
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ
ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ

OmniStore: Μηχανισμοί για την αυτοματοποίηση
της διαχείρισης δεδομένων σε ένα προσωπικό

σύστημα με πολλές φορητές συσκευές

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

του

ΑΛΕΞΑΝΔΡΟΥ Σ. ΚΑΡΥΠΙΔΗ

Απόφοιτου Επιστήμης Υπολογιστών Πανεπιστημίου Κρήτης

Συμβουλευτική Επιτροπή : Σ. Λάλης
Η. Χούστης
Λ. Τασιούλας

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 23η Φεβρουαρίου 2007

Βόλος, Φεβρουάριος 2007

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

..

ΑΛΕΞΑΝΔΡΟΣ Σ. ΚΑΡΥΠΙΔΗΣ

© 2006 – All rights reserved

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Μηχανισμοί για την αυτοματοποίηση της διαχείρισης
δεδομένων σε ένα προσωπικό σύστημα με πολλές

φορητές συσκευές

Εισαγωγή
Όσο ο όγκος των δεδομένων που παράγουμε, συλλέγουμε και χρησιμοποιούμε
αυξάνεται συνεχώς, τόσο πιο δυσχερής γίνεται η συμβατική διαχείριση των αρχείων,
η οποία συνήθως απαιτεί σημαντική εμπλοκή του χρήστη. Ο μεγάλος αριθμός των
φορητών και ενσωματωμένων συσκευών που έχει μαζί του ο καθένας μας απλά
επιδεινώνει τη κατάσταση. Η επιστημονική κοινότητα έχει μακράν συμφωνήσει ότι
τα υπολογιστικά συστήματα που πρόκειται να διαχυθούν στο ανθρώπινο περιβάλλον
θα πρέπει να σχεδιαστούν ώστε να υποστηρίζουν τον άνθρωπο στις δραστηριότητες
του, όχι να αποσπούν τη προσοχή του από αυτές. Αυτή η εργασία συνεισφέρει σε
αυτό το στόχο μειώνοντας τη πολυπλοκότητα της διαχείρισης αρχείων σε ένα
προσωπικό υπολογιστικό περιβάλλον που αποτελείται από πολλές φορητές συσκευές.
Για τον σκοπό αυτό σχεδιάσαμε και υλοποιήσαμε το “OmniStore”, ένα σύστημα που
απαλλάσσει το χρήστη από χρονοβόρες εργασίες διαχείρισης αρχείων. Αυτό
επιτυγχάνεται μέσω επικοινωνίας των συσκευών τόσο με υπηρεσίες υποδομής, όσο
και μεταξύ τους (αδόμητη επικοινωνία), με στόχο την αυτοματοποίηση των
διεργασιών που αφορούν την διαχείριση αρχείων.

Κάθε χρήστης διαθέτει προσωπικό χώρο αποθήκευσης στην υποδομή, με τον
οποίο συσχετίζει τις συσκευές που του ανήκουν. Τα αρχεία που δημιουργούνται σε
αυτές συγκεντρώνονται αυτομάτως στην αποθήκευση υποδομής. Ο χρήστης έχει
πρόσβαση σε αυτήν από οπουδήποτε και μπορεί μέσω κατάλληλης διεπαφής να
προγραμματίζει τη μεταφορά αρχείων σε συσκευές της αρεσκείας του. Η αποστολή
αρχείων από τις συσκευές προς την αποθήκευση υποδομής και αντιστρόφως
πραγματοποιείται όταν αυτές επικοινωνούν, κάτι το οποίο συμβαίνει περιοδικά.

Επιπλέον, οι συσκευές επικοινωνούν και μεταξύ τους, με σκοπό να επιτευχθεί η
συλλογική λειτουργία τους. Συγκεκριμένα, ανταλλάσσουν πληροφορίες σχετικά με
τις επικρατούσες συνθήκες (τοποθεσία, θερμοκρασία, φωτισμός, κλπ.) οι οποίες
εξάγονται από τους διάφορους αισθητήρες που βρίσκονται ενσωματωμένοι στις
συσκευές, και οι οποίες στη συνέχεια προσαρτώνται στα αρχεία που δημιουργούν,
ώστε να είναι εύκολη η αναζήτησή με βάση αυτές. Επίσης, δημιουργούν αντίγραφα
σημαντικών αρχείων για να αυξήσουν τη διαθεσιμότητα αυτών, ή μετακινούν αρχεία
για να ανακατανείμουν τον ελεύθερο χώρο ώστε να αποσυμφορηθούν οι έντονα
χρησιμοποιούμενες συσκευές. Τέλος, επιτρέπουν την απομακρυσμένη πρόσβαση σε
αρχεία μιας συσκευής από εφαρμογές σε άλλη, παρέχοντας ακόμη και ανοχή σε
βλάβες όταν το αρχείο είναι διαθέσιμο σε περισσότερες από μία συσκευές. Ο
συνδυασμός αυτών των χαρακτηριστικών απαλλάσσει το χρήστη από πολλές
εργασίες που πρέπει να πραγματοποιεί σε ότι αφορά την διαχείριση του
αποθηκευτικού χώρου.

Λογισμικό υποστήριξης αδόμητης επικοινωνίας
Η λειτουργία του συστήματος προϋποθέτει την δυνατότητα ευκαιριακής

επικοινωνίας μεταξύ συσκευών, κάτι που συνεπάγεται σημαντικό προγραμματιστικό
κόστος λόγω της αυτογενούς υψηλής δυναμικότητας που εμπεριέχουν τα αδόμητα
δίκτυα. Αναπτύξαμε λοιπόν λογισμικό υποστήριξης που παρέχει υπηρεσίες για τη
διευκόλυνση της ανάπτυξης εφαρμογών σε τέτοιο περιβάλλον, το οποίο παρέχει:

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

ανακάλυψη υπηρεσιών που υπάρχουν στο αδόμητο δίκτυο στο οποίο συμμετέχει μια
συσκευή, ευριστική μέθοδο επιλογής υπηρεσιών με βάση την αναμενόμενη
διαθεσιμότητα της συσκευής που τις παρέχει, επικοινωνία μεταξύ εφαρμογών σε
διαφορετικές συσκευές και διαμοιρασμό πληροφοριών για τις επικρατούσες συνθήκες
στο χώρο όπου συνευρίσκονται πολλές συσκευές.

Για την υλοποίηση όλων των προαναφερθέντων λειτουργιών, το λογισμικό
υποστήριξης εκπέμπει περιοδικά ένα “μήνυμα παρουσίας” στο αδόμητο δίκτυο, το
οποίο χρησιμοποιείται με πολλαπλούς τρόπους ώστε να παρέχονται όλες οι
παραπάνω υπηρεσίες. Η ορθότητα των αλγορίθμων που χρησιμοποιούνται δεν
επηρεάζεται από τον ρυθμό εκπομπής αυτών των “μηνυμάτων παρουσίας”. Μάλιστα
ο ρυθμός αυτός μεταβάλλεται ανάλογα με το φόρτο που δημιουργούν οι εφαρμογές
που χρησιμοποιούν τις υπηρεσίες ώστε να εξυπηρετούνται οι ανάγκες τους.
Συγκεκριμένα, υπάρχουν τρεις ρυθμοί εκπομπής:

• Αργός: Αυτός ο ρυθμός χρησιμοποιείται όταν δεν υπάρχει καμιά εργασία
προς εξυπηρέτηση από τις εφαρμογές που χρησιμοποιούν το σύστημα.

• Κανονικός: Αυτός ο ρυθμός χρησιμοποιείται όταν υπάρχουν εργασίες προς
εξυπηρέτηση από τις εφαρμογές που χρησιμοποιούν το σύστημα, οι οποίες
όμως δεν είναι καινούριες και έχει υπάρξει ήδη επεξεργασία για αυτές.

• Γρήγορος: Αυτός ο ρυθμός χρησιμοποιείται όταν υπάρχουν εργασίες προς
εξυπηρέτηση από τις εφαρμογές που χρησιμοποιούν το σύστημα, οι οποίες
είναι καινούριες και δεν έχουν επεξεργαστεί καθόλου.

Αρχικά το σύστημα χρησιμοποιεί τον αργό ρυθμό, μεταβαίνοντας στον γρήγορο
όποτε κάποια εφαρμογή δημιουργήσει μια νέα εργασία. Όταν όλες οι υπάρχουσες
εργασίες έχουν επεξεργαστεί, χρησιμοποιείται ο κανονικός ρυθμός, επιστρέφοντας
στον γρήγορο κάθε φορά που δημιουργείται νέα εργασία. Αν κάποια στιγμή
αφαιρεθούν όλες οι εργασίες, το σύστημα επιστρέφει στον αργό ρυθμό.

Ευριστική επιλογή υπηρεσιών στο αδόμητο δίκτυο με βάση
την αναμενόμενη διαθεσιμότητα

Η ευκαιριακή επικοινωνία εφαρμογών με υπηρεσίες σε ένα αδόμητο δίκτυο είναι
συνήθης πρακτική. Σημαντική παράμετρος για την επιλογή της συσκευής με την
οποία μια εφαρμογή θα επικοινωνήσει (όταν υπάρχουν περισσότερες επιλογές) ή
ακόμη και για το αν θα επιχειρηθεί καν επικοινωνία, αποτελεί η αναμενόμενη
διαθεσιμότητα της άλλης συσκευής. Ένας μηχανισμός που παρέχει πληροφορίες για
το ιστορικό συνεύρεσης συσκευών μπορεί να βοηθήσει στη λήψη της σχετικής
απόφασης.

Το λογισμικό υποστήριξης χρησιμοποιεί τα περιοδικά μηνύματα παρουσίας για να
καταγράφει το πλήθος και τη μέση διάρκεια των συνευρέσεων. Για κάθε συσκευή
που συναντάται, παρακολουθείται η διάρκεια της συνεύρεσης (που προσδιορίζεται
από τη διάρκεια λήψης μηνυμάτων παρουσίας) και χρησιμοποιείται για να
υπολογιστεί ο τρέχων μέσος όρος διάρκειας των συνευρέσεων συνολικά, καθώς και
το πλήθος τους. Η χρονική περίοδος (παράθυρο) για την οποία καταγράφονται
στοιχεία είναι πεπερασμένη και σε τακτά χρονικά διαστήματα γίνεται ομαλοποίηση
των μετρήσεων υποθέτοντας μια κανονική κατανομή των συνευρέσεων στο χρόνο.
Με βάση τις πληροφορίες αυτές μια εφαρμογή μπορεί να εκτιμά την αναμενόμενη
μελλοντική διάρκεια συνεύρεσης με μια άλλη συσκευή, ως το γινόμενο του πλήθους
των συνευρέσεων και της μέσης διάρκειας αυτών στο τρέχον παράθυρο.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Ανακάλυψη υπηρεσιών

Το λογισμικό υποστήριξης παρέχει τη δυνατότητα ανακάλυψης της ύπαρξης
κάποιας υπηρεσίας στο αδόμητο δίκτυο, καθώς και τη διεύθυνση στην οποία μπορεί
μια εφαρμογή να επικοινωνήσει με αυτήν. Οι υπηρεσίες θεωρείται ότι χρησιμοποιούν
προσυμφωνημένα αλφαριθμητικά ονόματα με βάση τα οποία γίνεται η αναζήτηση.

Η υλοποίηση αυτής της λειτουργικότητας γίνεται με την επισύναψη πληροφοριών
αναζήτησης / διαφήμισης υπηρεσιών στα μηνύματα παρουσίας. Συγκεκριμένα,
ανάλογα με τα αιτήματα που δέχεται, το λογισμικό υποστήριξης μπορεί είτε να
εκπέμπει μηνύματα παρουσίας με συννημένο ερώτημα αναζήτησης κάποιας
υπηρεσίας (αίτημα εφαρμογής), είτε να εκπέμπει μηνύματα παρουσίας με συννημένη
διαφήμιση της διεύθυνση μιας υπηρεσίας (αίτημα της υπηρεσίας). Εναλλακτικά, οι
εφαρμογές μπορούν να περιοριστούν στο να ζητήσουν από το λογισμικό αναζήτησης
να καταγράφει τη διεύθυνση υπηρεσιών κάποιου τύπου όταν λαμβάνεται σχετική
διαφήμιση, χωρίς όμως να αποστέλλονται αναζητήσεις. Παρομοίως οι υπηρεσίες
μπορούν να ζητήσουν από το λογισμικό υποστήριξης να εκπέμπει διαφημίσεις για
αυτές μόνο εφόσον λάβει σχετικό μήνυμα αναζήτησης. Με βάση αυτά υπάρχουν οι
εξής δύο μέθοδοι για την ανακάλυψη υπηρεσιών:

Μέθοδος Αίτημα Αναζήτησης Αίτημα διαφήμισης

Ενεργή αναζήτηση Περιοδική εκπομπή
Εκπομπή μόνο κατά τη λήψη
σχετικής αναζήτησης ή
περιοδική εκπομπή

Παθητική αναζήτηση Απλή καταγραφή χωρίς
εκπομπή αναζήτησης

Περιοδική εκπομπή

Επικοινωνία

Το λογισμικό υποστήριξης επιτρέπει την δημιουργία συνδέσεων δύο σημείων
μέσω των οποίων μπορούν να μεταδίδονται αμφίδρομα ροές δεδομένων, για τις
οποίες παρέχεται εγγύηση παράδοσης με ορθή σειρά. Για την δημιουργία μιας
σύνδεσης πρέπει να χρησιμοποιηθεί ο μηχανισμός ανακάλυψης ώστε να εντοπιστεί η
διεύθυνση με την οποία είναι επιθυμητή σύνδεση.

Επιπλέον, παρέχεται υποστήριξη για την επικοινωνία με υπηρεσίες στο διαδίκτυο.
Για τον σκοπό αυτό αναπτύχθηκε μια υπηρεσία πύλης διαδικτύου, η οποία μπορεί να
διαβιβάζει τις ροές που μεταδίδονται μέσω μιας σύνδεσης σε υπηρεσίες στο
διαδίκτυο. Η υπηρεσία πύλης εγκαθιστά μια σύνδεση διαδικτύου με την υπηρεσία
που επιθυμεί η εφαρμογή πελάτης και στη συνέχεια αποστέλλει την εισερχόμενη από
το πελάτη ροή στην υπηρεσία στο διαδίκτυο, ενώ παρομοίως αποστέλλει στον πελάτη
τη ροή δεδομένων που λαμβάνει από την υπηρεσία στο διαδίκτυο. Με τον τρόπο
αυτό, μπορούν συσκευές που ανακαλύπτουν την υπηρεσία πύλης διαδικτύου πλησίον
τους να συνδέονται με αυτήν και να επικοινωνούν μέσω αυτής με οποιαδήποτε
υπηρεσία στο διαδίκτυο.

Διαμοιρασμός πληροφοριών επικρατουσών συνθηκών

Το λογισμικό υποστήριξης έχει τη δυνατότητα να διαμοιράζει τις πληροφορίες που
διαθέτει μια συσκευή για τις επικρατούσες συνθήκες, στο σύνολο των συσκευών που
συνευρίσκονται πλησίον της. Έτσι, μπορεί κάθε συσκευή να εκμεταλλεύεται τις

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

δυνατότητες των υπολοίπων να χαρακτηρίζουν το περιβάλλον γύρω τους μέσω
πληροφοριών που λαμβάνουν από ενσωματωμένους αισθητήρες ή εξάγουν από την
αλληλεπίδραση με το χρήστη.

Ο μηχανισμός διαμοιρασμού στηρίζεται σε έναν πίνακα του λογισμικού
υποστήριξης στον οποίο οι εφαρμογές καταγράφουν τις πληροφορίες για
επικρατούσες συνθήκες που διαθέτουν. Το λογισμικό υποστήριξης επισυνάπτει τις
πληροφορίες αυτές στα μηνύματα παρουσίας που εκπέμπει η συσκευή ώστε να
μεταδοθούν στις συσκευές που βρίσκονται σε εμβέλεια. Παράλληλα, το λογισμικό
υποστήριξης εμπλουτίζει τον πίνακα αυτό με πληροφορίες που λαμβάνει από άλλες
κοντινές συσκευές, καθιστώντας αυτές διαθέσιμες και στις τοπικές εφαρμογές.

Αυτοματοποίηση διαχείρισης δεδομένων
Η αυτοματοποίηση της διαχείρισης δεδομένων επιτυγχάνεται με τη δράση του

συστήματος σε δύο άξονες: τη συνεργασία των συσκευών με κατάλληλες υπηρεσίες
υποδομής και τη συνεργασία των συσκευών μεταξύ τους.

Υπηρεσίες υποδομής

Κάθε χρήστης διαθέτει ένα προσωπικό χώρο αποθήκευσης στην υποδομή, με τον
οποίο συσχετίζει τις συσκευές που του ανήκουν. Κατά την συσχέτιση οι συσκευές
αποκτούν καθολικά μοναδικά αναγνωριστικά με τα οποία μπορεί κανείς να
αναφέρεται μονοσήμαντα σε αυτές. Επιπλέον, αποκτούν πιστοποιητικά με τα οποία
μπορούν να αποδεικνύουν η μία στην άλλη ότι ανήκουν στον ίδιο χρήστη όταν
συναντώνται σε ένα αδόμητο δίκτυο, χωρίς να απαιτείται επικοινωνία με την
υπηρεσία υποδομής. Τέλος, τα αναγνωριστικά αυτά χρησιμοποιούνται από τις
συσκευές ώστε να μπορούν αυτόνομα να δημιουργούν καθολικά μοναδικά
αναγνωριστικά για τα αρχεία που δημιουργεί ο χρήστης σε αυτές. Τα αρχεία του
συστήματος μπορούν να έχουν απεριόριστο αριθμό συννημένων πληροφοριών, οι
οποίες χρησιμοποιούνται για την ταξινόμηση τους. Μέσω των συννημένων αυτών
πληροφοριών το σύστημα – μεαξτύ άλλων – διατηρεί και ιστορικό για τις διάφορες
εκδόσεις αρχείων τα οποία υπέστησαν μεταβολές από το χρήστη.

Οι εγγεγραμμένες συσκευές επικοινωνούν περιοδικά με την υπηρεσία
αποθήκευσης υποδομής ώστε να μεταφέρουν αρχεία από και προς αυτή, σύμφωνα με
τις επιθυμίες του χρήστη και τις ανάγκες των εφαρμογών. Όσον αφορά την μεταφορά
αρχείων από τις συσκευές προς την υποδομή, το σύστημα υλοποιεί “βαθιά πλήρη
αρχειοθέτηση” συλλέγοντας όλα τα αρχεία που δημιουργεί ο χρήστης στην υπηρεσία
υποδομής. Για το λόγο αυτό, όποτε οι συσκευές επικοινωνούν με την υπηρεσία,
μεταφέρουν σε αυτή όλα τα νέα αρχεία που έχουν δημιουργηθεί σε αυτές. Για τη
μεταφορά αρχείων από την υπηρεσία υποδομής σε κάποια συσκευή, θα πρέπει κάποια
εφαρμογή να έχει υποβάλλει σχετικό αίτημα. Η υπηρεσία υποδομής ενημερώνει τη
συσκευή που πρέπει να παραλάβει το αρχείο όταν αυτή επικοινωνήσει και στη
συνέχεια πραγματοποιεί τη μεταφορά. Οι αιτήσεις αυτές μπορούν να αφορούν
συγκεκριμένο χρονικό διάστημα για το οποίο το αρχείο θα πρέπει να βρίσκεται στη
συσκευή, καθώς και να ορίζουν ότι η συσκευή θα πρέπει να ενημερώνεται και να
ανακτά νεότερες εκδόσεις του αρχείου ώστε να διαθέτει πάντα την τελευταία έκδοση
αυτού.

