχέση με
την συναισθηματική ανάλυση. Καταλήγουμε υλοποίηση ενός συστήματος το οποίο
εκμεταλλεύεται αυτά τα ιδιαίτερα χαρακτηριστικά και τα εφαρμόζει στο Stack Overflow, μια
από τις μεγαλύτερες κοινότητες για προγραμματιστές.
Τέλος γίνεται αναφορά για δυνατότητες επέκτασης και σε άλλες κοινότητες
του Stack Exchange δικτύου αλλά και και σε άλλες γνωστές Q&A ιστοσελίδες.

Contents
1. Introduction .. 7

2. Background, motivation, and objectives .. 8

3. System design and implementation ... 15

Phase one: ... 19

 Phase two: ... 20

Phase three: .. 24

4. Case studies .. 29

5. Concluding remarks .. 31

6. References .. 32

1. Introduction

Information can be obtained from several sources through various paths. Asking questions might,

under certain circumstances, be one of the most effective ways. Traditionally

question/answering used to be, and to some extent still is, the most common way in the non-

electronic area for certain areas and particular social frames and platforms. Nowadays people

come back to old fashion question/answering practice mainly for opinion mining and decision

making.

In the past years we have witnessed significant progress in developing methods for obtaining pro

or anti opinions or feeling sentiment expresses by the authors of a set of documents. Natural

Language processing or information extraction methods are commonly employed. Therefore

sentiment analysis or opinion mining is a natural language processing or information extraction

task that helps extract pro or anti opinions or feelings expressed by a writer in a document

collection. As far as the web concerns sentiment analysis is a way data miners can take the

legwork out of understanding the meanings and feelings behind statements made in social media

and other forums. The sentiments in sentiment analysis can be obtained at document level by

classifying the polarity of the expressed opinion in the text of a document, at the sentence or

entity feature level to find out if the opinion expressed is positive, negative or neutral.

The rest of this thesis is organized as follows. In the next section we provide the required

background, we briefly discuss our motivation and we explicitly state our scientific and practical

objectives. Next we present our system design efforts, and comment on implementation issues.

The evaluation of our system is given in the next section through the two case studies considered.

The last session contains a concluding summary together with a list of potential future research

and development objectives.

2. Background, motivation, and objectives

Very often our decisions are partially based on what other people think. In certain cases this might be a

crucial, or even sole, decision making factor. Therefore, identifying positive and negative opinions, reviews

and emotions could be of great practical importance.

Sentiment analysis is a procedure that analyses social media conversation patterns in order to identify

trends in opinion and attitude. It is often also referred as "opinion mining" or "text analytics" and it

provides us with means to form an otherwise overwhelming flood of data into valuable information. It is

mainly based on tracking word choice and frequency as well as word definitions. For an excellent overall

review of the modern sentiment analysis thematic area the reader is referred to (Liu, 2012).

As a field of research, it is closely related to (or can be considered as part of) computational linguistics,

natural language processing, artificial intelligence and text mining. Proceeding from the study of affective

state (psychology) and judgment (appraisal theory), this field seeks to answer questions long studied in

other areas of discourse using new tools provided by data mining and computational linguistics.

Sentiment analysis is a relatively new approach (Cheng, 2009) (Liu, Hu, & Cheng, 2005) and has been

rapidly penetrating several of our research and development eras in the past three years. Nevertheless,

It is a rather challenging subject for several reasons (Feldman, 2013) that range from purely theoretical to

more commonly highly technical ones. Even humans have often difficulties understanding the sentiment

of someone else’s saying. Therefore, it is expected machines and software agents to face ambiguity

problems that prevent them from accurately identifying the tone and meaning in a statement or set of

statements. In other words people express things in different ways and finding the sentiment in a

sentence is hard using certain statistical approaches. Proximity analysis is usually of great help but still the

problem is challenging, to say the least.

Like opinions, sentiment is inherently subjective from person to person, and can even be outright

irrational. For this, it is critical to mine any available large and relevant sample of data when attempting

to measure sentiment. No particular data point might be necessarily relevant. It is in fact the aggregation

that matters.