Ομαδική λειτουργία συσκευών

Η συσκευές επικοινωνούν μεταξύ τους για την δημιουργία αντιγράφων
σημαντικών αρχείων (ώστε να αυξηθεί η διαθεσιμότητά τους) ή για τη μετακίνηση

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

αρχείων από μια συσκευή σε άλλη (ώστε να αποσυμφορηθεί κάποια συσκευή στην
οποία εξαντλείται ο διαθέσιμος αποθηκευτικός χώρος). Η αντιγραφή αρχείων
πραγματοποιείται κατόπιν υπόδειξης κάποιας εφαρμογής ότι το αρχείο είναι
σημαντικό (τέτοια υπόδειξη δημιουργείται αυτόματα από το σύστημα για αρχεία τα
οποία ελήφθησαν από την υπηρεσία υποδομής και για τα οποία είναι
προγραμματισμένη συγκεκριμένη χρονική περίοδος παρουσίας). Οι μεταφορές για
την εξοικονόμηση χώρου καθοδηγούνται από δύο παραμέτρους της συσκευής: τον
ελάχιστο διαθέσιμο χώρο και τον επιθυμητό διαθέσιμο χώρο. Όποτε ο διαθέσιμος
χώρος είναι λιγότερος από τον ελάχιστο επιτρεπτό, εκκινεί η διαδικασία
αποσυμφόρησης της συσκευής, η οποία περιλαμβάνει και μεταφορά αρχείων σε
άλλες συσκευές πλησίον της, και η οποία σταματά μόλις ο διαθέσιμος χώρος ανέλθει
στο επιθυμητό επίπεδο.

Για την υποστήριξη της ταξινόμησης και αναζήτησης αρχείων οι συσκευές
χρησιμοποιούν τις διαμοιραζόμενες πληροφορίες επικρατουσών συνθηκών για την
προσθήκη σχετικών συννημένων πληροφοριών στα αρχεία που δημιουργούνται. Με
τον τρόπο αυτό, ο χρήστης μπορεί να αναζητά αρχεία με βάση τις συνθήκες που
επικρατούσαν όταν αυτά δημιουργήθηκαν.

Τέλος, οι συσκευές επιτρέπουν την απομακρυσμένη πρόσβαση σε αρχεία σε μια
συσκευή από εφαρμογές σε κάποια άλλη. Σε περίπτωση που το αρχείο είναι
διαθέσιμο σε περισσότερες από μια συσκευές, είναι δυνατή η μετάβαση από τη μια
στην άλλη σε περίπτωση που υπάρξει αστοχία της συσκευής από την οποία
προσπελάσεται το αρχείο.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

OmniStore: Mechanisms for automating data
management in a personal system comprising

several portable devices

Alexandros Karypidis

23 February, 2007

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Contents

1 Introduction 1

1.1 The information explosion . 2

1.2 The personal data management problem 3

1.2.1 Organization . 4

1.2.2 Placement . 5

1.3 Distraction-free personal data management 6

2 Data management in ubiquitous computing environments 7

2.1 Storage element characteristics and challenges 8

2.1.1 A plethora of portable devices with storage 8

2.1.2 Ad-hoc networking potential 9

2.1.3 User interaction restrictions 10

2.2 Usage review of storage on portable devices 11

2.2.1 Producers . 11

2.2.2 Consumers . 12

2.2.3 Couriers . 12

2.3 Storage in ubiquitous computing environments 13

i

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

3 Core runtime mechanisms 17

3.1 Beaconing: the runtime’s heartbeat 19

3.2 Maintaining co-location history for service selection 20

3.2.1 Collecting co-location statistics 22

3.2.2 Pruning co-location history 25

3.3 Service discovery . 28

3.3.1 Active discovery . 30

3.3.2 Passive discovery . 32

3.4 Communication . 34

3.4.1 Unreliable communication 34

3.4.2 Reliable communication 36

3.4.3 Accessing infrastructure services 37

3.5 Context aggregation . 40

3.5.1 Generating and reviewing context information 41

3.5.2 Context information propagation 43

3.5.3 Controlling context propagation 48

4 File management system 53

4.1 Overall architecture . 54

4.2 Device management . 57

4.2.1 Device registration . 58

4.2.2 Device configuration . 60

4.3 File naming and access model 62

4.3.1 Naming scheme . 62

4.3.2 File organization with semantic annotations 64

ii

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

4.3.3 File access model . 66

4.4 Infrastructure-based functionality 67

4.4.1 Automated archival . 68

4.4.2 Push-caching . 70

4.4.3 The synchronization process 72

4.4.4 Application services . 75

4.5 Personal area network functionality 76

4.5.1 Context-based annotation 77

4.5.2 Off-loading and replication 79

4.5.3 Distributed lookup and access 81

4.6 Security aspects . 84

5 Evaluation 89

5.1 Usage . 89

5.1.1 Mock-up devices . 90

5.1.2 Registry management application 93

5.1.3 Repository management application 95

5.1.4 Usage scenarios . 97

5.2 Performance evaluation . 103

5.2.1 Core services . 104

5.2.2 Storage system operations 109

6 Related work 113

7 Discussion 119

A.1 Core runtime execution speed analysis 123

iii

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

B.1 Core runtime memory consumption analysis 131

C.1 Storage system execution time analysis 135

iv

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

List of Figures

2.1 OmniStore’s design . 14

3.1 Core runtime components . 18

3.2 State transition diagram for the cycling rates used by the runtime. . 21

3.3 Time diagram of sensing events for co-location history recording. 26

3.4 Active service discovery using lookup requests. 32

3.5 Passive service discovery using persistent advertisements. 33

3.6 A tunneled connection from the PAN to the Internet 40

3.7 Exporting tuples to nearby devices in the PAN 45

3.8 Context dissemination process 46

4.1 OmniStore architecture . 55

4.2 The two phases of device registration 59

4.3 Various elements labeled using our naming scheme 63

4.4 Maintaining file revision history 67

4.5 OmniStore backup protocol . 69

4.6 Device - Repository synchronization process, initial state 73

4.7 Device - Repository synchronization process, first step 73

4.8 Device - Repository synchronization process, second step 74

v

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

4.9 Device - Repository synchronization process, third step 74

4.10 File annotation process . 78

4.11 Locating files in the PAN . 83

5.1 Mobile phone (left) and digital camera (right) device 91

5.2 Registry management – pending registration requests 94

5.3 Registry management – listing registered devices 94

5.4 Repository management – annotation-based lookup 96

5.5 Repository management – creating a push cache request 96

5.6 Request presentation to be sent to the phone 99

5.7 Annotate phone-call recording with context 99

5.8 Archive phone-call recording via airport access point 99

5.9 Edit the presentation using the laptop 100

5.10 Live-update of the presentation on the phone 100

5.11 Replicate the presentation on the watch 100

5.12 OmniStore activity during the presentation 101

5.13 Transparent fail-over . 101

5.14 Pushing photos to the digital frame 102

vi

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

List of Tables

2.1 Data-related activies of typical portable devices. 8

3.1 Sample co-location information maintained by a mobile phone. . . 22

3.2 Mapping of co-location data model to DeviceHistory fields. . 25

3.3 Possible values for the scope of context information 44

3.4 Sample contents for a digital camera’s context component 51

4.1 Sample device configuration data stored in the device registry . . . 62

4.2 System-defined annotations. 65

4.3 Annotated file example (a photograph). 65

A-1 The execution statistics table fields explained 123

B-1 The memory consumption statistics table fields explained 131

vii

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

viii

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Listings

3.1 The DeviceHistory class . 24

3.2 The discovery component API 29

3.3 The communication component API 35

3.4 The context component API . 42

4.1 The device library’s file access API 85

4.2 The repository library’s API . 86

4.3 A sample file annotation handler 86

4.4 A sample file lookup task . 87

ix

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

x

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Acknowledgments

I would like to thank the people who kept me company in the long hours spent

working: Thanasis Fevgas, George Giannikis, Manos Koutsoubelias, Marios Piti-

kakis and George Vasilakis. Special thanks go to my advisor, Spyros Lalis, whose

help in the process of writing this dissertation was invaluable.

I am grateful to my parents and sister, who have forever supported me in all

my quests. Last but not least, I will not forget how supportive Jim Syrivelis and

Catherine Kazantzi were during this stressful period.

P.S. My friends at the department insist that I explicitly state: I thank the J.

xi

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

xii

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Abstract

As the volume of data people generate, collect and use continuously grows, so

do the burdens associated with conventional file management, which typically

requires considerable user involvement. The large number of portable and em-

bedded devices we carry with us, merely aggravate the situation. The scientific

community has long stipulated that the computing systems that will pervade the

human habitat will be designed to assist people in, rather than distract them from,

their activities. This work contributes towards achieving this objective by reducing

the complexity of file management in a personal computing environment compris-

ing several portable devices with ad-hoc networking capability.

To this end, we have designed and implemented OmniStore, a system that

combines portable devices and infrastructure-based services to relieve the user

from explicit and time consuming file management tasks. In Omnistore, all ver-

sions of all files created on any device are incrementally forwarded to a repos-

itory. Conversely, a file (and subsequent versions thereof) may be copied from

the repository to any device, in an asynchronous and flexible way. Furthermore,

portable devices collaborate with each other in the background to replicate files

for increased availability, to migrate files for storage reclamation, and to provide

transparent and fault-tolerant remote file access within the personal area network.

New files are also annotated with context information generated from nearby de-

vices, enabling their flexible organization and lookup. Notably, the mechanisms

and protocols of OmniStore have been designed taking into account the intermit-

tent nature of mobile and ad-hoc communication.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

As a basis of our system, we have developed a runtime environment which

provides core facilities, such as service discovery, device co-location statistics,

remote communication and context aggregation, paying special attention to the

characteristics of personal area networks. The file management functionality is

implemented on top of this runtime and is made available to the application pro-

grammer via a library that augments the conventional file system API with the

necessary primitives.

ii

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 1

Introduction

Since its inception and through the present day, we have systematically broadened

our use of computing technology by applying it to an increasing number of do-

mains. In addition to its steadily growing scope, it deployment has also expanded

in depth: we are gradually adapting our lifestyle to suit computer intricacies. This

realization became cause for legitimate concern more than ten years ago, inspiring

the Ubiquitous Computing vision [Wei91]. The scientific community then stipu-

lated that, even though computing elements will unavoidably proliferate in human

habitats, they would be designed to serve people by unobtrusively assisting their

activities, otherwise constraining themselves to the background of human atten-

tion.

Indeed, by continuously transcending new boundaries, computing is gradually

establishing its presence in our daily routine. Meanwhile, the ubiquitous comput-

ing concept has affected all areas of computer science, such as: hardware design,

operating systems, networking, middleware, user interfaces, etc. As numerous

objects are augmented with computing and (wireless) networking functionality,

1

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

new applications become possible, while at the same time old applications have

to be rethought. Personal data management, one of the typical uses of computing

technology, is among the areas which need to be revisited.

1.1 The information explosion

With computing elements permeating all aspects of our lives, the volume of data

that users must typically manage is escalating. People now employ the use of

digital information in a growing number of areas. For example, compared to one

or two decades ago, a lot of paperwork has been replaced by electronic documents,

both in business and in government. Books, music, photographs and videos are

now digitally stored.

In addition to the expanded use of digital storage formats and mediums, the

rise in the amount of data managed by a person may also be attributed to the fact

that data generation and collection now starts to occur at small ages. Consider

for example that, submitting hand-written essays is now outdated even in primary

education, as children quickly catch on to word processing software and prefer

to type their essays on computers. In fact, nobody has faced the personal data

management problem to its full extent so far, as people accompanied by a lifetime

of all-digital data do not exist yet: even early-adopters of personal computers are

now in their fourties. Moreover, they have created and collected relatively little

data, as computing was not pervasively deployed until recently.

Another contributing factor to the bulk of data managed per person is the ease

with which we generate it nowadays, given the multitude of digital appliances that

are available for such purposes. PDAs, mobile phones, digital cameras, voice-

2

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

memo recorders and other such devices are casually carried and used to create

data, even when one is on the move. As a result, data generating activities in

human lives have increased substantially.

In a recent study [LV03] it was determined that around 800MB of information

were produced per person in the year 2003. The study further estimates [Var05]

that well over 90% of information currently produced is created in a digital for-

mat, anticipating that this percentage will keep increasing in the future. Citing

the findings of this report, several storage-organization and information-retrieval

challenges were included in a list of meritable long-term research goals [Gra03]

for the future.

1.2 The personal data management problem

The growing number of devices via which data is collected with or distributed to

for use, in combination with increased data volumes, is causing the amount of ef-

fort required for personal data management to reach alarming levels. This problem

is quickly becoming a considerable burden, indicating that storage management

systems must be adapted to support this new state of affairs.

Specifically, the activities which personal data management entails may be

classified into two categories:

• Organization tasks: the annotation of files with names and other meta-

information, the grouping of files in logical structures (e.g. directory hier-

archies) for convenient review and access, etc.

• Placement tasks: the transfer of files from one location to another, the

3

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

replication of files on multiple storage mediums for availability and fault-

tolerance, the removal of files from a storage medium in order to make

space, etc.

We next review how each category of storage-related activities is affected by

the increasing volumes of data which one must manage.

1.2.1 Organization

File organization is one of the most common – but also fairly awkward – tasks

which people must deal with when using personal computing systems. Typically,

it is addressed by assigning human-readable names to files and arranging them in

hierarchical directory structures that are formed according to the envisaged infor-

mation access pattern. While this approach works well for most conventional data

processing scenarios, it becomes less appropriate when files are being generated

via personal mobile devices such as cameras, memo recorders, phones and music

players. In this case, the number of files generated can be very large and finding

good names and directory structures for storing them becomes increasingly hard;

even more so if this should be done on the move. Aggravating the situation is the

fact that persistent memory prices are dropping to levels which render efficient

use of storage space obsolete; the storage capacity available makes it possible to

simply keep all data we create. This trend intensifies the severity of the file orga-

nization problem, keeping the concept of a personal “memex” [Bus96] elusive.

An accumulating body of work that addresses this issue [GJSO91, GM99,

SKW+02, MTX03] is converging to the solution of using unrestricted metadata

annotation as a better alternative to traditional hierarchical file systems. In such

4

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

so-called semantic file systems, applications and users may attach any number and

type of annotations to files. File lookup operations are then expressed as queries

with respect to these annotations, whereas browsing is supported through flexible

virtual directory hierarchies that are dynamically generated using data clustering

techniques. Due to the inherent flexibility of metadata-based browsing, time is

admittedly better invested in annotating files as opposed to trying to define fixed

directory structures, which most likely will be changed (more than once) anyway.

There is no free lunch though. While the user is relieved from having to de-

fine and manage file names and directory structures, semantic file systems require

files to be decorated with annotations. Still, the process of annotating files in suf-

ficient detail as to enable efficient and flexible lookup can be equally cumbersome

and time consuming. For this reason, the research community is now turning

its attention towards finding ways to facilitate – or even automate – this process

[SG03]. A significant challenge is therefore to allow for seamless organization of

files through computer-generated meta-data annotations, not just on the desktop,

but also on mobile devices such as cameras, phones, PDAs, etc.

1.2.2 Placement

Given efficient means for organizing and accessing files, the next major hurdle in-

volves transferring files from one storage medium to another. Such transfers may

be desired in several cases. For example: to create copies for increased availabil-

ity (replication), to backup files (archival), to increase access locality (caching),

or to move data from a heavily-used storage medium to another in order to make

space (load distribution).

5

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Again, users are responsible for performing such awkward tasks. Through file

managers they explicitly issue commands to create copies of files on portable me-

dia and subsequently update their original location by copying them back, delete

files when a storage medium is full, etc. To make things worse, management tasks

must usually be performed in synchronous fashion and in real-time. For example,

the user is interrupted when storage is depleted and is required to create free space

at that instant in order to proceed. Similarly, copying a file to a portable storage

medium is a task which requires the user to combine: having the medium handy,

issuing the transfer command and waiting until the copy operation is complete.

1.3 Distraction-free personal data management

The extensive adoption of computing in various devices has dispersed the points

of data production and consumption across numerous storage elements that may

reside in different locations, or be casually carried or worn by the user. As a con-

sequence, data management tasks are becoming increasingly distributed in space

and time. Consequently, we must perform such operations on several storage

mediums, while on the move, struggling with the limited user interaction facili-

ties that are in place at the time. This is hardly convenient, or unobtrusive. The

essence of ubiquitous computing however, lies in allowing users to attend to what-

ever tasks must be accomplished, without diverting their attention to the technical-

ities involved in operating computers. In other words, people should be assisted

in achieving their goals, rather than be distracted by computing systems.

Our thesis is that personal data management can be automated so as to mini-

mize its reliance on user input.

6

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 2

Data management in ubiquitous

computing environments

Technological advances have allowed an increasing number of objects to be aug-

mented with computing resources. A wealth of devices is now available for as-

sisting people in performing various tasks, such as: communicating with oth-

ers using mobile phones, navigating assisted by positioning systems, entertaining

themselves with music players or gaming consoles, taking photographs with dig-

ital cameras, etc. We point out that, in most cases, computing-assisted activities

are accompanied by the production and / or consumption of data; Table 2.1 gives

examples of the data-related actions made possible with typical devices of our

time.

This work attempts to tackle the issue of managing personal data1 in ubiqui-

tous computing environments, where people generate or consume data in a mul-

titude of ways. In this chapter, we review how storage elements are utilized, con-

1System files and binaries our outside the scope of this work.

7

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Device Data production Data consumption
Mobile Phone Record voice-memos Playback recordings

Record phone-calls
Take photographs Review photographs and clips
Create video clips

Digital camera Take photographs Review photographs and clips
Create video clips

Music player Record radio shows Playback music
Record voice-memos Playback recordings

Game console - Play games
e-book reader - Read books
Navigator Record route Plot course

Table 2.1: Data-related activies of typical portable devices.

sidering their characteristics, discussing which of these are desirable or not and

pinpointing how user experience can be improved. We thus outline the require-

ments of a storage management system in line with the ubiquitous computing

vision.

2.1 Storage element characteristics and challenges

2.1.1 A plethora of portable devices with storage

An important recent development is that the number of devices with storage has

increased significantly. Consequently, data organization and placement becomes

more complicated, requiring increased effort from the user both mentally and

in volume of work. Most of these newly introduced storage elements reside in

portable, special-purpose gadgets: digital cameras, music players, gaming con-

soles, voice-memo recorders and mobile phones are just some examples. One

should also consider the novel devices being introduced by researchers, such as

8

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

the Personal Server [WPD+02], or even every-day objects augmented with com-

puting capability (wallets [LKSS03], watches [NKR+02], etc.). This is a major

deviation from prior computing environments where people handled data using

“real” computers, such as personal workstations and laptops.

Another aspect which needs to be taken into account is that, given the mul-

titude and diversity of devices with storage, several of them being wearable or

portable, it is quite likely for one to carry more than one such device. Further-

more, it is common to change the set of devices accompanying the mobile user,

as it is easy to pick up or drop off such a device (which may even happen inadver-

tently). Effort must be put into dealing with such user activity by arranging device

contents to efficiently use storage space.

2.1.2 Ad-hoc networking potential

The increasing adoption of ad-hoc wireless networking technologies in portable

devices is changing the landscape of data management. Until recently, portable

storage elements typically had to be placed into a suitable host device, or con-

nected with a computer, in order for their contents to be accessible. Nowadays,

by exploiting ad-hoc networking capabilities, the data on any device can be made

available to all applications in nearby devices. Each storage element can, in prin-

ciple, act as a network-accessible storage server.

There is a more important aspect to this networking ability though: a portable

storage element which can initiate communication with other devices is no longer

constrained to a passive role, but is free to observe its environment autonomously

and interact with other elements and services in its vicinity. We can thus de-

9

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

part from the traditional “dumb” storage medium model and move on to the ac-

tive store model, in which devices can discover and communicate among them-

selves or with servers residing on the Internet. By embedding appropriate logic in

portable devices, we can turn them into smart, collaborating and self-organizing

storage elements. The potential of such an approach has not yet been investigated.

2.1.3 User interaction restrictions

As the number of computing elements in typical human environments grows, the

various processes requiring user input to proceed must compete for the privilege

of user attention. However, interaction with computing devices is more often

a source of distraction for the user and is in direct opposition with the ubiqui-

tous computing vision: human attention should be treated as a scarce resource

[CGS+02].

We can bring storage management close to our goal by incorporating logic that

initiates storage maintenance tasks without user intervention. In addition, chances

of obtaining implicit input from the user (e.g. through contextual means [Dey01]),

must be exploited, allowing for interaction through “natural” user activity rather

than explicit interaction with a computing system. Furthermore, whenever user

involvement can not be avoided, measures should be taken to reduce the impact of

requiring human attention. Specifically, the situation can be greatly improved by

making it possible for interaction to occur when it is convenient for the user. In

other words, computing elements should avoid seeking out the user to request in-

put, but rather be designed so as to be ready to receive input whenever interaction

is initiated by the user.

10

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

We emphasize that, in the case of portable computing elements, the user is

further handicapped by the limited interaction facilities of such devices. This is

due to their small form-factor and the fact that they are used while the user is on

the move. Therefore, the importance of making user input requirements minimal

and convenient can not be exaggerated. Equally useful is the ability to provide

input from alternative, more convenient devices.

2.2 Usage review of storage on portable devices

With these characteristics of storage elements in ubiquitous computing environ-

ments in mind, we next review the typical roles of portable devices with storage:

as producers, consumers and couriers of files. Each role is discussed in the follow-

ing, giving examples for every case. It should be noted that these are not mutually

exclusive, but rather outline the primary usage patterns exhibited. As such, they

can provide insight and help derive the requirements for a storage system that is

adapted to the needs of users.

2.2.1 Producers

Producers create files. Devices assuming this role are capable of producing certain

types of data (pertaining to their application domain) and are especially designed

for achieving that purpose. The general usage pattern in this case is a flow of this

data from the portable device to the infrastructure, where it is archived for later

review and / or processing.

A common example are digital cameras, with which one takes photographs

that are later moved to personal computers in order to archive them and release

11

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

storage space on the device. Similarly, digital recorders – often used by inter-

viewers, investigators and other people which must meticulously collect informa-

tion while on the move – produce sound files which serve as audible notes that

may be played back later. Mobile phones with call-recording capability can also

serve this purpose by recording conversations in which the other party is telling

us something we would like to remember.

2.2.2 Consumers

Consumers are devices on which files are accessed. In this case, the device is

designed to provide some kind of service based on the data it holds. The usage

pattern is to select the desired data and place it on the special-purpose device.

The most typical representative of this class is a music player. Applications for

managing music collections allow people to purchase music from Internet stores

and create playlists that are transferred (along with the respective music files)

on the device. In this manner, the desired music selection is made available for

listening on the move. Other examples of the data consumer type are portable

gaming devices and e-book readers. These employ a similar model in which data

(games and books respectively) are downloaded from digital stores and placed on

a device to be used on the move.

2.2.3 Couriers

Couriers transfer files from one location to another. In contrast to producers and

consumers, this type of usage is totally unrelated to the processing capabilities of

a portable device. Any device with storage can be exploited in this manner. In this

12

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

case, one puts selected files on the device to be used as a reliable provider of the

data, which is then carried along to make sure the data will be nearby at the time

when it is needed. This may occur whenever a user feels that a file is so important

as to warrant having it physically available on a carried device, during important

time / location frames.

For example, prior to going to a conference, a user may place her presentation

on her watch, to avoid any access problems. Even if the file were accessible

through the Internet, a portable can be useful in case of rare (but always possible)

network and server failures, or when network security restrictions at the user’s (or

the visiting) site prohibit access to the remote server where the file is stored.

2.3 Storage in ubiquitous computing environments

Based on the characteristics of typical storage elements in the ubiquitous comput-

ing era, outlined in Section 2.1, along with the typical usage patterns exhibited,

discussed in Section 2.2, we designed OmniStore, a storage management system

for personal computing.

OmniStore facilitates personal data management by addressing the technical-

ities forced upon users with regard to data organization and placement activities.

It automates most of these tasks, both in the case of infrastructure and portable

device storage. Specifically, it employs opportunistic interaction among portable

devices to achieve collaborative storage management among them, also coordi-

nating their contents in reference to an infrastructure storage service that belongs

to the user. To provide this functionality, we have developed both a set of infras-

tructure services required to support devices in their storage-related operations,

13

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Repository

InternetAccess Point

PAN

Figure 2.1: OmniStore’s design

as well as the necessary runtime mechanisms required to support efficient ad-hoc

interaction between wearable and portable devices, when disconnected from the

infrastructure.

Our system forwards all files generated on portable devices to a storage service

referred to as the repository. The newly created files are automatically decorated

with semantic annotations derived from the context-sensing capabilities of de-

vices within range, which are used for organizational purposes. The inverse data

flow is also supported, by allowing the user and applications to select files in the

repository and request that they be cached on portable devices of their choice.

Given that portable devices may also interact with each other, we introduce

collaborative behavior among them. In addition to traditional access to files on

any device, from applications anywhere in the personal area network (PAN), we

implement further functionality such as “off-loading”’ of files from one device

to another to distribute storage load, or replication of files on several devices to

14

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

increase availability and reliability. With this design the various portable caches

are merged into a single collective portable cache that accompanies the user.

This combination of features, as is discussed in detail in Chapter 5.1, addresses

the requirements analyzed in this Section, allowing for convenient personal data

management with significantly reduced human effort. We believe that our ap-

proach contributes towards the realization of the ubiquitous computing vision.

15

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

16

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 3

Core runtime mechanisms

Portable and wearable devices with significant processing and networking capa-

bility are becoming increasingly common. Their growing use is altering the con-

ventional personal computing paradigm. What we usually refer to as the “personal

computer” becomes a collection of separate and possibly autonomous elements

that co-operate with each other without relying on external infrastructure or a pre-

arranged setup. As we move beyond the physical – and mental – boundaries of the

desktop, one of the key challenges becomes to combine the devices and artifacts

that are available, whether carried by people or situated in a given environment,

to accommodate personal computing.

Functions and applications are distributed on different platforms, that can be

widely heterogeneous in terms of computing resources and user interaction capa-

bility. Also, the system configuration can change several times during application

execution, due to devices being switched on and off, or moved into and out of

range. In order to cope with this dynamic nature, suitable supporting mechanisms

are required.

17

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

The results of our initial work in this area can be found in [LKS05, LKSS03],

which discusses a runtime system designed to support application execution on

multi-device platforms that are formed in ad-hoc fashion. Since OmniStore tar-

gets such environments, we went on to evolve those mechanisms, adding impor-

tant facilities that better support opportunistic collaboration among devices. In

this Chapter, we present the functionality offered by our refined version the run-

time: discovery of services in the PAN, intelligent selection among several pos-

sible matching services, communication among nodes and acquisition of context

information.

Core Runtime

Application

Storage
Component

Context
Component

Communication
Component

Discovery Component

Engine

Figure 3.1: Core runtime components

Figure 3.1, shows the design of our underlying runtime. Our implementation

is written in the Java language. However, we restricted ourselves to the use of only

certain basic classes from the java.lang package of the J2SE (Java 2 Standard

Edition) libraries. Therefore, the runtime can execute on virtually any Java virtual

machine, even on restricted J2ME (Java 2 Micro Edition) implementations. The

binary size of the runtime is about 350KB.

18

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

It should be noted that all the algorithms and protocols discussed in the fol-

lowing are designed assuming the existence of a broadcast primitive for sending a

data packet to all nodes in the network. At the lowest layer of the communication

component lies an abstract class providing this broadcast primitive. To create a

network driver for a specific type of networking technology, one must implement

this function in a subclass of the abstract network driver, along with a means to de-

liver received network packets to the network driver for processing. Also, a class

representing the device address must be implemented. This design makes it easy

to support most types of wireless networks (e.g. ZigBee and WLAN). Further-

more, it is easy to create drivers for wired networks (e.g. using multicast UDP/IP

or Ethernet broadcasts) for testing purposes.

3.1 Beaconing: the runtime’s heartbeat

Broadcasts are an essential tool for implementing functionality targeting ad-hoc

networking environments. For example, source routing algorithms [JM96, HJ04]

use broadcasts for route discovery, whereas their distance-vector counterparts

[PB94, CBR04] rely on them even more heavily, as they perform them period-

ically in order to keep routing tables up-to-date. Most service discovery mecha-

nisms also typically base their operation on broadcasts to varying degrees [Cha06,

Yau03]. Evidently, cross-layered approaches which exploit broadcasts for multi-

ple purposes can be very beneficial [VRdL05].

Our system is no exception. Specifically, it uses broadcasts for: (a) main-

taining device co-location information which is used to guide service selection,

(b) discovering services present in the network, and (c) disseminating context in-

19

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

formation. In the interest of efficiency, we have designed all of these functions

around a single periodic packet broadcast (beaconing). The algorithms are de-

signed to work orthogonally, with their correctness being immune to the beacon-

ing frequency. In fact, this can be adjusted at runtime, to facilitate the operational

requirements of services and applications executing on top of our runtime. The

beaconing rate varies in order to accommodate higher-layer tasks, using one of

three different intervals among consecutive beacons: idle, normal and fast:

Idle This is the lowest rate at which a device will emit consecutive beacons when

no tasks exist.

Normal This is the interval among consecutive beacons when pending tasks exist,

none of which was added within the last processing iteration over such tasks.

Fast This is the interval among consecutive beacons when a new task has just

been added. The new task is normally processed immediately after its addi-

tion. The fast beaconing cycle persists until the new task is processed for a

second time, at which point the system falls back to normal beaconing rate.

Figure 3.2 depicts the transition diagram among these states. The reader will

be referred to it in the following sections, where each of these mechanisms is

discussed in detail.

3.2 Maintaining co-location history for service selection

Ad-hoc computing systems rely on spontaneous interaction among computing el-

ements which collaborate in order to achieve some goal. The first requirement

20

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Idle Fast Normal

New task
added

Latest new task
processed twice

New task
added

No more
tasks exist

No more
tasks exist

Figure 3.2: State transition diagram for the cycling rates used by the runtime.

for this to occur is to detect the presence of nearby services, a process which is

referred to as discovery. However, simple service discovery is not a sufficient so-

lution to the association problem [Tim02] of locating suitable partners for interac-

tion. When multiple options exist, the selection between competing service offer-

ings is non-trivial and requires more elaborate matchmaking between consumers

and providers, otherwise systems may exhibit undesirable behavior. Mechanisms

that go beyond static property matching are needed to automate such decisions.

In the context of storage management, a most significant factor in service se-

lection is that of expected availability. When an application stores data on a device

that is present in the ad-hoc network, it is – at best – a risky venture: the target

device may at any time exit the network and render the data unavailable. It is

therefore desirable to take into account expected availability when performing file

transfers for load distribution or fault-tolerance purposes. In fact, as discussed

in [KL05], a means of estimating future availability of services can be benefi-

cial when selecting an interaction candidate for many other types of services (in

addition to storage).

21

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

3.2.1 Collecting co-location statistics

Our approach towards “educated” service selection, is based on capturing the co-

location relationship between a local device (and potential application host) and

other remote devices (offering services to applications). To keep both current and

historic information about such encounters, we adopt a simple information model

comprising the following information for each remote device: (a) duration of the

current encounter, (b) number and mean duration of previous encounters, and (c)

time of the last encounter.

Table 3.1 shows co-location entries for a user’s mobile phone. Based on these

entries it can be inferred that the phone is constantly near the wristwatch, having

only two stable encounters of very high duration. The user seems to have entered

her office half an hour ago, where she has been roughly 22 times this week, aver-

aging three hours for every stay. Moreover, she was previously in a car (probably

driving to work) which was used about 34 times, with an average driving time

of about half an hour. Earlier, the user was at home, as can be inferred from the

bedroom and living room entries. At present, another (unknown) phone has been

encountered, indicating that a person is perhaps visiting the user at the office.

Device
Current Previous Mean Time of
duration encounters duration last encounter

Wristwatch 50 hours 2 82 hours 53 hours
Office room 30 mins 22 3 hours 16 hours

Car N/A 34 25 mins 40 mins
Living room N/A 28 4 hours 55 mins

Bedroom N/A 15 6 hours 45 mins
Other Phone 1 min N/A N/A N/A

Table 3.1: Sample co-location information maintained by a mobile phone.

A more elaborate information model could be employed. For example it would

22

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

be possible to record a (bounded) number of separate entries for each encounter

thus allowing us to deduce the distribution of co-location occurrence over time.

One could then perform more informed analysis of co-location history and pre-

diction of future behavior. Nevertheless, considerable information can already be

deduced even from simple co-location data which can be maintained using a very

small memory footprint. More importantly, it becomes possible to capture the ba-

sic relationship of familiarity among devices, which in turn can be easily exploited

to guide service selection: Devices with a high previous encounters count can be

expected (statistically) to meet frequently. Devices with a high mean duration can

be expected (again, statistically) to be available in the PAN for significant time

spans. The extent of expected availability can be deduced by the product of these

two metrics.

We now describe how this information is efficiently maintained by our runtime

system.

Each device emits beacons periodically, to make its presence known to nearby

devices. Based on the receipt of such beacons, which we refer to as “sensing

events”, the discovery component keeps a set of device history records, shown

in Listing 3.1. A record holds the time of the first sensing event (tsCurEnc-

StartEvnt) and the time of the last sensing event (tsCurEncLastEvnt)

contributing to the current encounter. It also holds the number (prvEncCnt)

and mean duration (meanPrvEncDur) of previous encounters as well as the

time (tsLastPrvEnc) when the last encounter occurred. The start time of the

so-called observation window is stored (for purposes which will be discussed later

on) in tsObsrvWinStart. Finally, the maxBeaconPeriod field holds the

maximum interval among subsequent beacon emissions from that device. Table

23

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

public class DeviceHistory {
AbstractDeviceAddress addr;
long maxBeaconPeriod, tsObsrvWinStart;
long tsCurEncStartEvnt, tsCurEncLastEvnt;
long tsLastPrvEnc, meanPrvEncDur;
int prvEncCnt;
// ...
long getCurEncDuration() {

return
tsCurEncLastEvnt - tsCurEncStartEvnt;

}

int getPrevEncCount () {
return prvEncCnt;

}

int getMeanPrevEncDuration () {
return meanPrvEncDur;

}
// ...

}

public interface IDiscovery {
// ...
DeviceHistory getDeviceHistory(

AbstractDeviceAddress a);
// ...

}

Listing 3.1: The DeviceHistory class

3.2 summarizes how these fields map to the elements of the co-location informa-

tion model shown in Table 3.1.

When a device is sensed for the first time, a new history record is created

for it and properly initialized. The tsCurEncStartEvnt and tsCurEnc-

LastEvnt fields in the (new) history record are set equal to the time of the

sensing event that triggered the encounter. The running duration of the encounter

is maintained as subsequent sensing events cause updates to the tsCurEnc-

24

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

History Information Implementation
Device d.getAddress()

Current duration tsCurEncLastEvnt - tsCurEncStartEvnt
Previous encounters prvEncCnt

Mean duration meanPrvEncDur
Last encounter tsLastPrvEnc

Time to next beacon maxBeaconPeriod

Table 3.2: Mapping of co-location data model to DeviceHistory fields.

LastEvnt field. The device’s maximum beaconing period is retrieved from the

beacon packet and stored in maxBeaconPeriod.

The encounter with the device is considered active until the expiration of the

maxBeaconPeriod timeout: if the elapsed time since the last sensing event for

that device (tsCurEncLastEvnt) exceeds the stated maximum beaconing pe-

riod, the encounter is declared inactive. Whenever a runtime emits is own beacon,

it checks all active history records to see whether any have expired. In this case,

the record’s fields are updated as follows: the prvEncCnt is incremented by one,

the tsLastPrvEnc is updated to hold the value of tsCurEncLastEvnt, the

meanPrvEncDur is recalculated to incorporate the duration of the encounter,

and the tsCurEncStartEvnt and tsCurEncLastEvnt are reset to zero,

indicating that the device is no longer co-located with the local host. Figure 3.3

illustrates a sample series of sensing events and the corresponding device history

record updates performed by device A with respect to the presence of device B.

3.2.2 Pruning co-location history

The large number of devices that can be encountered in a ubiquitous computing

setting, along with the typical resource constraints of embedded devices, makes

25

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

beacon

Node first-sensed

tsCurEncStartEvnt = A
tsCurEncLastEvnt = A

prvEncCnt = 0
meanPrvEncDur = 0

tsLastPrvEnc = 0
maxBeaconPeriod = 5min

beacon

A A+5

beacon

A+15

Node not sensed

tsCurEncStartEvnt = 0
tsCurEncLastEvnt = 0

prvEncCnt = 1
meanPrvEncDur = 10
tsLastPrvEnc = A+10
maxBeaconPeriod = 0

A+10

beacon

B B+5 B+15B+10

Node sensed again

tsCurEncStartEvnt = B
tsCurEncLastEvnt = B

prvEncCnt = 1
meanPrvEncDur = 10

tsLastPrvEnc = B
maxBeaconPeriod = 5min

Node not sensed

tsCurEncStartEvnt = 0
tsCurEncLastEvnt = 0

prvEncCnt = 2
meanPrvEncDur = 12,5
tsLastPrvEnc = B+15
maxBeaconPeriod = 0

beacon beacon beacon

B+20

Device 1

Device 2

Figure 3.3: Time diagram of sensing events for co-location history recording.

it unrealistic to let co-location information grow ad infinitum. This necessitates a

policy for replacing or collecting device history records.

For this purpose, co-location history is maintained with respect to an obser-

vation period P (e.g. one week), which is a system configuration parameter that

makes it possible to remove old co-location records. Since we do not keep a sepa-

rate timestamp for each previous encounter, garbage collection is done by approx-

imation, as follows. When a new history record is created, its tsObsrvWin-

Start field is initialized with the time of the first corresponding sensing event.

This field is used to periodically check whether the record contains data beyond

the observation period P , i.e. currentTime - tsObsrvWinStart > P.

In this case the co-location history is pruned by increasing the value of the ts-

ObsrvWinStart field by an advancement time slot T. Assuming a uniform dis-

tribution of encounters in time, the number of previous encounters can be adjusted

by decreasing the prvEncCnt field in proportion to T. The meanPrvEncDur

field remains unchanged. As a result of this update process a history record may

end up containing merely “outdated” information and can be removed. We con-

sider this to be the case when: prvEncCnt < T/P, which allows a record based

26

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

on a single encounter to persist for at least two consecutive periods. Other metrics

could easily be employed for discarding records.

Even with this garbage-collecting procedure in place, it is still possible that

a new history record may need to be created, while the system’s device history

table is full. In this case, a victim record is chosen (randomly) for removal, out

of all records concerning devices that (a) are currently not co-located, (b) have

the smallest total duration of previous encounters (approximated as the product

of the number of previous encounters and mean duration) and (c) have the oldest

latest encounter. If no such record exists, i.e. all records are about devices that are

currently co-located, then the new encounter is ignored.

This approach results in the system being “blind” to new devices if the size of

the set is smaller than the number of currently co-located devices, in the sense that

no co-location statistics are collected for them. Nevertheless, this limitation is of

minor practical importance, as the memory requirements of our approach are very

modest and allow the monitoring of thousands of devices using small amounts of

memory1. Finally, it is important to stress the fact that co-location information is

an auxiliary hint, and that it is possible to discover and access a device and service

independently of whether a corresponding device history record exists.

As a last point we stress that, as was discussed in Section 3.1, the algorithm

presented here is not dependent on the beaconing rate of devices, which may

be adjusted at runtime without affecting the validity of results. Specifically, in-

creased beaconing rates merely translate into greater sampling rates, thus provid-

ing greater accuracy for the statistics collected. The idle beaconing rate of a device

1Assuming 16-byte device addresses, one thousand device records can be maintained in
roughly 64KB of memory

27

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

defines the smallest granularity of statistics for it.

3.3 Service discovery

The discovery mechanism supports two modes of operation: active and passive.

Active discovery allows an application in need of a service to probe the PAN in

order to locate it. On the other hand, passive discovery relies on overhearing

information regarding services in the PAN. The names used for the two modes

reflect the service client’s perspective in the discovery process2. Active discovery

is useful when an application needs a service in order to perform some task the

soonest possible and therefore does not want to miss out on opportunities to do so.

Passive discovery is preferable when an application is not eager to perform some

task immediately, but may opportunistically do so when circumstances permit.

This functionality is accessed via the programmatic interface shown in Listing

3.2, in which service types are represented by strings whose values are presumably

agreed upon by application developers. Communication occurs via Endpoint

objects (see Section 3.4) which represent unique addresses on hosts and allow for

multiplexed communication among them.

Discovery is implemented by exploiting the beaconing cycle discussed in Sec-

tion 3.2. Specifically, we use the emitted beacons to piggy-back lookup and ad-

vertisement information. The mechanism used to decorate beacons is based on

two lists maintained by the discovery component: one with lookup tasks and the

other with advertisement tasks.

Lookup tasks are created by applications when they require services of a cer-

2Evidently, the exact opposite holds from the service provider’s perspective.