An individual’s sentiment toward a brand or product or in our specific case a presumably difficult problem

or a crucial question may be influenced by one or more indirect causes. With a large enough sample,

outliers are diluted in the aggregate. Furthermore, given that sentiment very likely changes over time

according to a person’s mood, events, and so forth, it’s usually important to look at data from the

standpoint of time.

Additional vital issues are raised in several cases. For example, sarcasm and other types of ironic language

are inherently problematic for machines to detect. It’s imperative to have a sufficiently sophisticated and

rigorous enough approach that relevant context can be taken into account. Such incredibly difficult issues

might not commonly appear in the case of question/answering systems.

At any rate automated sentiment analysis systems are needed. As a practical matter, and regardless the

above mentioned problems and general criticism, sentiment analysis has already proved itself as a

powerful tool in several business aspects with customer satisfaction, market survey, reputation

management/brand perception, advertisement placement, trend prediction and stock exchange method

development being the most successful and widely spread ones. As an example it is worth to mention that

there already exist a plethora of diverse tools and platforms that assist us to track and assess the number

of times a company or a product has been mentioned in the social media channels commonly in real time1.

As already mentioned, sentiment analysis has many applications in modern enterprises. From consumer

research to marketing, to reputation management to monetizing content itself; the possibilities are

enormous and ever-growing. In particular, in addition to software tools for collecting and interpreting

data drawn from social platforms, sophisticated services are nowadays provided to assist us in

understanding this torrent of information, helping to turn raw input into actionable strategies.

The main objective of this study is to examine the effectiveness of sentiment analysis on a particular web

based social networking activity that appears in the form of question/answering. Q&A type of social

activities have been for ages a prominent tool for decision making on an everyday basis. Such activities

often consist the cornerstones of web social networking. Perhaps during the very earliest days of the Web,

people enjoyed a range of embryonic social networking platforms without any Q&A activities. This is not

the case anymore. People nowadays discuss issues in general and in the form of Q&A in particular.

Specifically, individuals increasingly rely on their distributed peer communities for information, advice,

and expertise. Millions of individuals learn from each other on public discussion forums (e.g., Usenet),

community-built encyclopedias (e.g., Wikipedia), social networks (e.g., Aardvark), and online question and

answer sites (e.g., Yahoo! Answers). Recently, several large Q&A sites have attracted the attention of

researchers [References]. In aggregate, these studies suggest that general-purpose Q&A sites have answer

rates between 66% and 90%; often attract non-factual, conversational exchanges of limited archival value;

and may be poorly suited to provide high quality technical answers.

In contrast, stackOverflow has become, within about two years, one of the most visible venues for expert

knowledge sharing around software development. With approximately 300,000 registered users and > 8

million monthly visits, stackOverflow has an answer rate above 90% and a median answer time of only 11

minutes. It has captured significant mindshare among software developers: anecdotally, users report that

the site has replaced web search and forums as their primary resource for programming problems; others

now consider their portfolio of stackOverflow answers a valuable component of their professional

resumes.

stackOverflow is not alone in the Web. ChaCha, a heavily funded website where you can ask about

anything and get answers from volunteers or the site’s database of 2 billion queries, doesn’t have a

1 See for example http://www.opfine.com/

http://www.opfine.com/

response yet to one big question: Is crowdsourced Q&A a standalone business? Whereas Google proved

many years ago that Web search is a serious business, crowdsourced Q&A has yet to find its business

success road.

The biggest Q&A site is Yahoo! Answers with 69 million visitors in December, an increase of 11 million

compared to the previous year. All the while, Yahoo has made minimal improvements to the site, as it’s

been overtaken by peculiar questions and often useless answers. Therefore, Q&A sites is a strong business

with huge amount of visitors and are here to stay. They nevertheless need additional support!

The main objective of the present study is to investigate the possibility of supporting Q&A social networks

on the web through sentiment analysis. In particular, we examine the characteristics of such networks

with respect to the sentiment analysis of the answers offer.

Let's analyze our problem with an example.

I'm a PHP developer trying to find a way to sort an array with items. I'm visiting SO, place my search

term "php array sorting" and on the screen shot below you can see the results:

We have 11.344 results and 4 tabs (relevance, newest, votes, active) for a simple array sorting.

Which of them shall i chose? Which one is the best and what post answers my question? Those are

expected questions, but the problem is that you are in the middle of developing a new product and you

want to find the best answer in the shortest time!