28

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

public interface IDiscovery {
// ...
// register a local service provider
public void registerService(String serviceType,

Endpoint ep);

// support passive discovery of a local service
public void setActiveAdvertise(Endpoint ep,

boolean persistentAds);

// register interest in specific service types
public void registerInterest(String serviceType,

IServiceFoundListener listener);

// enable active discovery for some service type
public void setActiveDiscovery(String serviceType,

boolean activeDiscovery);

// list known service providers in the PAN
public List getProviders(String serviceType);
// ...

}

Listing 3.2: The discovery component API

tain type to be actively discovered; these tasks cause the runtime to emit lookup re-

quests, informing nearby devices of its need to locate service offerings of that type.

The runtime notifies local applications whenever it discovers a suitable provider.

Advertisement tasks on the other hand are used to advertise the existence of a

service to other entities in the PAN. They cause the runtime to emit advertisements

that contain contact information for the local service provider, so that nearby en-

tities may detect it. These tasks are created by the runtime when lookup requests

are received from the PAN, causing an advertisement to be sent as a reply for the

actively searching entity. In addition, a service provider may also create an adver-

tisement task, to periodically advertise the service, regardless of whether lookup

29

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

requests are received for it. Doing so allows the service to be passively discovered

by nearby clients.

Advertisement and lookup tasks are processed by alternating among them with

a ratio equal to that of the respective list lengths. For example, if twice as many

lookup as advertisement tasks exist, then two beacons will be sent out with lookup

information attached, for every beacon that is emitted with advertisement informa-

tion. Respectively, whenever a beacon is received (and after co-location statistics

are updated as discussed in Section 3.2), it is passed on to the discovery com-

ponent for processing. The discovery component then extracts and processes any

piggy-backed discovery information which may exist in the beacon. In the follow-

ing sections, we discuss each of the two modes of discovery (active and passive)

in detail.

We point out that, as was discussed in Section 3.1, the creation of advertise-

ment and lookup tasks affects the beaconing rate according to the state transition

diagram of Figure 3.2. In short, when a task is added, the runtime beacons at fast

rate. It then falls back to normal rate unless another (new) task is added in the

meantime. When all tasks have been serviced, beacons are emitted at idle rate.

3.3.1 Active discovery

Active discovery is triggered by applications that wish to locate a service in or-

der to perform some task. The process is initiated by the interested application

through a call to the registerInterest() method, with the desired service

type as a parameter, along with a listener method to be called when a service of-

fering is found. A subsequent call to the setActiveDiscovery() method is

30

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

required to create a lookup task for this service type, which periodically broad-

casts requests for it.

The discovery component distributes lookup requests evenly among the ser-

vice types registered in its lookup task list. It selects the first node in the list to

piggy-back a request to the outgoing beacon and then adds the node back to the

end of the list. New registrations are added to the beginning of the list so that the

first beacon for them is emitted with priority to older running lookups.

Whenever a beacon is received, the list of locally available services, populated

by applications via registerService() calls, is checked to see if matching

services exist. If a match is found, a one-off advertisement task is added to the

head of the advertisement tasks list.

Figure 3.4 depicts the active discovery process. The application on the left

creates an endpoint (step 1) and calls registerInterest() and setActi-

veDiscovery() (step 2). A lookup task is thus created by the discovery com-

ponent for that service type, which also records the submitted listener method to

be used when matches are found. The application on the right creates an endpoint

(step 3) for providing this service. It then calls registerService() in order

to notify the discovery component of its existence (step 4). At some point, the

application on the left emits beacons with a lookup request for the desired service

type (step 5). The runtime of the application on the right, upon receiving such bea-

cons, enqueues advertisements for the endpoint providing the service (we assume

that both applications are using the same service type resulting in a match) and

therefore emits advertisements beacons (step 6) with contact information for the

endpoint. Finally, the application’s listener is called (step 7) to deliver the address

of the service to the application.

31

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Request
endpoint

register
Interest()

/
setActive

Discovery()

Receive
endpoint

Create
endpoint

Deliver
endpoint

Beacon +
lookup

Listener
callback

Application
Communication

module
Discovery
module

Send
Beacon

Send
Beacon

Send
Beacon

Register
monitor

Beacon +
lookup

Consider
Interacting

beacon

beacon

beacon

beacon +

advertis
ement

beacon

Create
endpoint

Deliver
endpoint

Communication
module

beacon +request

beacon

beacon

beacon

beacon +request

Request
endpoint

Register
service at
endpoint

Receive
endpoint

Application

Send
Beacon

Discovery
module

Send
Beacon

Send
Beacon

Send
Beacon

Record
availability

Beacon +
advertisement

1

2

3

4

Service
lookup

Service
advertisement

Beacon + lookup
matching local

service. Queue
advertisement

Beacon +
advertisement
received

Beacon +
lookup

beacon +request

beacon +

advertis
ement

Beacon +
advertisement

5

6

7

Figure 3.4: Active service discovery using lookup requests.

3.3.2 Passive discovery

The runtime maintains a list of service types of interest to local applications.

When an advertisement beacon is received, the service type is looked up to de-

termine whether local interest exists. In this case, the contact address for the

service is recorded in this list. The contact information (if any exists) is returned

to the application when it calls the getProviders() method. In addition, the

listeners provided by registerInterest() method calls are used to deliver

notifications to the applications interested in that service type, every time a new

service offering is found.

Clients that are interested in exploiting passive discovery call the register-

Interest() method to declare their interest for a service type, but do not call

the setActiveDiscovery() method. This means that even though the ap-

32

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

plication will be notified when a service offering is detected, the runtime will not

emit any lookup requests for the service. Instead, discovery relies on overhearing

advertisements sent out by service providers. While this may occur coincidentally

if another nearby device happens to emit a lookup request for that service type,

the mechanism is intended for use by service providers that periodically advertise

their presence, without being provoked to do so by lookup requests. To this end,

the runtime can be instructed to emit advertisement beacons for services, inde-

pendently of whether a lookup request was received for them. In other words, the

advertisements are broadcast in a “to whom it may concern” fashion.

To cause this type of advertising the service provider must call the regi-

sterService() method, followed by a call to setActiveAdvertize().

This creates a periodic advertisement task in the discovery component that re-

peatedly sends out advertisements for the service offering, regardless of whether

a lookup request was received for the service. Figure 3.5 depicts the passive dis-

covery process.

Request
endpoint

register
Interest()

Receive
endpoint

Create
endpoint

Deliver
endpoint

Send
Beacon

Listener
callback

Application
Communication

module
Discovery
module

Send
Beacon

Send
Beacon

Send
Beacon

Register
monitor

Consider
Interacting

beacon

beacon

beacon

beacon +

advertis
ement

Create
endpoint

Deliver
endpoint

Communication
module

beacon

beacon

beacon

beacon

Request
endpoint

register
Interest()
/
setPersistent
Avertise()

Receive
endpoint

Application
Discovery
module

Send
Beacon

Send
Beacon

Send
Beacon

Record
availability

Beacon +
advertisement

1

2

3

4

Service
advertisement

Beacon +
advertisement
received

beacon +

advertis
ement

Beacon +
advertisement

5

6

Figure 3.5: Passive service discovery using persistent advertisements.

33

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

3.4 Communication

The communication component provides support for applications wishing to ex-

change messages with peers on other devices in the PAN. The basic element of

this mechanism is the endpoint, a uniquely addressable element which can be used

as a contact point when exporting a service to the PAN. Its address consists of the

device’s network adapter address (which is network technology dependent) and a

16-bit integer that is guaranteed to be locally unique for each endpoint in a run-

time. The endpoint’s address can be obtained using the discovery mechanisms

discussed in Section 3.3.

3.4.1 Unreliable communication

Applications can exchange datagrams by creating an Endpoint object, which al-

lows its holder to send packets of data to other endpoints in the PAN. This is done

via the sendPacket() method, which emits a packet targeted to the endpoint

whose address is given as a parameter. The source endpoint’s address is auto-

matically placed in the packet’s header. The runtime processes packets received

from the PAN and delivers them accordingly to local endpoints for processing.

Specifically, each endpoint can define a callback method (processPacket())

via setPacketListener(). The runtime calls this method for all packets

targeting the endpoint, also giving the source address of the incoming packet to

the listener, so that its origin can be reviewed (and optionally used to send replies).

The most relevant parts of the communication API can be seen in Listing 3.3.

34

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

public interface IPacketListener {
public void processPacket (Address sourceAddr,

byte [] payload);
}

public class Endpoint {
// ...
public int getLocalId();

public int sendPacket(Address targetAddr,
byte [] payload);

public void setPacketListener(
IPacketListener callbackMethod);

// ...
}

public class ReliableBidiEndpoint extends Endpoint {
// ...
public void connect(Address targetAddr);
public ReliableBidiEndpoint accept();
public void close();

public int writeBytes(byte[] outDataBuf);
public int readBytes(byte[] inDataBuf,

int ofs, int maxLen);

public void writeBoolean(boolean b);
public void writeInt(int i);
public void writeLong(long l);
public void writeFloat(float f);
public void writeDouble(double d);
public void writeUTFString(String s);

public boolean readBoolean();
public int readInt();
public long readLong();
public float readFloat();
public double readDouble();
public String readUTFString(s);
// ...

}

Listing 3.3: The communication component API

35

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

3.4.2 Reliable communication

ReliableBidiEndpoint is a descendant of the Endpoint class, which

builds upon its functionality providing reliable, bi-directional, streaming commu-

nication among two connected endpoints. It is basically an implementation of the

Transmission Control Protocol (TCP) specification [ISI81], with minor modifica-

tions. The most important deviation from the TCP standard is that the underlying

network layer is not assumed to be the Internet Protocol (IP). Instead, the ad-

dresses used in packets are endpoint addresses (rather than the typical IP address /

TCP port combination). Another difference is that the window size is fixed. Using

the ReliableBidiEndpoint class (Listing 3.3) applications can communi-

cate using byte streams.

The ReliableBidiEndpoint class defines internal outgoing and incom-

ing data buffers which are used to generate outgoing packets and store the payload

of incoming packets respectively. Applications must use the writeBytes()

method to fill the outgoing buffer and the readBytes() method to extract

data from the incoming buffer. The base sendPacket() and setPacket-

Listener() methods are overridden to prevent applications from accessing

them directly. The ReliableBidiEndpoint uses the outgoing buffer’s con-

tents to send packets to the connected peer, appending the required header infor-

mation to achieve reliable and ordered transmission. It also processes incoming

packets by installing its own processPacket() handler, which acknowledges

the receipt of data and enqueues it for delivery in the incoming buffer. Retrans-

mission, order preservation and receipt acknowledgment are all handled internally

as defined in the TCP specification [ISI81].

36

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Finally, we provide simple data marshaling routines for all primitive data types

(integers, long integers, floats, doubles, booleans, characters and strings). We con-

sciously refrain from supporting Java object serialization, thus allowing the im-

plementation of the core runtime mechanisms in other programming languages3.

3.4.3 Accessing infrastructure services

Network gateways are devices which have both a wireless ad-hoc adapter, as well

as an adapter which connects them to the Internet. Their role is to bridge the two

networks, allowing nearby devices in the PAN to connect to services on the Inter-

net. The functionality is provided by the Internet access daemon, which creates

tunnels for such connections.

The Internet access daemon uses the discovery mechanism (Section 3.3) to

emit advertisements for its tunnelling service to the PAN. Clients that wish to

contact Internet services must use the discovery mechanism to search for gate-

ways, and then connect to them using reliable communication endpoints (Section

3.4.2). In order to setup the tunnel, the Internet access daemon expects the client

to send a target host (either its DNS name or its IP address) and port number.

Once these are received, it establishes a normal TCP/IP connection to that host

and sends the connection result to the client in the PAN. If the connection has suc-

ceeded, the Internet access daemon starts tunneling all data received from the PAN

through the TCP/IP connection and back. From that point onward, the portable

device must interact with the service using whatever protocol is employed by it

(e.g. HTTP/SOAP for web services).

3We also remind that our Java implementation even restricts itself to using the facilities of the
java.lang package.

37

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Network gateways allow any protocol implemented on top of TCP/IP to be

accessible via tunnels. Of course, in this case, the appropriate interaction logic

used by that protocol must be installed on the portable devices which intend to

use the service. In any case, we would like to support the case where a service

must be accessible to all classes of clients:

• Nearby portable devices: The client application is hosted on a portable

device which is physically located near the server.

• Remote portable devices: The client application is hosted on a portable

device which is using a network gateway to contact the server.

• Internet hosts: The client application is on another host in the Internet and

is communicating with the server via normal TCP/IP.

Any services hosted in the user’s house fall into this category. To facili-

tate such cases we have created two classes especially suited for this purpose:

TunneledEndpoint and TCPIPEndpoint.

The TCPIPEndpoint class extends ReliableBidiEndpoint. It re-

places the network I/O primitives of its Endpoint ancestor to read incoming

/ write outgoing packets from / to a normal TCP/IP socket, instead of using the

runtime’s network adapter driver. Specifically, it overrides the sendPacket()

method to write the packets to a normal TCP/IP connection, while at the same

time creating incoming packets by reading data from the connection and calling

processPacket() to process them. Suitable constructors are defined for this

class, which take the host and port to connect to (client operation) or the port to

listen on for connections (server operation) as parameters. Services running on

38

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Internet hosts that wish to be accessible through network gateways must listen for

connections using TCPIPEndpoint objects.

The TunneledEndpoint is similar, but replaces the network I/O primi-

tives of the base Endpoint class to use a ReliableBidiEndpoint con-

nection instead of calling into the runtime’s network driver. In this case, the

sendPacket() method is overridden to write packets to a ReliableBidi-

Endpoint connection’s stream, while at the same time creating incoming pack-

ets by reading data from that connection and calling processPacket() to

process them. A new constructor is defined that takes the ReliableBidi-

Endpoint object to be used for this purpose as a parameter (it is assumed that

it is a connection to a network gateway in the PAN), along with the host and port

to which a tunnel is to be requested (it is assumed that a TCPIPEndpoint is

listening on that address). The constructor negotiates the tunnel creation with the

gateway and proceeds to establish the tunneled connection.

Figure 3.6 depicts an Internet server which is interacting with three clients:

one is on another Internet host whereas, one is a portable device which is us-

ing network gateway tunnel, and one is an Internet host which is communicat-

ing through a direct TCP/IP connection. Because both TCPIPEndpoint and

TunneledEndpoint inherit from ReliableBidiEndpoint, the interac-

tion logic (excluding connection establishment) is the same for all cases on both

sides (client and server).

39

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Ad-hoc adapterInternet adapter

TCPIPEndpoint

PAN

InternetNetwork gateway

TunneledEndpoint

TCP/IP
connection

ReliableBidiEndpoint

Application

ReliableBidiEndpoint

TCP/IP socket

TCPIPEndpoint

TCP/IP socket

Portable device Internet Server

Service

TCP/IP
connection

TCPIPEndpoint

TCP/IP socket

Internet Host

Application

TCP/IP socket

ReliableBidi-
Endpoint

ReliableBidiEndpoint

Application

Portable device

PAN

Figure 3.6: A tunneled connection from the PAN to the Internet

3.5 Context aggregation

Wearable and portable devices can provide a wealth of contextual information

via a variety of sensing capabilities. For example, a GPS navigator may pro-

vide latitude, longitude, speed and direction information, a camera may provide

illuminance information, and a person’s active badge may provide identification

information. Although each such piece of contextual information can be useful by

itself, it is likely to become more valuable when combined with others. Ideally a

group of devices can complement each other by providing different contextual as-

pects, thereby enabling the synthesis of the current contextual situation [GSB02].

Along this rationale the role of the context component is to allow any entity to pub-

lish and access context information, as well as to let such information propagate

in the PAN in order to create a more complete aggregate contextual perception.

40

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

3.5.1 Generating and reviewing context information

The context component maintains information in the form of a tuple space where

each entry consists of seven fields: a name indicating the type of information

(key), a value, its creation timestamp (CTS), its lifetime or time-to-live (TTL), its

validity scope, its emission timestamp (ETS) and the originating device address

(ODA). The key and value fields correspond to an attribute-value pair that holds

the actual context information. The CTS and TTL fields are used for garbage

collection. The scope, ETS and ODA fields are used to control the propagation

of context information to other devices.

The API for accessing the tuple space is shown in Listing 3.4. To add a tu-

ple, the application invokes the post() method, supplying values for the key,

value, TTL and scope parameters, which are used to initialize the respective

fields of the new entry. The CTS and ODA fields are set equal to the current time

and the local device address respectively. The ETS field is set to zero.

When generating contextual information the device’s application is expected

to post new values for its keys at the rate of change of the respective information.

The post() method searches and removes duplicate entries (i.e. entries that

have the same key and ODA values) as new tuples are added. Entries originating

from different devices (with an ODA value that is not equal to the local device

address) are not considered as duplicates even if they have the same key. This

is to allow for different devices to provide different flavors or granularity of the

“same” type of context information, without introducing any conflicts or having

to build elaborate metadata mapping mechanisms at a low system level.

Applications may review the currently available context information via the

41

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

public ContextTuple {
AbstractDeviceAddress oda;

String key, value;
int ttl, scope;
long cts, ets;

public String getKey();
public String getValue();
public AbstractDeviceAddress getOrigDevAddr();
// ...

}

public interface IContext {
public static final int LOCAL_SCOPE = 1,

DEV_RANGE_SCOPE = 2, TTL_SCOPE = 3;

public static final String ANY_KEY = null;
public static final String ANY_DEVICE = null;

public void post (String key, String value,
int ttl, int scope);

public ContextTuple[] read (
AbstractDeviceAddress devid, String key);

public void clear(
AbstractDeviceAddress devid, String key);

}

Listing 3.4: The context component API

42

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

read() method which returns the entries matching the supplied key name and

originating device address. The special device address value null can be used

in combination with a specific key, to obtain all entries with the specified key

produced by any device. Similarly, the special key value null can be used in

combination with a specific device address, to obtain all entries produced by the

specified device with any key. Using both special values, the entire contents of

the tuple space are retrieved. The caller may inspect the returned entries via the

getter methods of the ContextTuple class.

Garbage collection is performed as a side-effect of the post(), read() and

clear() methods, thus avoiding the need of an extra thread to perform house-

keeping tasks. As the tuple space is being searched to find duplicate or matching

entries, outdated entries are detected by comparing the current time with their

CTS plus TTL fields. Any such tuples are removed. Entries may also be explicitly

removed prior to their TTL expiration, via the clear() method.

3.5.2 Context information propagation

To exploit the collective context-sensing capabilities of the PAN, the contents of

the tuple space are disseminated in an asynchronous fashion to nearby devices. As

in the case of service discovery, this occurs in tight coupling with the operation

of the beaconing mechanism. More specifically, prior to emitting the beacon,

the runtime up-calls a method of the context component that may append context

tuples to the beacon. Conversely, every time a beacon is received, the runtime up-

calls a method of the context component that extracts context information from

the beacon and inserts it to the tuple space. We point out that the beaconing rate

43

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Value Meaning
local Entry which applies to the originating device only and does

not propagate to other devices. Discarded when its TTL
expires.

dev-range Entry which propagates to other devices but is valid only
within range of the originating device. It is discarded when
out of the originating device’s range, or when its TTL ex-
pires.

ttl-range Entry which propagates to other devices and is valid every-
where, until its TTL expires.

Table 3.3: Possible values for the scope of context information

is affected by the existence on newly generated local context information in an

identical manner as in the case of newly created discovery tasks (see Section 3.1).

The scope and emission timestamp are used to control tuple propagation. The

scope of an entry determines its effective range. Entries with local scope are

confined to the local context component while entries with dev-range or ttl-

range scope are disseminated to the PAN. The meaning of these values is sum-

marized in Table 3.3 and their usage is explained in more detail in Section 3.5.3.

The ETS records the time when an entry was last beaconed. In case there are too

many entries to fit in the beacon packet, the context component selects the ones

with the smallest ETS value. This ensures that all entries get a fair chance of being

propagated to other devices and that a newly added tuple has higher priority over

older ones.

For each entry that is selected for dissemination, only its key, value and

TTL fields are piggy-backed on the discovery beacon (Figure 3.7). There is no

need to send the ODA field since only locally generated entries are allowed to

propagate to other devices and the emitting device’s address is already part of

the beacon header. Also, the sent TTL indicates the remaining (as opposed to

44

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Device address
Next beacon timeout
Context tuple present

Key: X
Value: Y
TTL: 2 min

Creation Emission
 Key Value time-stamp TTL Scope time-stamp

 X Y 18:00 5 min dev-range 0
 W Z 18:02 5 min ttl-range 0

Piggy-backed
data

Context tuple space contents of
exporting device at T = 18:03

Device

Beacon header

PAN

Beacon

Other
device

Other
device

Other
device

Figure 3.7: Exporting tuples to nearby devices in the PAN

the originally specified) lifetime of the entry. This is calculated as the difference

between the original TTL value and the time that has elapsed between the creation

of the tuple (CTS) and its transmission (piggy-backing on the beacon). As a result

it is not required to send the CTS field of each entry. More importantly, devices

are not obliged to maintain synchronized clocks.

Incoming context data is handled in an analogous fashion. For each entry

carried by the beacon, a new tuple is created and assigned with the received key,

value and TTL fields. The CTS field is initialized to the current local time at

the moment of the reception (extraction from the beacon) and the ODA field is set

equal to the address of the device that sent the beacon. Just like when adding a

new tuple via the post() method, the new entry replaces any duplicate entry

with identical key and ODA values.

Figure 3.8 illustrates this dissemination process for a scenario with three de-

45

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Ke y Value Scope TS TTL
Latitude W de v-range 17:59 5 m in
Longitude X de v-range 17:59 5 m in

GPS
NAVIGATOR

GPS Navigator
Ke y Value Scope TS TTL
Latitude W de v-range 17:59 5 m in
Longitude X de v-range 17:59 5 m in

GPS
NAVIGATOR

GPS Navigator

Ke y Value Scope TS TTL
Illum inance Y de v-range 18:00 4 m in

Digital Cam e ra

T = 18:01T = 18:00

Ke y Value Scope TS TTL
Illum inance Y de v-range 18:00 4 m in
Latitude W de v-range 18:01 3 m in
Longitude X de v-range 18:01 3 m in

Digital Cam e ra

Ke y Value Scope TS TTL
Latitude W de v-range 17:59 5 m in
Longitude X de v-range 17:59 5 m in
Te m pe rature Z de v-range 18:02 9 m in

GPS
NAVIGATOR

GPS Navigator

T = 18:02

Ke y Value Scope TS TTL
Illum inance Y de v-range 18:00 4 m in
Latitude W de v-range 18:01 3 m in
Longitude X de v-range 18:01 3 m in
Te m pe rature Z de v-range 18:02 9 m in

Digital Cam e ra

Ke y Value Scope TS TTL
Latitude W de v-range 17:59 5 m in
Longitude X de v-range 17:59 5 m in
Te m pe rature Z de v-range 18:02 9 m in
Illum inance Y de v-range 18:03 1 m in

GPS
NAVIGATOR

GPS Navigator

T = 18:03

Ke y Value Scope TS TTL
Illum inance Y de v-range 18:00 4 m in
Latitude W de v-range 18:01 3 m in
Longitude X de v-range 18:01 3 m in
Te m pe rature Z de v-range 18:02 9 m in

Digital Cam e ra

Ke y Value Scope TS TTL
Latitude W + de v-range 18:04 5 m in
Longitude X+ de v-range 18:04 5 m in
Te m pe rature Z de v-range 18:02 9 m in
Illum inance Y de v-range 18:03 1 m in

GPS
NAVIGATOR

GPS Navigator

T = 18:04

Ke y Value Scope TS TTL
Illum inance Y+ de v-range 18:04 4 m in
Latitude W de v-range 18:01 3 m in
Longitude X de v-range 18:01 3 m in
Te m pe rature Z de v-range 18:02 9 m in

Digital Cam e ra

Ke y Value Scope TS TTL
Latitude W + de v-range 18:04 5 m in
Longitude X+ de v-range 18:04 5 m in
Te m pe rature Z de v-range 18:02 9 m in

GPS
NAVIGATOR

GPS Navigator

T = 18:05

Ke y Value Scope TS TTL
Illum inance Y+ de v-range 18:04 4 m in
Latitude W + de v-range 18:05 4 m in
Longitude X+ de v-range 18:05 4 m in
Te m pe rature Z de v-range 18:02 9 m in

Digital Cam e ra

Figure 3.8: Context dissemination process

46

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

vices: a GPS navigation unit, a camera and an information beacon present in the

surrounding infrastructure, which has a temperature sensor. Subsequent snapshots

are shown in one-minute intervals. For simplicity, only the tuple space contents

of the GPS and camera devices are presented. Furthermore, we omit the emission

time-stamps and originating device address for brevity. Instead, non-local entries

in each tuple space have their scope underlined to stand out. The scenario is dis-

cussed in the following, starting from the top left snapshot and moving from left

to right.

The context component of each device initially contains only information that

was generated locally. Therefore, in the example, the GPS navigator has entries

for latitude and longitude whereas the camera has a single entry for illuminance.

The nearby information beacon whose context space is not shown, has a single

locally-generated entry with the current temperature. In the next step, the GPS

emits a beacon carrying its own context information and as a result the camera

tuple space is populated with two new entries (shown in italic fonts). Next, the

temperature sensor transmits a beacon carrying its own context information that

ends up in the tuple spaces of the GPS and camera. In a similar fashion, the

subsequent transmission of a beacon from the camera leads to the population of

the GPS tuple space with a corresponding illuminance entry. In the following,

the GPS generates updated latitude and longitude values which replace the old

entries; as a side effect, the expired illuminance entry that was imported from

the camera is also deleted. At the same time, the camera generates an updated

illuminance value; leading to the deletion of the expired latitude and longitude

entries imported from the GPS. As a last step, the GPS emits its fresh latitude

and longitude values, resulting in the addition of corresponding new entries in the

47

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

tuple space of the camera.

It is important to note that beaconing is both unreliable and asynchronous. For

this reason there is no guarantee as to whether or when a particular piece of local

context information will propagate to other devices. While the tuple spaces of

devices do have the tendency to converge, this cannot be fully accomplished as

long as context information and/or the connectivity between devices change fre-

quently (with respect to the beaconing rate). In the general case, the tuple spaces

of devices will be different, each corresponding to a partial and possibly outdated

view of the global contextual picture. Despite its opportunistic nature, periodic

beaconing achieves satisfactory information propagation for most practical pur-

poses. It is also simple to implement and was efficiently integrated as part of our

beaconing mechanism.

As a last note, we point out that certain devices need not process contextual

information. The information beacon for example, whose sole purpose is to pro-

vide information to devices present in the room, need not do any actual processing

of the GPS navigator and camera beacons, as it does not run any application that

requires contextual information.

3.5.3 Controlling context propagation

A PAN computing system corresponds to an inherently dynamic environment with

devices continuously coming in and out of range. From the perspective of a wear-

able or portable device, the network neighborhood can change either as a result of

its own movement (it is carried along by the user) or due to the movement of other

devices (it is left behind). This is a tricky issue for any distributed context pro-

48

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

vision service precisely because context information is often tightly coupled with

the physical location where it was produced. In our case, the problem – which

we refer to as context littering – is exhibited as follows: a device may use and

propagate imported context information that is no longer valid in the current sit-

uation. For example, a mobile device may pick up temperature information from

a nearby sensor in an air-conditioned room and then keep as well as disseminate

this entry after it has been moved to an outdoor location with completely different

environmental conditions.

To prevent context littering, imported entries are not eligible for further prop-

agation. We therefore compare a tuple’s originating device address against the

local device address prior to piggy-backing it on outgoing beacons, allowing only

locally-generated tuples to be exported. This prevents context from being “carried

over” from one location to another by a moving device, thus protecting devices at

the new location.

Even so, the moving device itself is still not protected from formerly acquired

context tuples, since they are considered to be valid until their TTL expires. One

approach to address this would be to immediately remove imported context tu-

ples when their originating device goes out of range, regardless of whether their

TTL has expired. However, this precaution may be too strict in some cases. It is

namely possible for a device to provide reliable context information within some

advertised TTL, regardless of whether receivers stay within its range. For exam-

ple, a service in the center of Volos might export a “location” entry with the value

of “Volos, Greece” and a TTL of 5 minutes. It is indeed unlikely for a device

that receives this information to move outside of Volos in such a short time. This

would obviously not hold if location information was provided at a granularity of

49

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

just a few meters, for instance via a GPS device. Of course this depends on the

type of the information produced.

Rather than having devices interpret the information received in order to de-

cide how to handle TTL values, we let the context source explicitly state the in-

formation’s “sensitivity” to movement. This is done via the post() method, by

setting the scope field of the new entry accordingly, to either dev-range or

ttl-range (see Table 3.3). While both entry types are properly disseminated

via the beaconing mechanism, their type is used at the receiver to decide how to

handle the advertised TTL. If the information received has a scope field equal to

ttl-range, its TTL is adopted as advertised. Else, if the scope field is equal

to dev-range, it is considered valid only as long as both its TTL has not expired

and the originating device remains within range. Therefore entries whose scope

field is equal to dev-range but whose history record in the discovery module is

inactive are removed regardless of their TTL value.

In the spirit of the previous scenario, Table 3.4 shows a possible state of the

digital camera tuple space with five entries. Only the illuminance reading is

locally generated, whereas all others were imported from the nearby devices. The

rest of the information in the example is published by the GPS navigator device

and a nearby information beaconing device in the infrastructure. In addition to

latitude and longitude information, the navigator uses an internal database

to produce coarse-grained location information which in this case is the city tu-

ple. Attention should be paid to the fact that the latitude and longitude

tuples are published with dev-range scope, whereas the city tuple is pub-

lished with ttl-range scope, given that it is unlikely to change rapidly. The

example tuple space also contains a tuple from an infomation beaconing device

50

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

which we assume exists at the cafeteria where the user’s camera is currently lo-

cated. This device publishes temperature and location information. Again, the

highly “movement-sensitive” tuples indoor-temp and cafeteria are pub-

lished with dev-range scope, whereas the outdoor-temp tuple is published

with ttl-range scope, as it is not expected to change considerably within its

15-minute TTL.

Key Value
Creation

TTL Scope
Emit Orig.

CTS TS device
address

illuminance 9857 lx 18:00 4 min dev-range 18:03 A
latitude Xd Ym N 18:01 3 min dev-range 0 B
longitude Kd Lm E 18:01 3 min dev-range 0 B
city Volos 18:01 15 min ttl-range 0 B
cafeteria Grappa 18:01 14 min dev-range 0 C
indoor-temp 25oC 18:00 15 min dev-range 0 C
outdoor-temp 32oC 18:00 15 min ttl-range 0 C

Table 3.4: Sample contents for a digital camera’s context component

51

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

52

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 4

File management system

OmniStore provides the following functionality to assist users in managing their

personal data:

• Deep archival: All versions of all files created on all devices owned by the

user are automatically archived at an infrastructure storage service referred

to as the repository.

• Push-caching: The repository allows clients to submit requests for sending

files to devices owned by the user. A time period during which files should

reside on the target devices may be specified. Furthermore, the device can

optionally be kept up-to-date with the latest version of the file being push-

cached.

• Collaborative disconnected operation: Portable devices interact in order

to co-operate in managing storage. They may autonomously off-load files

from one device to another in order to balance free space, or replicate im-

portant files to multiple devices in order to increase availability. Remote

53

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

access from applications on one device to files on another device is also

supported.

• Automated context-based annotation: File indexing and retrieval is facil-

itated by automatically attaching semantic annotations to files as they are

created. These annotations are derived from context information collected

from nearby devices.

While each of these functional aspects is useful in itself, the full potential

of the system is made clear when they are considered in combination; we refer

the reader to Chapter 5.1, which presents compelling use cases made possible by

OmniStore.

4.1 Overall architecture

The system’s implementation [KL06b] comprises several components. These are:

• The portable device daemon and device library

• The device registry and the device registry library

• The data repository and the data repository library

• Internet access gateways

Figure 4.1 depicts an indicative configuration that includes the repository, the

registry, a single access point, a typical Internet-connected personal computer and

a PAN with three portable devices. Although the registry and repository services

54

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Internet

Ad-hoc
network

Home server appliance /
ISP distributed service

PAN-based
camera

Network
access

point

Device
library

PAN-based phone

...

Core
Runtime

PAN-based
music player...

Core
Runtime

Application

Device
daemon

Device
daemon

Device
daemon

Repository
daemon

Internet access
daemonCore

Runtime

Core
Runtime

Desktop PC

Application

Registry
daemon

Core
Runtime

Repository
library

Registry
library

Figure 4.1: OmniStore architecture

need not be co-hosted, they are generally presumed to be installed on a household

device referred to as the home server appliance.

Portable devices run the device daemon which is responsible for managing

their storage. It supervises the storage-related activity on the portable, also mon-

itoring the device’s environment for the presence of other devices. The daemon

communicates with devices detected in the PAN in order to perform collabora-

tive storage management. Moreover, it periodically contacts the data repository

55

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

in order to perform various synchronization tasks. Applications use the device li-

brary to access the device’s storage medium. The device library performs behind

the scenes interaction with the device daemon, transparently triggering various

storage-maintenance actions. The device library can also be used to access the

functionality provided by the data repository and the device registry.

The data repository’s role is to manage the infrastructure storage that belongs

to the user and is implemented by the repository daemon. The repository daemon

interacts with device daemons to synchronize the contents of each device with the

repository. In addition, it allows applications to access the archived files, which

may be located using semantic lookup queries. Finally, applications may use its

push-caching service to schedule file transfers from the repository to portables.

In order to access these services, applications on computers with Internet connec-

tions use the repository client library, whereas applications on portable devices

use the device library.

The device registry is an infrastructure service which keeps track of user de-

vices. It records information regarding their capabilities (e.g. what services they

provide), as well as device configuration parameters. The registry daemon is the

component responsible for implementing all these functions, which can be in-

voked via the registry client library (for applications on computers with Internet

connections) and the device library (for applications on portables devices).

The protocols used in all cases employ the ReliableBidiEndpoint data

marshaling routines (see Section 3.4). The repository and registry daemons accept

connections through both TCPIPEndpoint (Section 3.4.3) as well as Reli-

ableBidiEndpoint objects. This allows the services to be accessible via

normal TCP/IP connections, but also directly through the ad-hoc network if an

56

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

application is on a portable device which is adjacent to the servers. The reg-

istry library and repository library communicate with their respective daemons

through normal TCP/IP connections, using TCPIPEndpoint endpoints. Appli-

cations on portables access the functionality through the device library, which uses

ReliableBidiEndpoint connections when the device is in close proximity

to the servers. In most cases however, TunneledEndpoint objects are used in-

stead, which connect to the TCPIPEndpoint of the servers (like infrastructure

applications do) with the help of network access gateways (Section 3.4.3).

4.2 Device management

The device registry holds information regarding the computing devices owned by

the user. It implements a device registration service which allows a device to enter

the user’s domain and become trusted by the other devices owned by her. To this

end, it acts as a certificate authority on the user’s behalf, which issues and stores

digitally signed certificates during registration. Devices may use these certificates

to determine co-ownership and establish trust when they meet in ad-hoc networks.

The registry is identified by its DNS name1, which we use as the root of a

device namespace for each user. For example, its name could be userHome-

Server.someISP.com. The registry generates identifiers for each device dur-

ing registration (Section 4.2.1), which are guaranteed to be unique within the con-

text of the device registry. It then serves as a name service for the user’s portables,

allowing applications to unambiguously refer to specific devices owned by the

user.
1This is sufficient for our purpose in spite of the numerous problems and shortcomings of DNS;

see [BLR+04, WBS04].

57

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

In addition, the registry exports services for applications (both on portables as

well as in the infrastructure) that wish to record or review information regarding

the user’s devices and their capabilities. Services and applications hosted on the

user’s various devices may record their presence there, along with configuration

settings that control their operational characteristics. Applications may contact

the device registry to inquire such information. For example, an application may

request a list of the user’s devices which support some type of functionality (e.g.

have OmniStore managed storage).

4.2.1 Device registration

The device registry daemon is hosted on the home server appliance, located in the

user’s house. Users are expected to power up newly acquired devices in the area

of the house where this appliance is located, to trigger the registration process.

As part of its normal operation, the registry daemon advertises the registration

service to nearby devices. A device will check during its startup whether it is

registered or not. Registered devices proceed to normal operation, loading the

device daemon and launching local applications. Non-registered devices enter a

special “registration mode”, during which they passively monitor the environment

(see Section 3.3.2), to discover a registration service.

The first stage of registration is as follows (Figure 4.2): When the new device

detects the registry, it sends a registration request. The registry records the de-

vice’s network adapter address in its database, giving the device a unique (within

the registry) 32-bit identifier and a random password. It then responds to the de-

vice with: the device’s newly-generated “device identifier” and random password,

58

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

along with the registry’s DNS name and public key.

The issued device identifier is unique within this specific device registry. In

combination with the generated password, they constitute a set of credentials

which can be used in the future to authenticate the device to the registry. The

device records all this information along with the registry’s DNS name (which

can be used to access the registry remotely through Internet access points) and

the registry’s public key. After this stage of registration is complete, the device is

considered a candidate for entry to the user’s device domain, but is not yet part of

it.

1. Request activation

2. Create database record,
generating a unique identifier
and device password

3. Send unique identifier,
device password, registry
public key and DNS name

UID Network Address Device password

...

0x10FA fe:08:13:ff:0a:32 Kx

UID Network Address Device password

...

0x10FA fe:08:13:ff:0a:32 Kx

1. Challenge

3. Check credentials

4. Generate certificate and
add to database

2. Authenticate

5. Deliver certificate

UDID Certificate Status

...

0x10FA Cx VALID

(a) (b)

Figure 4.2: The two phases of device registration

In order to complete the registration, the user must accept the device’s request.

This is done via the web-based registry management application (Section 5.1.2),

with which the user can view devices pending registration and accept or reject its

completion in each case. Once a device’s request has been accepted, the second

59

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

stage of the registration is triggered (Figure 4.2). The device registry performs an

active lookup for the device, in order to contact it and complete the registration.

When the device is discovered, the registry opens a connection, challenges the de-

vice to authenticate itself using the previously agreed credentials (device identifier

and password) and then proceeds to issue a certificate signed by the registry for

the device. The certificate comprises of the device identifier and adapter address,

signed with the registry’s private key; it is recorded in the registry database and

delivered to the device2. Registered devices may use the registry’s public key to

verify the authenticity of another device’s certificate. Thus, devices can use this

to establish that they belong to the same user.

4.2.2 Device configuration

Once device registration is complete, additional functionality of the registry be-

comes available. Specifically, applications and services hosted on registered de-

vices may record information regarding their capabilities and configuration pa-

rameters with the registry. This service is accessible both through the ad-hoc

network, as well as through the Internet.

The registry maintains device capabilities and configuration settings in a ta-

ble with a simple schema comprising of the following columns: device identifier,

component identifier, key and value. When adding information regarding a device,

the device identifier is set to the identifier issued for the device by the registry. The

component identifier is submitted by the application / service creating the entry

and is a value defined by its manufacturer, uniquely referencing that application
2Until the receipt of this certificate, a device is unable to prove its participation in the user’s

domain. The password produced for the device during stage one, is merely used to ensure safe
delivery of the certificate to that device.

60

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

/ service on the device. The key and value hold the configuration setting’s type

and value respectively; their interpretation is application-specific. We note that

even though we use the device registry to primarily record OmniStore configura-

tion settings, the design of the system is generic, allowing it to be used by any

application / service which may be present on portables.

Table 4.1 shows a sample of the device registry’s contents. The component

identifier runtime is reserved for use by our portable device runtime (Section 3)

to store some device-wide configuration settings. For example, our runtime can

be configured (by the device manufacturer) to create entries with the manufac-

turer’s name, the device’s model, its serial number, etc. The configuration setting

mnemonic-name allows the user to specify a human-readable way with which

to reference a device.

The special key service is reserved for publishing the presence of some

type of service on a device (regardless of the component identifier under which

it is defined). Its value is the same well-known name under which a service is

advertised via the discovery mechanism (see Section 3.3).

The OmniStore device daemon uses the service key, along with its compo-

nent identifier (OmniStore) to publish its presence on a device. It then exploits

this facility to store configuration information which is used to trigger and con-

trol data management activities. Specifically, the device daemon registers three

settings: sync-period, min-free-ratio and desired-free-ratio,

which are given default values3. These parameters are discussed in subsequent

sections.