The usual process is to open the ones you think are the most relevant, with information you get from SO

interface like number of answers and number of votes, but what about the rest of the information that

you cannot see on the interface?

How would you feel if you could "guess" how users (who already done that process and wrote a

comment) found each of those posts interesting or not. Even better how you would feel if you had an

automatic way to visit each post, analyze the comments users left and give you the ones with the most

positive feedback!

Yes I know, that sounds like a "dream came true" and its possible using sentiment analysis. Despite that

this is a convincing answer it doesn't answer the actual question "why to use sentiment analysis"? Is it

because it's trendy? One can truly say that sentiment analysis has recently gone big. If you will try to

search for sentiment analysis on Google Trends, you’ll see a huge growth from September 2006 up to

the present.

But short answer, is no. I mean sentiment analysis is trendy and major companies try to take advantage

of it but that's not the reason we use sentiment analysis. The actual answer to that question is because

there is no other way to get automatically the information you need from a human text, it's your only

option actually.

Another important question that needs to be answered is why did we select Q&A sites?

Because they are still famous, useful and they lack of innovation. Whole companies use Q&A sites to

promote their products by answering to user’s questions using the model:

 Help others.

 Build relationships.

 Push your products and services when they answer somebody's question or request.

http://www.google.com/trends/explore

If you search the web for "Q&A Sites to Build Your Business & Reputation” you will find hundreds of

presentations and live examples of companies and individuals doing exactly that. Also users take

advantage of that and they get some answers for their questions. On the chart below you can see some

statistics on usefulness of business in Q&A distribution.

But if we search for "Q&A sites” on Google Trends we will get the chart below.

We can see that the chart is opposite to SA chart. But why is this happening?

Q&A sites have huge amount of traffic because they have some important advantages (for users)

compared to the rest of the World Wide Web innovations, for example:

 You get fast answer to your question.

 Get many opinions from different aspects.

 Every subject is categorized.

 You don't have geographical limitations.

But they also have a lot of disadvantages:

 The technology used is ancient.

 Ugly design.

 Zero innovation.

In general we can say they don't evolve compared to the rest of World Wide Web. They are static and

old fashioned without any innovative technologies. It was believed to be a matter of time until they are

buried completely from Faceboook, Twitter and Google massive expansions. But even today some Q&A

sites are among the web pages with huge amount of traffic. It's obvious they become more and more

less famous but this not because they are not useful but because of lack of innovation! Of course there

are some exceptions here, for example ChaCha lunched a free mobile answers service which allows

users to call or text questions to ChaCha on mobile phones and receive answers within minutes. The

company also provides online access to questions and answers at ChaCha.com, and via other social

platforms including Facebook and Twitter. That was innovative and ChaCha reports traffic has increased

1000 percent since the firm's January 2008 launch, supplying text answers to more than 150 million

questions via mobile devices and the web.

To the best of our knowledge, the present work seems to be the only result that associates Q&A systems

with sentiment analysis practices and tools. No similar efforts have been found neither in the scientific

literature nor in the web itself. Our system implementation tries to change that, but it’s not perfect at all.

Currently our implementation consumes the most voted posts that match the search term from SO,

analyses the comments on each of them and creates a ranking for the original post. An important

improvement would be to add options so the user can select one of SO options (relevance, newest,

votes, active).

It would be also good addition to have information about the ranking of each post in the UI so the user

will know what the exact ranking of each post is.

Another important thing is the search speed, the time you hit the "search button" until the time you get

the actual results is very important for the end users. If it's faster to open the posts in tabs and take your

shoot to find the one that answers their question they will probably use that way! To increase the speed

there are couple of things we can do. We should host sentiment analysis service in our own servers (this

is costly) and we need powerful machines (e.g. amazon cloud servers, microsoft azure, google app

engine). The difference with those services is that they actually overtake machines when needed

automatically depending on the load of each one.

Last but not least is an automated way to test your system. All modern software products rely on

automation testing and it is a must do for our system too.

3. System design and implementation

As we can see from the image below the system is composed by many sub-units. In the first level is our

html page which is visible by the end user. That is the place where users can start their interaction with

the system by inserting their search term and pressing enter.