The device registry allows applications to review device capabilities and in-

3Each manufacturer is free to specify sensible defaults for the devices they produce.

61

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Device Component Key ValueId Id
4 runtime manufacturer Smart music corp.
4 runtime model XJC-400
4 runtime serial W5-2005-0127-QC14
4 runtime description Portable music player
4 runtime mnemonic-name Walkman
4 OmniStore service gr.omnistore.pan.server
4 OmniStore sync-period 120min
4 OmniStore desired-free-ratio 0.2
4 OmniStore min-free-ratio 0.1
5 runtime manufacturer Smart photos corp.
5 runtime model MC-1
5 runtime mnemonic-name My old camera
...

Table 4.1: Sample device configuration data stored in the device registry

spect or modify operational parameters. This enables applications to identify de-

vices providing a specific type of service by searching for all device identifiers

having a service key with the desired service’s name as its value. As a con-

crete example, the repository management application (see Section 5.1.3) uses

this service to lookup devices that support OmniStore functionality, using the re-

sults to present the user with a list of the possible target devices for push-caching

transfers (Section 4.4.2).

4.3 File naming and access model

4.3.1 Naming scheme

The device registry is the basis upon which OmniStore’s file naming scheme is

built. This scheme allows us to generate globally unique identifiers for every file

62

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

created on any device owned by any user, even when the device is disconnected

from the Internet and with no other devices in its vicinity.

In order to generate globally-unique identifiers for every file, devices maintain

a 32-bit local seed that is incremented with every file creation. Its value is used as

the local identifier of the created file, which combined with the generating device’s

identifier becomes unique across all devices in the user’s realm. The globally

unique file identifier is produced by further adding the device registry’s name.

An example of file and device identifiers is given in Figure 4.3, which depicts a

mobile phone with two files: a photograph (which was presumably generated on

the user’s camera and subsequently transferred to the phone) and a locally created

phone-call recording.

Mnemonic name Device Identifier

Mobile phone 0xF1B0074F
Digital camera 0xA48B5451
...

ID: 0xF1B0074F
Seed: 55
SyncPeriod: 12h
MinFreeRatio: 5%
DesiredFreeRatio: 10%

userHome.someISP.org

Device
Registry

Storage

userHome.someISP.org
0xA48B545100000429

A photograph obtained from the
digital camera

userHome.someISP.org
0xF1B0074F00000054

A newly recorded telephone
conversation

Mobile phone

Figure 4.3: Various elements labeled using our naming scheme

The use of file identifiers instead of human-issued filenames is an important

feature when considered with OmniStore’s target environment in perspective: re-

questing a file name from a mobile user who, for example, has just recorded a

63

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

phone call or taken a photograph on the move, is rather inconvenient, especially

through the limited user interfaces offered by such devices. In fact, for this exact

reason, most contemporary portable devices will automatically generate cryptic

filenames as well, albeit in an isolated device-specific manner, which generally

only guarantees that name clashes will not occur for the files generated on that

one specific device.

We note that files, both on devices as well as at the repository, are stored in

a single directory in a flat manner. The complete file identifiers are used as file-

system names. The globally unique nature of these identifiers makes name clashes

impossible.

4.3.2 File organization with semantic annotations

File identifiers are hard to memorize and therefore inconvenient for people. To

support flexible organization and browsing, files may be annotated with extra (se-

mantic) information which is used to group or sort files at will. This approach,

presented in [GJSO91, GM99, MTX03], is increasingly gaining in popularity. In

these so-called semantic file systems, one generally uses annotation-based queries

and is presented with dynamic views of storage contents, a model which deviates

from the traditional static structure of hierarchical file systems.

OmniStore annotations are defined as in [GJSO91], using key-value pairs

whose interpretation is left to applications. Some annotations (see Table 4.2) are

reserved for system use and cannot be set by applications (except for mnemo-

nic-name and replicate-count). Otherwise, the device library (Listing

4.1) allows applications to create, review and edit annotations .

64

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Key Values and use
dirty Flag indicating whether the file exists in the repository or

not.
mnemonic-name A human-readable name for referring to the file.
derived-from The value contains a file identifier indicating that the an-

notated file is a subsequent version of that file.
identical-content Flag indicating that this file’s content is identical to the one

it is derived from (see Section 4.5.3).
avail-start Timestamp indicating the start of the time period for which

the file must reside on this device (see Section 4.4.2).
avail-end Timestamp indicating the end of the time period for which

the file must reside on this device (see Section 4.4.2).
replicate-count Indicates that this file must be replicated (see Section

4.5.2).

Table 4.2: System-defined annotations.

As an example of the expressiveness possible with this scheme, consider the

sample annotations for a file, depicted in Table 4.3. The file is a photograph,

presumably taken at a public square in the city of Volos. Using file annotations,

it is possible to lookup files with annotation-based queries, such as “show me all

files which are photographs, taken in Volos”. Of course, by assigning a mnemonic

name to the file, a user may also request the file with the traditional method of

supplying the filename “VolosNewYearPhoto2006.jpg”.

Key Value
mnemonic-name VolosNewYearPhoto2006.jpg
format jpg
type photograph
city Volos
location Ag. Nikolaos square
date 2006.01.01
temperature 5C

Table 4.3: Annotated file example (a photograph).

65

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

4.3.3 File access model

OmniStore employs the write-once-read-many (WORM) model, as introduced in

the Cedar system [SGN85, Hag87]. In other words, a file remains immutable once

created. Specifically, while it is possible to alter the contents of a file, this is done

by creating a new copy of it, with its own globally-unique identifier. To this end,

when a file is opened in read-write mode (Listing 4.1), the device library creates a

new copy on-the-fly and the returned file handle refers to the copy. The copy also

inherits the annotations of the original file.

File annotations are frozen when a file is closed. They may only be edited by

applications if the file is opened in read-write mode, thus creating a new revision

of the file, derived from the original. Therefore, even the annotations of files with

the same identifier are guaranteed to be identical.

To maintain file history, OmniStore creates system annotations. It defines the

reserved derived-from key, whose value is the file’s immediate ancestor (i.e.

the identifier of the file which was opened in read-write mode, subsequently cre-

ating the new revision).

It is possible that an application may open a file in read-write mode in order

to edit its annotations only. When a file is opened in read-write mode, the device

library keeps track of whether file contents or annotations were actually modified.

If the file is closed with no modifications to its data or annotations, the copy is

deleted. If only file annotations were modified, a second system annotation using

the reserved identical-content key is used to hold the identifier of the file

whose content is identical to the new file. This annotation is used to optimize both

storage usage as well as the automated archival process (Section 4.4.1).

66

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

We point out that the derived-from and identical-content annota-

tions will not necessarily hold the same value. The former will always be set to the

file’s immediate ancestor. The latter however may point to an ancestor further up

the revision hierarchy. Specifically, this occurs when a file is successively edited

more than once, making changes to annotations only (Figure 4.4).

file: com.userISP.user.1.1
type: presentation
...

file: com.userISP.user.1.2
type: presentation
...
derived-from: com.userISP.user.1.1

edit
content

only

edit
annotations

only

file: com.userISP.user.1.3
type: presentation
...
derived-from: com.userISP.user.1.2
identical-to: com.userISP.user.1.2

file: com.userISP.user.1.4
type: presentation
...
derived-from: com.userISP.user.1.3
identical-to: com.userISP.user.1.2 edit

annotations
only

Figure 4.4: Maintaining file revision history

4.4 Infrastructure-based functionality

The repository manages and provides access to the user’s reliable storage service

in the infrastructure. It serves as a data collection point, where all files created

by the user’s portables are collected. In addition, it allows applications to interact

with storage on portables in an indirect way, by submitting requests to send files

from the repository to specific devices. Finally, it supports semantic-based lookup

of files, using the annotations attached to them. We next discuss each of these

67

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

services in detail.

4.4.1 Automated archival

With storage density increasing and storage costs dropping, it is increasingly be-

ing advocated that deep archival [SFH+99] be employed for personal computing

systems storage. Deep archival postulates that all user files be kept in storage,

without ever being deleted, an approach which combines well with semantically

organized file-systems, as discussed in [MTX03]. OmniStore extends the deep

archival property across all devices owned by the user. We achieve this by having

device daemons transfer all files created on portables to the data repository.

Device storage daemons maintain a backup queue of files which have not been

transported to the repository. This queue is populated behind the scenes by the

device library, when applications create new files. Specifically, as part of the

close() operation (when the file’s content and annotations are frozen), the de-

vice library will append the file being closed to the backup queue if either: (a) it is

a newly created file, or (b) if it was a file resulting from an open() in read-write

mode and its content and/or annotations have been modified.

A system annotation identified by the key dirty and the value true (Table

4.2) is added to unarchived files. Once a file has been backed up, the dirty

annotation is set to false, to prevent the file from being re-appended to the

backup queue. The dirty annotation is used to persist the backup queue even

when devices are powered off: the daemon scans the device’s storage medium

during initialization, in order to find files in which it is set to true, recreating the

backup queue accordingly.

68

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

The storage daemon periodically (Section 4.4.3) tries to contact the repository.

When a connection is available, backup queue entries are processed as follows

(Figure 4.5): First, the device sends the file’s annotations4 to the repository, which

thus records the file’s existence, its annotations and size, along with the fact that

its entire content is missing. The repository then sends a list of offset-length pairs

to indicate missing file content . The device uploads the requested fragments and

repeatedly asks for others. When the repository responds that no more fragments

are missing the device sets the file’s dirty annotation to false and dequeues it.

Other portables having copies of this file are guaranteed to eventually mark them

as clean when they contact the repository.

file identifier, size

(offset,len)+

file content

file content

file identifier, size

repositoryactive store daemon

go-next

Query missing content

Re-query missing
content

Send some missing
fragments

Send content

No more missing
fragments

file identifier, metaIni

key, value

key, value

file identifier, metaFin

Initiate transfer

Commit annotations

Send meta-data

Signal end of
meta-data

file identifier, sizeRe-query missing
content

(offset,len)+

file content

Send some missing
fragments

Send content

Figure 4.5: OmniStore backup protocol

4Device-local system annotations such as dirty and replicate-count are not uploaded.

69

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

This protocol makes it possible to progressively backup files, using oppor-

tunistic intermittent connections. In addition, backup can be performed collab-

oratively by multiple devices that have copies of the same file5. Notably, if two

devices concurrently try to upload the the same file, the repository will distribute

differing offset-length pairs to each of them.

4.4.2 Push-caching

The repository provides a service for sending files to portables which we refer to

as push-caching. Clients may connect to the repository and submit push-caching

requests, stating the desired file and target device identifiers (this is done using the

repository library, as discussed in detail in Section 4.4.4).

When a device daemon contacts the repository, it is notified of pending push-

caching transfers and adds corresponding entries to its fetch queue. This queue

is processed in a similar manner to the backup queue (Section 4.4.1), resulting

in the respective files being downloaded from the repository. Notably, backup is

performed before push-caching. The file transfer protocol used is analogous to

the backup protocol (Figure 4.5) and tolerates intermittent connectivity.

Push-caching requests can optionally be submitted with a schedule: a start-

ing and ending point in time during which the file should reside on the target

device. When the device daemon processes a push-caching request with a sched-

ule attached to it, it records the desired availability time span (as received from

the repository) using two system annotations with the keys avail-start and

avail-end (Table 4.2). This allows for some flexibility in sending the file to

5File copies may arise automatically via the system’s mechanisms (see replication in Section
4.5.2) or by explicit user requests.

70

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

the device, as download can be deferred if the desired time frame is far into the

future. In addition, such files are excluded from the storage reclaim process (Sec-

tion 4.5.2) until the end of the scheduled caching period, preventing accidental

deletion.

Push-caching requests can optionally be submitted with the live-update option

enabled, which instructs the repository to send the latest version of a file to the

device. The repository is able to track the latest revision using the derived-from

annotation. Live-update requests accompanied by a schedule are automatically re-

moved when they expire. If no schedule exists, the repository updates the device

indefinitely, until the push-caching request is removed. Notably, device-daemons

are unaware of the live-update option. The repository alone determines if an up-

dated file is to be sent to a device and enqueues a new push-caching request for it,

when it is contacted by the respective device daemon. To the device daemon this

simply appears to be a new push-caching request.

Push-caching allows any client application to place files on a specific devices.

The optional scheduling feature allows one to specify the caching period in a very

conscious way, depending on the expected usage of a certain file. Additional ver-

satility is provided when combined with the live-update option, allowing one to

request the placement of future revisions of a file to a device. It should be noted

that the target device does not have to be reachable when the user (or application)

submits such requests. Evidently, one can not guarantee that scheduled transfers

will succeed, since portables may not be able to contact the repository in time.

Having said that, this facility provides a convenient way for users to manage (fu-

ture) data transfer operations, without the need to have the target device, nor the

file to be transferred, present at the time.

71

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

4.4.3 The synchronization process

Synchronization of a device’s contents with the repository occurs periodically, as

specified by the sync-period parameter (Section 4.2.2), with the help of net-

work access gateways. A passive discovery request for such services is registered

by the device daemon for as long as the device is running, so that the process is

not delayed unnecessarily by having to search for gateways. However, if none are

known, active discovery is enabled to start probing the PAN. As soon as a gate-

way is found, the repository is contacted to perform synchronization, which may

progress intermittently using multiple gateways (e.g. because the user is on the

move).

Whenever a gateway is available, the following actions take place (assume the

initial state shown in Figure 4.6): First, the fetch queue is populated, using file

identifiers from registered push-cache requests targeting the device (Figure 4.7).

Then, the backup queue is processed to archive files (Figure 4.8). Finally, the files

in the fetch queue are retrieved and cached locally (Figure 4.9). As soon as this

process completes without interruption, the daemon reverts to passive discovery

of access points and schedules the next occurrence for sync-period time later.

Some optimizations are used to avoid unnecessary file transfers. Specifically,

the identical-content annotation is used to avoid transferring the content

of files that are new revisions of already archived files, which only differ in their

annotations. As soon as the annotations are received, the repository checks to see

whether the ancestor file has already been backed up and instructs the device to

proceed with the next file. If this is not the case, the transfer takes place normally.

This same check is performed when fetching a file from the repository, to avoid

72

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

f9

f8

f7

Fetch
queue

Backup
queue

f1

f2

f3

Device id: 31

f4

f5

f6

f1, dev 31

f2, dev 31

Push-cache
requests

f7

f8

f9

Figure 4.6: Device - Repository synchronization process, initial state

f9

f8

f7

Fetch
queue

f1

f2

f3

Device id: 31

f4

f5

f6

f1, dev 31

f2, dev 31

Push-cache
requests

1 Populate
fetch queue

f2

f1

f7

f8

f9

Backup
queue

Figure 4.7: Device - Repository synchronization process, first step

73

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Fetch
queue

f1

f2

f3

Device id: 31

f4

f5

f6

f1, dev 31

f2, dev 31

Push-cache
requests

f2

f1

f7

f8

f9

Backup
queue

2 Backup
files

f7

f8

f9

Figure 4.8: Device - Repository synchronization process, second step

Fetch
queue

Backup
queue

f1

f2

f3

Device id: 31

f4

f5

f6

f1, dev 31

f2, dev 31

Push-cache
requests

f7

f8

f9

f7

f8

f9

f2

f1

3 Fetch
files

Figure 4.9: Device - Repository synchronization process, third step

74

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

superfluous transfers in case the file being downloaded has the same content as a

previous version that already exists on the device.

Finally, an interesting optimization is that files in the fetch queue are not pro-

cessed in a strict FIFO order. Instead, two passes are made on the fetch queue. In

the first, files which were created on currently nearby devices6 are skipped. These

files are processed on the second pass made on the fetch queue. As a result, if

the gateway becomes unavailable, there exists a chance that these files can be re-

trieved from the nearby devices that created them. This occurs by contacting the

respective devices (which can be done even when no gateways are available) to

make local copies of the files if they are found there. The devices are contacted in

reverse “co-location probability” order, which is determined by the product of the

average number of encounters and mean encounter duration (the smallest product

has the least co-location probability). This reduces the likelihood that the device

may dissappear prior to the file being fetched.

4.4.4 Application services

Applications may access repository services using the respective library, which

wraps a convenient API (Listing 4.2) around the protocol via which these are

made available.

File queries are submitted using the lookupFiles() method, which re-

turns the files whose annotations match the search terms provided as a parameter.

Queries can be restricted to either the key or the value field. For example, an ap-

plication may request all files which have an annotation with its key matching the

6This is determined by checking the device component of the file’s identifier and inspecting
the co-location table to see if that device is currently in encounter.

75

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

term “location”, or all files which have an annotation with its value matching the

term “location”. Queries may also be applied to both key or value, producing a

match if any of the two fields matches the search term. For example, an applica-

tion may request all files which have an annotation with key or value containing

the term “location”. A query may use several search terms.

Push-cache requests can be scheduled using the submitPCR()method, with

the target file and device identifiers supplied as parameters. The client must also

specify the time period during which the push-caching should occur, along with

whether the device should be updated with future revisions of the file.

4.5 Personal area network functionality

Given the ability of portable devices to communicate by means of ad-hoc net-

working, it is possible to have them collaborate among themselves to increase

their utility and improve the functionality provided. OmniStore takes advantage

of the ad-hoc networking capabilities in several ways:

• To automatically annotate files with semantic information from multiple

sources.

• To collaboratively manage device contents by transferring files from one

device to another for increased availability or to distribute storage load and

reclaim used space.

• To support remote file access enabling applications to perform I/O opera-

tions on files anywhere in the PAN.

76

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

4.5.1 Context-based annotation

Cognitive psychology has identified that people often recall significant events con-

textually. For instance, we may often fail to recall a person’s name even though

we may easily recall the time or place where we met that person, what we were

doing there or even what the weather was like at the time. In other words, the

situation under which an event occurs plays an important role in our ability to

recollect that event.

This observation also extends to file management [SG03]. Consider taking

a photograph with a camera under the following circumstances: it is a hot, but

rather cloudy day, on which the user is outdoors in some park at the city of Volos,

Greece. This situation could be documented through the collection of sensory

inputs shown in Figure 4.10. By recording such context information when a file

is being created, it becomes possible to locate the file using whatever facts can be

recalled regarding the situation at the time.

OmniStore automatically creates annotations using the context sensing capa-

bilities of the devices in the PAN in order to facilitate browsing and lookup oper-

ations. The annotations are derived from the tuples maintained by our runtime’s

context component (Section 3.5). The goal is to capture the contextual situation,

as recorded by the devices present in the PAN, at the time when files are created.

It should be pointed out that in this manner. The annotation process (depicted in

Figure 4.10) is as follows. When a new file is being created, via the create

operation, the device library retrieves the entire tuple space contents of the run-

time’s context component. The key-value pairs of the context tuples are then used

to create an annotation list. If multiple tuples have the same key and value, they

77

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

are merged into a single annotation. Tuples with the same key but different values

are kept as separate annotations.

Photo
Application

Storage
medium

Context Module

Creation Emission Originating
Key Value time-stamp TTL Scope time-stamp device identifier

illuminance 12734 16:45 5min neighbors 16:45 local digital camera id
temperature 26oC 16:30 1min imported N/A temperature sensor id
cafe Grappa 16:30 5min imported N/A location beacon id
city Volos 16:30 15min imported N/A location beacon id
neighbor mobile phone ID 16:00 60min local N/A local digital camera id

Annotations

illuminance 12734lx
temperature 26oC
cafe Grappa
city Volos
neighbor mobile phone ID

File
Creation

Application
annotation
handlers

Annotations

illuminance 12734lx
temperature 26oC
cafe Grappa
city Volos
neighbor mobile phone ID
app-key app-value

Annotations

illuminance 12734lx
temperature 26oC
cafe Grappa
city Volos
neighbor mobile phone ID
app-key app-value
sys-key sys-value

System
annotation
handlers

Figure 4.10: File annotation process

For increased flexibility, the meta-information attached to a file need not be an

exact projection of the current contextual information assembled by the context

component. Application logic can filter annotations, deducing new entries (e.g.

inferring higher-level context from the raw context data gathered) and removing

others. To achieve the desirable flexibility, applications are given control over

the annotation process so that they can add new entries, alter values of existing

78

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

entries, or remove entries of the annotation list.

In terms of programming, this is accomplished via annotation handlers that can

be dynamically installed in the storage component. These are up-called right after

the default annotation process completes, taking as an in-out parameter the anno-

tation list which can be modified as needed. As an example, Listing 4.3 shows

the code of a handler which prevents files from being decorated with location

annotations. This facility can also be exploited by the system itself to process

the annotations to be added to the file, by installing system annotation handlers.

Obviously, the user (or application) is free to inspect and modify file annotations

at any point in time after the file has been created.

4.5.2 Off-loading and replication

OmniStore automatically creates free space on devices whose storage is filling up

and replicates important files for increased availability. We discuss these features

in the following.

Storage space reclamation is driven by two configuration settings of the de-

vice daemon (Section 4.2.2): the minimum free space ratio (MFSR) and desired

free space ratio (DFSR), which are stored in the device registry as min-free-

ratio and desired-free-ratio respectively. When the free space on a

device drops below its MFSR, garbage collection is activated in order to remove

local files. Candidates for deletion are the least recently accessed files that (i)

have been successfully backed up in the repository and (ii) are not expected to be

available on the local device in the near future. The former can be determined

by inspecting the dirty annotation whereas the latter can be determined by in-

79

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

specting the avail-start and avail-end annotations (Section 4.3.2). The

garbage collection process stops when the DFSR is reached, or when no more

space can be recovered.

Though unlikely, it is possible that at some point during garbage collection,

prior to reaching the DFSR, that none of the conditions hold for any (more) files,

making it impossible to meet the DFSR. As a last-resort option a portable may still

delete a file, but must first create a copy on another device, which then assumes re-

sponsibility for backing it up to the repository. The off-loading protocol is almost

identical to the repository backup protocol (Figure 4.5) with minor deviations.

Just as in the case of repository backup, the communicating devices may go out of

range before transfer completes. Because partially downloaded files are included

as storage reclaim candidates, they will eventually be deleted by the device. In

any case, should the devices meet again prior to the incomplete file being deleted,

the protocol allows file transfer to resume. To prevent data loss, a sender will not

delete a file until after it has been completely off-loaded to another device.

A related activity which occurs among portables is the replication of important

files. To activate replication for a file, the replicate-count system annota-

tion must be added to it, with an integer value indicating the number of desired

replicas. Applications on portables may freely set this annotation when they de-

cide that some file is of particular importance. This annotation indirectly prompts

the device daemon to create additional copies of the file on other devices in the

PAN. The replicas-made system annotation is used to keep track of the num-

ber of replicas created. Again, as with off-loading, the same file transfer protocol

is used, only this time the file is not deleted after the transfer.

A usage example of our replication facility can be found in the OmniStore

80

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

system itself. The device daemon adds this annotation to files received due to

push-cache requests which have a schedule (Section 4.4.2), in order to decrease

the probability of unavailability. The replication of files, combined with the sup-

port for transparent failover when accessing remote files (Section 4.5.3), comprise

a significant fault-tolerance system for mobile ad-hoc environments.

It should be noted that, in both the case of replication and off-loading, the

device daemon does not randomly choose devices in the PAN on which to trans-

fer files. Instead, it refers to the co-location history statistics maintained by the

underlying runtime (Section 3.2), allowing it to intelligently select target devices.

Specifically, devices with the highest probability of being co-located with the de-

vice from which the file originates are selected (the ones for whom the product of

the average number of encounters and mean encounter duration is largest). This

increases the likelihood that the file will still be accessible from the applications

of the original device.

4.5.3 Distributed lookup and access

File lookup in semantic file-systems is not restricted to the use of file names;

any annotation may be used. The device library allows applications to create

annotation lookup tasks which are registered with the device daemon. Lookup

tasks are populated with search results using local and remote files from nearby

devices in the PAN. Lookup can use specific keys, or generic terms. Listing 4.4

shows an application that creates a task, matching files that are photographs (the

key-value pair [file type, photograph] exists) and are also annotated with a key or

value that contains the term cafeteria (e.g. both [location, Grappa cafeteria]

81

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

and [cafeteria, Jam] would match).

Device daemons are notified of the arrival and departure of nearby storage

devices by the core runtime. New devices are inquired about files matching the

search terms defined for registered lookup tasks. When a device leaves the PAN,

matches from it are removed. Applications may register a notification listener

to be called when the active result set changes. The application can then review

matching file identifiers, along with the device on which they reside. This process

is depicted in Figure 4.11, where a projector device uses the system to locate

nearby presentations.

File access operations are similar with those of typical file-systems. An ex-

ception is that data locality is required for altering files. Opening a remote file

in read-write mode results in a copy being created on the local device, using a

locally-generated file identifier. Conversely, read-only access is allowed directly

from remote devices. A notable feature for files opened in read-only mode is that

– should one device used to access the file suddenly become unavailable – the

device library can transparently fail-over to another device which carries that file.

This is made possible due to the employed WORM model and naming scheme,

which guarantee that files with the same file identifier necessarily have identical

content and annotations. If a file is present on multiple devices in the PAN, all

of its providers will match lookup tasks used to locate it (since the files neces-

sarily have identical annotations). Therefore, the device daemon will be aware

of all sources in the PAN from which to access the file. The device library thus

switches to a different provider whenever a device used to access the file becomes

unavailable (Figure 4.11).

82

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

ProjectorProjectorProjector

Mobile Phone1

Device daemon Lookup tasks
1. [type, presentation]

Projector
applicationDevice library

LookupTask lt = storage.createTask();
lt.searchKey(“type”,“presentation”);
lt.addMatchListener(this);
lt.activate();

2

Device File

3

Device daemon

Device File
PhoneUUID F1

Lookup tasks
1. [type, presentation]

Device
daemon

Matches

callback

4

Watch

Matches

5 6

F1 (type:
 presentation)

F2 (type:
 voice-memo)

Projector
applicationDevice library

Device daemon

Device File
PhoneUUID F1
WatchUUID F1

Lookup tasks
1. [type, presentation]

callback

Matches

Projector
applicationDevice library

Mobile Phone

Device
daemon

F1 (type:
 presentation)

F2 (type:
 voice-memo)

F1 (type:
 presentation)

F3 (type:
 photograph)

Device
daemon

Projector

Watch

Device daemon

Device File
PhoneUUID F1
WatchUUID F1

Lookup tasks
1. [type, presentation]

Matches

Projector
application

Device library

Mobile Phone

Device
daemon

F1 (type:
 presentation)

F2 (type:
 voice-memo)

F1 (type:
 presentation)

F3 (type:
 photograph)

Device
daemon

List matches = lt.getMatches();
MatchInfo f =
 (MatchInfo) matches.elementAt(1);
FileHanlde f =

storage.open(f, READ_ONLY);

Projector

Watch

Device daemon

Device File
PhoneUUID F1
WatchUUID F1

Lookup tasks
1. [type, presentation]

Matches

Projector
applicationDevice library

Mobile Phone

Device
daemon

F1 (type:
 presentation)

F2 (type:
 voice-memo)

F1 (type:
 presentation)

F3 (type:
 photograph)

Device
daemon

X

Projector

Watch

Device daemon

Device File
WatchUUID F1

Lookup tasks
1. [type, presentation]

Matches

Projector
applicationDevice library

F1 (type:
 presentation)

F3 (type:
 photograph)

Device
daemon

Figure 4.11: Locating files in the PAN

83

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

4.6 Security aspects

This work’s focus does not include the security of ubiquitous computing systems.

In the interest of completeness however, we provide some basic protection mecha-

nisms, to demonstrate that the risk of having data compromised when using Omni-

Store is reasonable (i.e. within current user expectations).

The cornerstone of our security system is the device registry, which issues the

certificates for the devices owned by the user (Section 4.2.1), also providing its

public key to devices so that they may validate any certificate issued by the same

registry. To establish trust, devices must present their certificates7 to each other,

checking to see if they were indeed issued by the same registry.

As a somewhat extreme measure, we perform this validation in every connec-

tion among devices, refusing to interact with devices that do not belong to the

same user. Devices will thus only interact with other devices that the user owns,

confining data access to the user’s domain.

This scheme can be extended to implement functionality such as providing

limited access to specific files from other users’ devices, revoking certificates of

compromised devices, etc. However, designing a complete security system is an

open research issue that can be better addressed by the respective community.

7To prevent a malicious party from playing back the certificate, a device should not provide its
certificate for validation in cleartext, but rather a signed (by the device) copy with a session token
that will prevent its reuse.

84

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

public interface IStorage {
// local file access methods only
public FileHandle create();
public FileHandle open(

String domain, int devId, int fileId,
boolean readWrite) ;

// ...
}

public class FileHandle {
// access file content
public void seek(long ofs);
public int read(byte[] buffer, int ofs, int len);
public int write(byte[] buffer, int ofs, int len);
public void close();

// access file annotations
public void addAnnotation(String key, String value);
public void removeAnnotation(String key, String value);
public void updateAnnotation(String key,

String oldValue, String newValue);
public List getAllKeyValues(String key);
public List listKeys();

// obtain file identifier info
public String getRegistryURL();
public int getDeviceId();
public int getFileId();

}

Listing 4.1: The device library’s file access API

85

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

public class RepositoryClient {
public RepositoryClient(String dnsAddress, int port);

// "wild characters" for lookupFiles() method
public static final int ALL_SCOPE = 0,

KEY_SCOPE = 1, VALUE_SCOPE = 2;
// "wild characters" for getPCRIds() method
public static final int ANY_DEVICE = -1;
public static final String ANY_FILE = "file://";
// constants for statusMask in getPCRIds()
public static final int DEVICE_UNAWARE = 1,

DEVICE_NOTIFIED = 2, DEVICE_UPTODATE = 4,
DEVICE_HAS_OLDER_REVISION = 8;

// file lookup
public List lookupFiles(String[] terms, int scope);
// submit push-cache request -- returns PCR id
public int submitPCR(String fileId, int devId,

Date start, Date stop, boolean liveUpdate);
// locate PCRs
public int getPCRIds(String fileId, int devId,

int statusMask);
// review specific PCR status
public int get PCRStatus(int PCRId);
// cancel a pending PCR
public int cancelPCR(int PCRId);

}

Listing 4.2: The repository library’s API

public void annotationHandler (List annotationList) {
Iterator it = annotationList.iterator();
while (it.hasNext()) {

// iterate through the
// "to be attached" annotations
Annotation an = (Annotation) it.next();
if (an.getKey().equals("location"))

it.remove(); // remove "neighbor" keys
}

}

Listing 4.3: A sample file annotation handler

86

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

LookupTask lt = storage.createTask();
lt.searchKey ("file type", "photograph");
lt.searchTerm ("cafeteria");
lt.addMatchListener(this);
lt.activate();

Listing 4.4: A sample file lookup task

87

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

88

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 5

Evaluation

5.1 Usage

The laboratory setup used to test the system is as follows: The repository and

registry daemons are both1 installed on a server with a wired connection to the

Internet. The Internet access daemon is installed on several PCs equipped with

both wired and wireless adapters, acting as network access points. PDAs are used

as portable devices, running different applications that simulate more purposeful

devices such as music players, digital cameras, digital photo frames and mobile

phones.

We have created two applications for demonstrating access to the repository

and registry services from hosts in the infrastructure. The registry management

application (Section 5.1.2) is a web application for accessing device registry ser-

vices from anywhere, using a web browser. The repository management applica-

tion (Section 5.1.3) is its equivalent for repository services.

1It is not a requirement that the registry and repository daemons be co-hosted.

89

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

In addition, we have created some mock-up devices (Section 5.1.1). The mo-

bile phone, digital camera, and digital photo frame have OmniStore’s storage

component installed and are used to demonstrate the system’s functionality. The

digital context provision device (Section 5.1.1) is intended to be placed in the

infrastructure as a source of contextual information for devices.

We next discuss each of these elements.

5.1.1 Mock-up devices

Mobile phone

This program displays a GUI resembling a mobile phone device and is installed on

PDAs to experiment with OmniStore usage scenarios. The standard pick up, hang

up and dialing number buttons are displayed, along with a record button which

allows one to record voice-memos or phone-calls.

When the pickup button is pressed, the device’s state switches to “call in

progress” mode, in which a random phone number is selected from the phone

book and used to publish local entries in the context tuple space (Section 3.5.1).

The hangup button clears the state returning the phone to idle mode and removing

those context tuples. Figure 5.1 shows the phone with a call in progress.

When the record button is pressed, an audio file is created by our application,

which undergoes all of OmniStore’s processing operations: automated annotation

with context information (Section 4.5.1) and asynchronous archival to the reposi-

tory (Section 4.4.1).

As a result of the local context tuples that contain calling party information,

recordings are annotated with the name and phone number of the person one

90

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

is presumably talking to. The phone will furthermore annotate the file with a

type key whose value is set to voice-memo recording or phone-call

recording, depending on whether or not a call was in progress when the record-

ing was made. Additional information (such as location information from the

context provision device described in Section 5.1.1) may be attached to the file,

depending on the proximity of the mobile phone to other devices.

(a) (b)

Figure 5.1: Mobile phone (left) and digital camera (right) device

Digital camera

The digital camera application displays a GUI resembling such a device and can

be installed on PDAs to demonstrate OmniStore scenarios. Figure 5.1 depicts the

GUI.

When the record button is pressed, an image file is created by our application,

which undergoes all of OmniStore’s processing operations: automated annotation

91

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

with context information (Section 4.5.1) and asynchronous archival to the reposi-

tory (Section 4.4.1). The file is annotated with an illuminance reading taken from

the camera’s light sensor. Additional information (such as location information

from the context provision device described in Section 5.1.1) may be attached to

the file, depending on the proximity of the camera PDA to other devices.

Context provision device

The context provision device is an application whose purpose is to generate con-

text tuples. Presumably, such a device would be programmed to advertise some

type of static context information and deployed in the infrastructure. For exam-

ple, it can be configured to advertise room location information. The screenshot

in Figure 5.4 shows two recordings created by the mobile phone device, one of

which was recorded when the mobile phone PDA was in our laboratory, which

has a context provision device advertising location context.

Alternatively, this program can be installed on a PDA and be configured with

the identity of a person. It can then be used to simulate an active badge carried by

that person.

Digital photo frame

A digital photo frame is a device that is used to decorate our living environments,

on which photographs are placed and are used to display a slideshow. The digital

photo frame application is installed on a tablet PC which is used to simulate this

facility.

There is not much else to present regarding this device, as it is embarrassingly

simple. Our intent is to demonstrate that even such a device can benefit from

92

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

running OmniStore. As described in detail in the usage scenarios of Section 5.1.4,

users can take photographs with the digital camera (Section 5.1.1) and later use

our repository management application (Section 5.1.2) to lookup and push photos

onto the frame, altering the slideshow remotely.

5.1.2 Registry management application

The registry management application is a set of Java server pages (JSP) and

servlets using the registry library to provide a web-based interface to the registry’s

services. This makes it possible to interact with the registry from any Internet-

connected host, with the help of a web browser.

The main purpose of the registry management application is to handle device

registration requests (Section 4.2.1). As discussed in Section 4.6, new devices

must be registered in order to be recognized by the rest of the user’s devices.

Figure 5.2 shows the registry management application listing pending registration

requests for three devices, which have completed the first stage of registration

and are waiting for their requests to be approved. The user may accept them to

complete the process, or reject them to abort it.

Figure 5.3 shows a sample of the registry management’s applications output,

when the user requests to see a list of registered devices: a digital camera, a mobile

phone and a context provision device. Notably, the repository is shown in the

registry’s device list, as it is itself a “home appliance” purchased by the user. It

has both Internet and ad-hoc networking adapters and may thus interact with other

devices in an ad-hoc fashion when the user keeps them at home. Therefore it has

been registered as well.

93

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Figure 5.2: Registry management – pending registration requests

Figure 5.3: Registry management – listing registered devices

94

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

5.1.3 Repository management application

The repository management application is a set of Java server pages (JSP) and

servlets built using the repository library, in order to make repository services

accessible to users. The operations exported are annotation-based lookup and re-

trieval of files, as well as managing push-cache requests. They may be performed

using any Internet-connected host with a web browser.

The web form of the repository management application for looking up files

can receive any number search terms, optionally restricting the search operation

to the key or value fields of annotations. Figure 5.4 shows the results of search-

ing for the term %recording% (the % character is a wild-character) among the

repository’s files. The user may adjust the searh terms and resubmit the request,

or double-click on a file to download it.

In this example, we have previously created two sample recordings using our

mobile phone device (Section 5.1.1). One of the recordings was created when

the mobile phone was near our context provision device (Section 5.1.1) which

is placed in the laboratory. That file is thus annotated with the relevant location

information.

A useful feature of the web-based application is that the user may at any time

lookup a file and request that it be push-cached to a specific device. The device

need not be carried by the user, or even turned on, at the time the request is made.

Figure 5.5 shows the web form used to submit such requests. In the example, a

phone call recording was selected to be sent to the mobile phone, for a certain

period of time. The push-cache request’s parameters are entered in the panel on

the left. The panel on the right is used to lookup device identifiers and files,

95

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Figure 5.4: Repository management – annotation-based lookup

Figure 5.5: Repository management – creating a push cache request

96

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

using human-readable terms such as “phone” or “recording”. Double-clicking on

a search result transfers the value to the respective field of the push-cache request’s

data entry panel.

5.1.4 Usage scenarios

Using the mock-up devices presented in Section 5.1.1, we can demonstrate some

interesting usage scenarios. In the following, we attempt to narratively present

the potential of our system, by unfolding a story which can be realized using the

mechanisms implemented in OmniStore.

Catherine receives an e-mail from the marketing manager, which informs her

that, due to a colleague falling ill, she must travel to Berlin and visit some clients

to give a presentation of her company’s new product. The flight’s itinerary, hotel

reservation information, presentation schedule and presentation file, are all at-

tached to the e-mail. The groupware suite automatically updates her schedule to

reflect that she will be out of office and adds the presentation meeting to her calen-

dar. In addition, it contacts her repository to upload the presentation and schedule

a push-cache request2 targetting her mobile phone, using the travel dates as the

caching period and activating the live-update feature (Figure 5.6, steps 1 and 2) .

On the day prior to the meeting, Catherine leaves work to go to the airport.

Her phone has already received the presentation file from an access point in her

office (Figure 5.6, step 3). While commuting with the airport shuttle, a colleague

calls her to discuss some ideas for improving the presentation. She records the

conversation so that she may later refer to it (Figure 5.7). While waiting to board

2Since we have not written a groupware suite, we must use the repository management appli-
cation to upload the file and submit the push-cache request.

97

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

the plane, an access point in the lounge is used to archive the recording to the

repository (Figure 5.8).

In the evening, Catherine is reviewing her presentation on her laptop. She fires

up the file browser and searches for the phone-call recording using her colleague’s

name and “airport shuttle” as search terms. She makes some changes to reflect

what was said and goes to bed (Figure 5.9). During the night, her phone is updated

with the latest version of the presentation (Figure 5.10) and also makes a replica

of it on her watch (Figure 5.11).

Early in the morning, prior to going to the meeting, Catherine strolls around

downtown Berlin and takes some photographs. She then proceeds to the client

offices on time for her presentation. During the presentation, her digital camera

is sending the photographs to the repository (Figure 5.12). Meanwhile, Catherine

does not notice that her phone is running out of battery, causing the projector to

switch to her watch for reading the subsequent slides (Figure 5.13).

In the afternoon, Catherine relaxes at her hotel room. She logs into the In-

ternet and pushes some photos to the digital frame in the living room. When

the frame contacts the repository, it starts downloading the pushed photos (Figure

5.14). During this process, its free space drops dangerously, triggering garbage-

collection. Some of the older photos are automatically deleted, in order to make

enough space. Some time later, her husband calls and fills her in on the excitement

the photos caused when the kids noticed them.