The search term is passed to the second level of which is a php file. On that phase we make the actual

request to SO service using user’s search term and get a response from SO service with a bunch of posts

and comments. Then we have to “clean” and organize them into arrays.

Those arrays are organized again to a single array, that single array goes to another php file. On that phase

we actually contact our classifier for classifying that array. When the classification is done we pass back

to phase two our results (again an array with rankings).

On phase two now we have to separate again the single array to multiple arrays and find the ranking of

each post. Then we have to rearrange our posts based on the ranking each post got. The ranking algorithm

is simple:

 + 1 for positive comment.

 - 1 for negative comment.

 No action for neutral comment.

And then again pass the result to phase one and display the results to the end user (again a rearranged

array with posts).

The system is built using the MVC and you can see the design below for a visual representation.

Below we will explain in more detail each phase. But before we do that we have to analyze some things

first.

Our target was to develop a system that would parse user comments (pure text) from stackoverflow and

“magically” would recognize if that text is positive negative or neutral. In other words I had to find a way

to recognize pure text and find its meaning.

There are two ways to do that:

 Using a lexicon with some values for each word (positive negative neutral).

 Using a classifier which is more dynamic system that learns on its own.

In the beginning we implemented the system using lexicon. And that solution had some advantages:

 It was fast enough.

 It was simple to implement

But also had some disadvantages:

 It wasn’t accurate enough.

 It wasn’t dynamic enough (you should update the lexicon manually).

 Hard to find the proper lexicon for your language group.

So I decided to use a classifier instead and not only that but use a service that is dedicated on text analysis

classification.

I was searching for a service with the criteria below:

 Free.

 Easy to use.

 Good API.

 Some good wrappers around it.

 With support of huge amount of requests

 Open source.

After two days of googling and registering to different types of services I ended up with uClassify. A

descent sentiment analysis that is almost free (you need to pay if you want to host it on your own server),

easy to use, the API is acceptable, the already developed wrappers are descent, supports a good amount

of requests and of course it’s not open source (but that’s life deal with it).

Next step was to study the API and the wrappers I was about to use. The API was straight forward but I

had to make the right choice of a wrapper. So I had three options:

 Use a javascript API for stackoverflow and uClassify and move all logic to the client.

 Use php and load with my server.

 Use both and load both of them.

So I made a decision to move all the logic to the server. That decision was made because of two terms

basically:

 Javascript is slow compared to php.

 The product should be responsive on slow device too (smartphones and tablets).

When finished with those critical decision (right or wrong, that is not the point) I register to stackoverflow

and uClassify services as a developer and obtained my key and I was ready to proceed with my system.

Phase one:

In the index.html file there is an input field where the user can type the search term. When enter pressed

the search term goes to a script in the same file. On that script we parse the search term, if empty we

alert the user with an error else we forward the input to the questions.php for further analysis. If we get

an error from that script we again present the error message to the end user. If we get our response

correctly (an array with our answers) then we loop through that array and place every element on the

DOM. Our answers array is an arranged array with links of each post that has the highest number of

positive comments. There are also some fancy scripts there that present some dots when the search is in

progress.

Below you can see the javascript code that handles the search term:

<!—find function that handles the search input term on click or enter keypress !>

$('#find').click(function(){
 var amount = $('#amount').val();

 if(amount==''){
 // search term is empty
 alert("Give your search terms, and then Enter!");
 return;
 }
 document.getElementById("results").style.display="block";

 $.ajax({
 // post request to php script passes the search term
 type: "POST",
 contentType: "application/x-www-form-urlencoded;charset=utf-
8",
 url: "questions.php",
 dataType: "json",
 data: {'amount': amount},
 beforeSend: function(){
 // fancy animation while waiting for results
 $("#results").Loadingdotdotdot({
 "speed": 400,
 "maxDots": 5
 });
 $('#results').height(18);
 },
 success: function(data){
 // getting the result after rearranging
 // this code is ommited
 }
 });
 });

Phase two:

Step one: The search term goes to the questions.php. First we have to encode by changing the spaces

with the corresponding URL character which is "%20". Then we have to merge it with the rest of URL and

send it to stackoverflow API. The rest of the URL consists from the developer key, the name of the

particular service and some other information described with more detail in case studies. Then we send

the request to SO and when we get the answer we decompress it and convert the JSON response to array.

On that step we have some checks and if we got zero results or not enough we split the terms and search

again for more results. In the end of that step we have an array with our relevant posts and we loop

through that array and call the getAnswers() functions passing the link of each post.

Step Two: In the getAnswers() function we need to send a request again to SO API and get the comments

for each of those posts. We again get a compressed response that we need to decompress and convert it

to array from JSON. Then we have to loop through that array, extract the comments and store them in a

new array. In the end of that step we loop through the comments and call the function removeTags()

which will "clean" the comments from unwanted characters like <code> blocks etc. When done we check

if the array of comments is empty or not (some posts might not have any comments) and forward that

array to classMe() function.

Below is the source code of getAnswers() function:

/**
 * Batch operation of getanswers method
 *
 * @param $question_link string with a link of a post

**/
function getanswers($question_link){

 $serial = explode("/",$question_link); //we need to extract the question id

 $question_link
="compress.zlib://https://api.stackexchange.com/2.0/questions/".$serial[4]."/answers?orde
r=desc&sort=activity&site=stackoverflow&filter=!*MpApC8gG3bbJ733&key=q0NPALjE0r1MKsMeQV";

 $result = file_get_contents($question_link);
 //need to be decoded before we can use it
 $decoded_result = json_decode($result);

 //decoded_result has all the answers from a question, comments so we can get them
and parse them later on!

 // store the text from answers
 $answer_body = array();
 // store the ids from answers
 $answers_ids = array();
 // store the text from comments
 $comments_body = array();
 // store the ids from comments
 $comments_ids = array();

 // loop through the answers of the post and save comment's ids and body!
 for($l=0;$l<sizeof($decoded_result->items);$l++){
 array_push($answer_body, $decoded_result->items[$l]->body);
 array_push($answers_ids, $decoded_result->items[$l]->answer_id);
 for($k=0;$k<sizeof($decoded_result->items[$l]->comments);$k++){
 array_push($comments_body, str_replace("…","",
$decoded_result->items[$l]->comments[$k]->body));
 array_push($comments_ids, $decoded_result->items[$l]->comments[$k]-
>comment_id);
 }
 }

 //now it's classification time for every comment gathered.

 //some questions might not have answers or comments yet so no need to parse them
 if(sizeof($comments_body) !=NULL){
 //we call classime to find wich are pos and neg!
 return(classime($comments_body));

}
}

Step Three: In classMe() we create an instance of the class uClassify.php and set the developer keys we

got by registering to uClassify web service. Then we pass the array of posts for classification. When we get

the response from the service we forward the result (an array with positive, negative and neutral percent

for each comment) to calculator() function. In case we get an error we show the error message to the end

user.

Below is the source code of classMe() function:

/**
 * Batch operation of classime method
 *
 * @param $text Array with text in every cell and stores the pos and neg of
every text on every cell in $resp

**/

function classime($text){
 $uclassify = new uClassify();

//those are the uclassify keys we need them so server doesn't kill us!
 $uclassify->setReadApiKey('lOHDZf9vIDqsDqP98Q9bPsasx');
 $uclassify->setWriteApiKey('fqFVKgDoALknk1ozyrte1d9BTjU');

 try {
 $resp = $uclassify->classifyMany($text, 'Sentiment', 'uClassify');
 return(calculator($resp));
 } catch (uClassifyException $e) {
 die($e->getMessage());
 }
}

Step four: In calculator() function we loop through the array with the percent of each post and we create

the ranking for each post! This is done with the algorithm below:

 + 1 for positive comment.

 - 1 for negative comment.

 No action for neutral comment.

Below is the source code of calculator() function:

/**
 * Batch operation of calculator method
 *
 * @param $posneg Array of positive and negative values and makes the sum of
them
**/

function calculator($posneg){
 $temp_pos=0;
 $temp_neg=0;

// one counter and inc dec on every case
 $total_pos_neg=0;

 for($cn;$cn<sizeof($posneg);$cn++){
 //we get the negative value
 $temp_pos = $posneg[$cn]['classification'][0]['p'];

 //we get the positive value
 $temp_neg = $posneg[$cn]['classification'][1]['p'];

if($temp_neg<$temp_pos){
 $total_pos_neg++;
 }else if($temp_pos<$temp_neg){
 $total_pos_neg--;
 }
 }

 //return the rank calculated above using all the comments of a question!
 return $total_pos_neg;

}

Phase three:

From phase two, step three we create an instance of uClasiffy.php class and we are using the

clasiffyMany() function. In the beginning we have some checks for empty strings and then we encode the

text to base64 format before sending for classification. Then we create and new xml request and attach

some information on that request:

 Username for login in the system.

 Password for login in the system.

 Classifier name.

 Array for classification.

Then we send the request to the service using post request. When we get our response we check for error

messages and if everything is okay we return our result.

Below is the classifyMany() method source code.

/**
 * Batch operation of Classify method
 *
 * @param $texts Acutal Array of texts that needs to be classified
 * @param $classifierName Name of the classifier against which the array
of texts needs to be classified
 * @param $username Name of the user, under whom the classifier exist. Use
this option if you need to access other's published classifiers
 **/
 public function classifyMany($texts = array(), $classifierName = null, $username =
null) {
 if(count($texts) < 1) throw new uClassifyException("What should be
classified? No text seems to be specified!");
 if(empty($classifierName)) throw new uClassifyException("How should the
text be classified? No ClassiferName seems to be specified!");

 $this->buildXMLRequest();

 $_id = 0;
 foreach($texts as $text) {
 $this->texts[] = base64_encode($text);
 // Setting the Ids for the text
 $this->textIds[] = 'Text' . ($_id++);
 }
 $texts = $this->xmlRequest->createElement('texts');
 $readCalls = $this->xmlRequest->createElement('readCalls');
 if(empty($this->read_key) || !isset($this->read_key)) throw new
uClassifyException("Read API Key is not specified.");
 $readCalls->setAttribute('readApiKey' , $this->read_key);
 $this->uclassify->appendChild($texts);
 $this->uclassify->appendChild($readCalls);
 $_counter = 0;
 foreach($this->texts as $textBase64) {
 // Creating the textBase64 element tags
 $textb = $this->xmlRequest->createElement('textBase64',$textBase64);
 $texts->appendChild($textb);
 $textb->setAttribute('id', $this->textIds[$_counter]);

 // Creating the classify tags for the same textBase64 elements
 $classify = $this->xmlRequest->createElement('classify');
 $readCalls->appendChild($classify);
 $classify->setAttribute('id','Classify' . rand(0, getrandmax()) .
time());
 $classify->setAttribute('classifierName',$classifierName);
 $classify->setAttribute('textId',$this->textIds[$_counter]);
 if(!empty($username)) $classify->setAttribute('username',$username);
 $_counter++;
 }

 $xr = $this->xmlRequest->saveXML();
 $resp = $this->postRequest($xr);

 if(!$resp) {
 throw new uClassifyException("Invalid data sent by the server!");
 } else {
 return $this->parseClassifyResponse($resp);
 }

 }

After all phases are executed we go back to phase two and rearrange the items based on the final score

of each post.

Below you can see the sorting part code:

/**

/** Arranging the items from high to low ranking values

/**

array_multisort($final_answers, SORT_DESC,$term_asnwers);

Finally we go back to phase one recursively and display the results to the end user.

That is “who things work” in detail but that doesn’t mean our system is ready at all. When finished the

system implementation it was time for validation. There are two ways to test your sentiment analysis

system and actually your best option is to use both of them.

 - The manual way: At least in the beginning you need to train your system and monitor how it responds

to your input. You need to create specific classifiers according to your target group (e.g. technology,

movies, music etc.). You’re working with natural language, with material you can understand directly,

and it’ll be pretty clear whether the tools you’re trailing are doing a good job. You also need to do that

while you are building / improving your system and when you finish it. You should also improve it

sentiment analysis is a new field so if you want to be updated you SHOULD update and evolve your

system. That is a painful process and you need to repeat the manual testing process to prevent

regressions on your system.

But the manual way is not enough...

- The automatic way: The high-level idea is to use a language classification framework to do two

classification tasks: separating subjective from objective sentences, and separating positive from

negative parts of text. You can use two data sets one with polarity text parts (positive, negative and

neutral) already categorized and ready to apply on your system for testing purposes. Usually that data

set is pretty huge (1.000 or more text parts). The second data set is the subjective data set, you are

verifying your system using two different services as input text, for example if you want to sentiment

analyze movies reviews you will test your system with input from two services like imdb and rotten

tomatoes and compare the results between each other for the same movies. That's why the second one

is called subjective because the actual reviews are subjective and the two systems might have different

results for the exact same movies. That's why the latter is harder to apply on every system because you

might not have two services with the same subject to test them.

We used only the manual way for verifying our system and would be a must addition automation testing

too. Most common testing techniques are the manual way and the polarity data set for automation

systems!

Usually online sentiment analysis services have their own data sets to train and test your system

according to your sentiment target. But it's also good idea to use external and third party tools to

improve and verify that your system is working as expected.

When all the processes had finally finished (design, development and testing) it was deployment time

(the fun part). I had already a server but decided to use a dedicated one for that particular project. So

again I was looking for something with the criteria below:

 Free.

 Configurable.

 With huge amount of traffic support (just in case).

 Without ads.

So I decided to use GRNET. You can set up your own dedicated server and configure your system from

scratch (operating system, ram, cpu power, hard disk space etc.) and it’s free if you are a student (in

Greek university). So when finished with account creation and setup of the system, I installed php and

apache and was ready to upload my creation.

Last step was to try the service online and luckily the deployment was successful and the service was up

and running.

4. Case studies

On that part I want to explain how we can extend the system to the rest stack exchange services. This part

is very simple because all stack exchange sites have the same API and actually the only thing we need to

change is one line of code.

compress.zlib://https://api.stackexchange.com/2.0/search?order=desc&sort=votes&intitle=".$search_te

rm."&site=stackoverflow&key=q0NPALjE0r1MKsMeQVh2

For more details what that line of code does you can see the image below.

From that line of code we need to change the word "stackoverflow" with the name of stack exchange

service we want to use. It's that simple...

To extend the service to consume other services is not so simple (one line) because they have different

API and different JSON structure, but it's not that difficult too except from that line of code we will need

first of all to register for o key on the rest services so we can have increased number of requests to the

service. Except from that we will need to map our local answers arrays to match the format of the JSON

answer of each service. The rest of the code will stay intact and our service will be ready to use!

ChaCha has recently launched a free sms system to put their API into the hands of the developer

community, and they are supposed to launch a web-based answer service too. Currently (October 2013)

the only option is the sms system. If you are a developer, you have to wait until they publish some more

information on developer.chacha.com.

You can still use the sms system if you want to build a basic application for mobile phones but the

limitations compared to web-based service are huge!

Other thoughts are to extend the system using two or more ways for validation. It would be good to
verify somehow that our sentiment analysis system is working correctly and the validation results are as
expected to be. That can be achieved by using a classifier and a lexicon so you can validate the in
between results with each other before presenting to the end user!

5. Concluding remarks

In this paper we briefly reviewed the relatively new sentiment analysis concept focusing on its practical

considerations. We then described the current on-line Q&A systems identifying their characteristics and

in particular those that are may be associated with sentiment analysis efforts. We finally, proposed and

implemented a system that has the potential to increase the precision of Q/A activities. We focused on

one of the most popular Q/A system and developed a simple sentiment engine. Our initial

experimentation proofs that our objectives are realistic and valid.

The problem of supporting web Q&A systems with sentiment analysis has by no means solved. This paper

contains initial results of an ongoing effort. These results should pave the way towards a more

comprehensive and more convincingly efforts and perhaps commercial products.

6. References

Cheng, H. T. S. T. X. (2009). A survey on sentiment detection of reviews. Expert Systems with
Applications, 36(7), 10760–10773. doi:http://dx.doi.org/10.1016/j.eswa.2009.02.063

Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM,
56(4), 82. Retrieved from http://dl.acm.org/ft_gateway.cfm?id=2436274&type=html

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.216.5533

Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer: analyzing and comparing opinions on the Web. In
Proceedings of the 14th international conference on World Wide Web - WWW ’05 (p. 342). New
York, New York, USA: ACM Press. Retrieved from
http://dl.acm.org/citation.cfm?id=1060745.1060797