98

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

1. Upload presentation
2. Push-cache to mobile phone

3. Fetch file via
office access point

Figure 5.6: Request presentation to be sent to the phone

Collect context

Annotate KEY VALUE
 location airport shuttle
 calling party John Doe
 phone number +302351007375
 type phone-call recording

New file

Sound
file

Figure 5.7: Annotate phone-call recording with context

Archive recording
via airport access point

Figure 5.8: Archive phone-call recording via airport access point

99

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

1.Edit presentation
(with repository library)

Figure 5.9: Edit the presentation using the laptop

Update presentation
to latest version

Figure 5.10: Live-update of the presentation on the phone

Replicate presentation
on watch

Figure 5.11: Replicate the presentation on the watch

100

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Access
presentation

Archive
photos

Figure 5.12: OmniStore activity during the presentation

X

Archive
photos

Access
presentation

Figure 5.13: Transparent fail-over

101

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

2.Fetch photos
via home access point

1. Submit push-cache
requests for new photos

Garbage-collect
old photos

Figure 5.14: Pushing photos to the digital frame

102

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

5.2 Performance evaluation

We performed measurements to determine OmniStore’s performance regarding

execution speed, memory consumption, network protocols and storage access.

This Section presents and discusses the results.

Our tests were performed using a PDA, a desktop and a laptop computer. The

PDA ran our mock-up devices (Section 5.1.1), whereas the desktop and laptop

computers hosted the repository/registry service and the network access point ap-

plication respectively.

The PDA’s processor was a 206MHz StrongARM SA-1110 with 16MB of

RAM. The permanent storage device was a PCMCIA CompactFlash EPROM

which was the added to the PDA using an appropriate sleeve. The adapter was

capable of 1,3MB/sec read and 500KB/sec write throughput (direct device I/O

without file-system overhead). All systems were running a JVM on top of Linux.

For technical reasons, we were unable to perform some of the measurements

presented using the PDA. Specifically, the execution time and memory consump-

tion figures (Appendix A.1, B.1, C.1) were obtained from the laptop computer.

We took some measures to reduce the impact of measuring on a more capable de-

vice, by restricting the processor’s (AMD Athlon XP-M) clock speed to 500MHz

and using the PCMCIA CF card for storage. In addition, we restricted the memory

available to the JVM to 16MB.

Evidently, the figures obtained from the laptop are better than those that would

have been recorded had we used the PDA. We ran a popular benchmark3 on the

“slowed down” laptop and the PDA, obtaining performance indexes of 12.0 and

3The benchmark is written and used by a major-circulation global computer magazine.

103

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

3.52 respectively. However, because the PDA is an old model4, we expect the per-

formance of contemporary PDAs to closely match that of the laptop. Therefore,

the execution speed timings are indicative of what can be expected from modern

embedded systems.

In any case, we used the system on our old and slow PDA, without experi-

encing any performance-related usability issues (e.g. lagging interactivity). Thus,

absolute performance does not constitute a problem, whereas the relative perfor-

mance of the various operations can still be deduced from the laptop. Further-

more, memory consumption is not affected by the processor and the measurements

should be almost identical for both the laptop and the PDA (the Java byte-code for

both systems is produced from the same compiler and both systems use 32-bit

word-addressable memory subsystems). Finally, we note that with the exception

of these specific measurements, the rest of the tests and results were performed on

the PDA.

5.2.1 Core services

Execution time statistics are given in Appendix A.1, whereas memory consump-

tion statistics are given in Appendix B.1. We obtained these measurements by

profiling the execution of our code on an information beaconing device. During

the test, the (presumably newly purchased) device was first registered with the

owner’s device registry and then placed in the laboratory. A management applica-

tion was then used to program the beacon to provide location information. In this

section we discuss some focal points of the measurements obtained.

4The PDA’s processor runs at 206MHz, whereas the latest model in this line runs at 533MHz
and also features major architectural improvements.

104

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Execution time

Appendix A.1 lists execution timing data gathered by the runtime. As can be seen

in the data, the most heavily used package overall is gr.jpan.datastructs,

which contains various data structures used throughout the runtime. The meth-

ods with the largest number of invocations belong to the linked list’s iterator class

(LinkedList$LLIterator), namely hasNext() and next(). The rea-

son for this is because the main engine loop processes tasks in a FIFO fashion,

which are retrieved from a linked list. Every packet received / sent by our runtime

causes such a task to be processed. However, the runtime’s services generally use

hash maps (HashMap) to achieve better performance in searching.

We next focus on the discovery system, the important methods of which (from

an application’s perspective) are: registerInterest(), registerSer-

vice(), setActiveDiscovery(), setActiveAdvertize() and get-

Providers(). Service registration occurs in roughly 3.3ms, whereas interest

registration requires almost twice as much. Turning ‘active’ mode on in each

case requires 0.24ms and 0.46ms respectively. The increased cost in searching

for services as opposed to exporting them, is due to the fact that more complex

data structures are employed to track application interest. Finally, a list of match-

ing providers for a service can be retrieved with getProviders() in just two

tenths of a millisecond.

The methods with the most impact on discovery performance are process-

ReceivedLookup() and processReceivedAdvertisement(). These

are called every time a beacon with discovery information is received, to extract

and process the discovery data. The system requires 0.21ms to process lookups

105

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

and 0.54ms to process advertisements. These operations are based on hash map

lookups.

Moving on to context manipulation operations, one can see that posting a new

tuple with post() requires 0.73ms, whereas retrieving a tuple with read()

requires 0.3ms. Incoming beacons with context information are processed in just

0.076ms by processFrame(). Again, as is the case with service discovery,

these operations are backed by hash maps.

Memory consumption

Section B.1 presents memory consumption information. The discovery system

uses 344 bytes to manage one advertized service (the beacon management inter-

face) and one tracked service (the device registry which is looked up to perform

registration). The context manager occupies 264 bytes, with its three entries ac-

counting for 144 bytes of those. The hash maps and linked lists used to manage

this information make up of another 8.5kb. It should be noted that the memory

consumption of both service discovery and context management grows linearly,

with the number and the length of the relevant strings: the name representing the

service tracked / advertized in the first case, or the key and value pair for each

context entry in the latter case.

The total active data memory footprint of the runtime is 176024 bytes. The

runtime’s compiled code amounts to 351445 bytes. The total memory usage dur-

ing execution is thus 527469 bytes (515KB).

106

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Context dissemination

Context dissemination performance depends on the beaconing period used by the

device exporting the information. As was discussed in Section 3.1, the runtime

uses three beaconing rates: idle, normal and fast. When a device contains new

context information (i.e. a new key was posted or the value of an existing key

was updated), the fast beaconing rate is used to emit beacons. Assume the period

among beacons for a device are Tidle, Tnormal and Tfast. Furthermore, assume that

M discovery tasks (active lookups and/or advertisements) are registered with the

system. If an application posts N tuples immediately after a beacon has just been

emitted (which is the worst case scenario), the first of these tuples will be exported

in at most 2 ∗ Tfast time and the last in (M + N) ∗ Tfast time.

In the general case however, a device will export beacons using the Tnormal

period. Our trial uses have shown that fast beaconing periods (Tfast) can be as

large as 2 seconds, whereas normal periods (Tnormal) can be as large as 10 seconds

and still accommodate the real-time requirements of users. For example, using

these value, a user entering a room containing an information beaconing device

will receive up to 6 context entries within a minute (provided the device maintains

the normal emission rate and does not accelerate).

These calculations do not take into account the time required to transmit the

beacon, as well as the time required for the packet to travel from one node to an-

other, as these are orders of magnitude smaller than the beaconing periods used.

They also do not consider the effect of collisions and packet loss which we discuss

next. Beacons are relatively small packets (up to 256 bytes) transmitted at very

low rates (6 packets per minute), causing negligible load (a 6∗256∗8/60 = 205bps

107

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

stream) on the network. A standard 54Mbps WLAN could theoretically accom-

modate hundreds of thousands of such streams. Practically, any congestion that

arises will be due to other (application) traffic in the PAN, or due to unrealistically

(at this time) large numbers of nodes in a small area. In a congested network,

performance will depend on the type of radio modulation / demodulation and

medium access control mechanism employed by the wireless network technology

in use. In any case, one should not forget that perfect dissemination of context

information is not critical for the operation of our a system.

Service discovery performance

Service discovery performance is similar to that of context dissemination, as it

shares the same underlying mechanism. There are two ways to discover a service:

by actively polling the PAN (emitting lookup beacons), or by passively monitoring

the PAN with the hope of receiving a relevant advertisement. The latter method is

preferable for infrastructure services (e.g. network access points) when an asyn-

chronous task which does not require user interaction (e.g. data backup) is to be

performed. The former method is preferable when searching for services to per-

form an interactive (e.g. list files in the PAN for the user) or an urgent (e.g. find a

device with free space to offload files) task. We discuss the time required in each

case.

Assume an active discovery lookup is submitted at time T1 and that the bea-

coning periods for the device are Tidle, Tnormal and Tfast. The device will imme-

diately emit a lookup beacon, followed by another one at T1 +Tfast and then more

beacons at T1 + Tfast + I ∗ Tnormal, where I is the number of the next beacon to

be emitted. Devices in the PAN reply almost immediately, as lookup beacons are

108

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

processed in 5ms (see Appendix A.1), which is negligible compared to Tfast and

Tnormal. Therefore, a Tnormal period of around 10 seconds, with a Tfast period of

around 2 seconds can yield satisfactory interactiveness, as a nearby service will

be detected in 2 seconds, or at most in 10 seconds after the user has performed

some action (moved to another location / turned on a device), in response to it not

being detected5.

Passive discovery depends on the normal beaconing rate of a device. With a

Tnormal period of 10 seconds, devices carried into a room where the user spends

some time, will easily pick up any services within it.

5.2.2 Storage system operations

Local device access

Appendix C.1 lists execution timings related to storage access methods on a portable

device. We perform 50 invocations of read() and write() using a 1KB buffer,

which require an average of less than 1ms to process (the storage medium’s cache

causes the methods to return immediately prior to actually writing the data to the

medium). The time required to list all annotation keys with listKeys() 37ms,

whereas retrieving all values for a specific key with getAllKeyValues()

costs 6ms. Creating / modifying an annotation with updateAnnotation()

costs 5ms.
5Compare this to the 12.8 seconds in which – as described in the Bluetooth specification [The]

– a device is discovered in the PAN, which is considered acceptable.

109

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

File transfers

OmniStore performs two types of file transfers: one (from one device to another

one in the PAN) occurs strictly within the wireless network, whereas the other uses

network gateways and transcends both the wireless network and the infrastructure

network (from a portable device to the repository or vice-versa). The protocol

used to transfer the data is the same. However, when transferring files from / to the

repository, the transfer rate is affected by network conditions among the network

access point and the repository server. We therefore installed the infrastructure

server and network gateway in the same isolated 100MBps LAN, to ensure that

outside traffic does not affect our measurements. The wireless network used was

an 11MBps WLAN in ad-hoc mode. Our testbed consists of two PDAs, a network

gateway and a server running the repository and registry services.

We had the device perform file backups using the gateway. Four files – each

256KB in size, totaling 1MB of data – along with 6 annotations per file, were sent

to the repository. The transfer’s duration was 6525ms, which translates into a rate

of 156.935KB/sec. We transferred those same files from the PDA to the repository

using the UNIX rcp command (without their annotations) in 4233ms; this trans-

lates into a 241.909KB/sec throughput. The reduced rate can be attributed to: (i)

the fact that we update annotations on the CF card after each file is transferred, in

order to change the dirty annotation, (ii) the fact that our backup occurs through

a network tunnel to the repository, (iii) the fact that we transfer slightly more data

(e.g. the file annotations, or the handshake information to support incremental file

transfers) during backup, and (iv) because our TCP implementation is less opti-

mized6. than that of the Linux kernel. One must also consider that our network
6The small packet MTU (512 bytes compared to 1500 normally used in WLAN/IP) and the

110

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

stack runs in a virtual machine in user space.

We then sent these files to the PDA, using push-cache requests. Transfers

from the repository to the PDA yielded similar transfer rates. This was to be

expected, since the CF card’s write throughput (500KB/sec) does not constitute a

bottleneck. Finally, direct OmniStore-to-OmniStore transfers (e.g. for replication)

did not exhibit any significant deviation as well.

As a final note we point out that, since transfers occur incrementally in the

background, file transfer rates are not critical to the system’s operation.

fixed window size have a big impact in the ideal network conditions of our testbed.

111

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

112

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 6

Related work

Portable storage does have advantages over distributed file systems. For this rea-

son, its popularity has not been diminished, in spite of the increasing level of

network coverage. Portable storage offers guaranteed performance; in contrast,

distributed file system performance is subject to network congestion. Availability

is also guaranteed, provided the storage medium does not fail. Distributed file

systems – besides server failure – are also subject to other types of failure (such

as network outage, operator errors, etc). An overview of the advantages and dis-

advantages of the two fronts can be found in [THKS04], which justifies the place

of portable storage in upcoming ubiquitous computing environments.

The concept of an“ultimate” portable storage device, which holds all of a

user’s data, is investigated in [WPD+02]. The idea is that all user data resides

in the personal server, a single portable storage device with ad-hoc networking

capability and no U/I elements. The user accesses the data through terminals in

the environment which form ad-hoc connections to the personal server. This ap-

proach is interesting as it takes the active store concept to the extreme, although

113

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

admittedly one is unlikely to discard of all backend storage, if only to avoid dis-

aster scenarios in which the personal server fails and all user data is lost. Such a

device nicely fits into our model as a more capable portable store that is carried

by the user more often than others. In fact, we have implemented a similar device,

called the electronic wallet, which was used as the main data and application store

of our first prototype system [LKSS03].

Rather than centering the ultimate storage solution around one portable de-

vice, the other end of the spectrum is the unified management of both portable

and backend storage in which portable storage acts merely as a cache. This is also

the approach taken by OmniStore. A similar concept can be found in [THKS04],

where the “lookaside caching” technique is presented. Lookaside caching allows

updating the files on a portable storage medium when it is mounted, by means of a

hash function (the authors use SHA-1) which triggers updating of files whose hash

has changed on the server. While this work was devised with passive stores (non-

network-capable storage devices) in mind, it is equally applicable to PAN-based

stores: a dismounted passive store corresponds to a device that cannot commu-

nicate with the repository. The provided functionality is similar to push-caching

technique with live-update enabled on all files. However, by using the WORM

approach [MTX03] for deep archival, combined with our naming scheme, we are

able to detect different file versions through simple comparison of file identifiers.

Moving on to infrastructure-based approaches, Coda [Sat02] is the most well-

known system addressing mobile computing. It uses optimistic caching to repli-

cate the working set of user files on laptops and keep them in sync with the

server. The UbiData [HH04] system builds upon Coda to address the existence of

resource-limited clients such as PDAs. It supports transcoding of data in combi-

114

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

nation with a system for “format-independent change detection and propagation”,

which allows consolidating changes made to transcoded versions using different

applications. This is aimed to enable data editing via applications which employ

different formats, a common case in stripped-down PDA versions of desktop ap-

plications. Both Coda and UbiData mainly address relatively rich clients such

as laptops and PDAs, which have much in common with the personal computer

model. Our design targets less capable, specific-purpose devices and assumes that

users will want to carry and use several such devices at the same time. We also

introduce significant collaborative functionality among portable devices.

An improvement over a centralized repository is the use of a distributed back-

end storage service. The Roam system [RRP04] which uses peer-to-peer com-

munication and can perform synchronization among any two replicas seems well-

suited for deploying such an infrastructure. Another equally sophisticated system

is OceanStore [KBC+00], which can further exploit untrusted servers for storing

information. Needless to say, OmniStore’s repository would benefit from a dis-

tributed approach, in which multiple backend servers are used to hold user data.

The treatment of files as immutable objects was first introduced in Cedar

[SGN85, Hag87]. Deep archival offers several advantages and its use has been

employed by systems such as the Elephant [SFH+99] file system and more re-

cently Sedar [MTX03]. The later is closer to our design as it combines both deep

archival and semantic organization. Again, these systems do not address mobile

devices. We point out that since deep archival keeps all revisions of all files in the

repository, data reconciliation may occur at a higher level using approaches such

as [Lin03] to generate merged copies.

Semantic annotations have been the target of research for a while [GJSO91,

115

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

GM99] and researchers seem to agree that they are a more flexible and power-

ful way of managing files. Recently, their use in combination with deep archival

[XKTK03] was suggested to further simplify storage management. The core is-

sue now is the automatic generation of annotations [SG03] in order to relieve

users from manual entry. Our method [KL06a] of automatically annotating files

generated on portable active stores using context information (e.g. sensor data)

of various devices which are present in a PAN. A significant amount of meta-

information can be generated using our technique with absolutely no user input.

In terms of meta-data management, our system shares some analogy with the

Roma [SKW+02] personal meta-data service. Roma uses a server to store meta-

information regarding user files. It operates at higher level than OmniStore, using

URIs to refer to the files indexed. However, Roma does not deal with the files

themselves and makes no provisions for automating storage management opera-

tions.

Our portable device runtime can be seen as the realization of the vision de-

scribed by Shivers in [Shi93], the “BodyNet”. In it, a short-range hardware

communications system connects a set of personal devices with a common in-

terface language: “BodyTalk”. Our underlying runtime system supports such a

distributed approach.

A similar architecture for collaborating wearables is MEX [LHSA99], where

a single component, the post-office, implements both a service directory and an

event router. Services are thus undetectable and inaccessible without this inter-

mediary. With our approach any service can be discovered and accessed directly

from any client device. The MOCA [BGI99] framework is also targeted towards

mobile devices, advocating service-based decomposition of applications and sub-

116

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

sequent dynamic binding to discovered services. A limitation is that MOCA is

strictly Java-based as services are accessed via Java proxy objects. For this same

reason, MOCA exhibits a high degree of location transparency as it does not dif-

ferentiate among local and remote services. Our approach bases interoperability

on the neutral communications layer allowing for implementations in various lan-

guages. It allows applications to communicate with services directly, to facilitate

mobile-aware development. Transparency is optional via libraries for masking the

developer from the dynamic execution setting.

Most of mobile computing middleware does not address the issue of service

selection. Focus is typically either on the technicalities of enabling spontaneous

interaction [HKSSR97, BGI99, RNP03], or on specific application scenarios and

requirements [LHSA99, KS03] where the high granularity of functionality will

generally not give rise to association issues. We introduce co-location statistics as

a metric is used to efficiently perform this task.

Some analogy exists among our approach to exploit co-location history to in-

fer device proximity (and thus availability) and work in P2P networks for achiev-

ing fault-tolerance. In [CY04], nodes gather history regarding faulty behavior of

peers, over some observation period. Services are then replicated on nodes which

fail within different time-slots, thereby decreasing the probability of service un-

availability due to concurrent failure. This work is however not applicable to our

MANET setting, nor to resource-constrained devices.

Further insight into the potential use of co-location history can be found in

comparison to the analysis of user location information, e.g. see [AS03]. In this

case GPS time and location stamps are recorded using a wearable device, and

are subsequently used to infer discrete locations (in the higher level sense of the

117

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

word) based on the areas where a person spends significant time. This data is

further exploited to compute the correlation among such locations as a function

of time in order to predict user movement. Such elaborate analysis could also be

applied to study device co-location patterns, provided that a device has enough

memory resources to be able to keep more detailed information.

The importance of context information has led to toolkits for collecting and

processing it both by using infrastructure [Dey01] and also by aggregation from

multiple sources [GSB02]. The latter is the natural choice for PAN-based comput-

ing environments and used in our work. Context is used to create context-aware

applications [Rho03], user interaction mechanisms [Sch00] and even context-

sensitive middleware [Yau02] layers. In our work, context information is ex-

ploited to create semantic annotations for files created on portable devices in a

generic way. The facility is generic and is available for use by developers to cre-

ate any kind of context-aware applications.

118

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Chapter 7

Discussion

OmniStore is an attempt to take personal data management a step forward in the

direction of the ubiquitous computing vision. Its combination of features is de-

signed to remove the burdens associated with storage management from the user.

As a result, a significant source of distraction is eliminated, allowing people to

focus on their goals rather than on operating computers.

The advantages enjoyed due to the automated and generic annotation of files

with context information can be summarized in the following points: (i) users

may flexibly navigate through their files or lookup specific files using contextual

information regarding their creation, (ii) users may review contextual information

regarding a file’s creation for their own information, and (iii) users are greatly

relieved from having to explicitly manage or annotate the files being created on

the move via their wearable or portable devices.

The rest of OmniStore’s features facilitate data placement activities. The au-

tomated archival of files to the repository means that users need not worry about

the location of files created using portable devices; they know that ultimately they

119

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

can be reached using the repository. The push-caching facility on the other hand

means that users may schedule file transfers when they so desire; the file and

device need not be at hand at the time the request is issued. This is important

because we allow the user to decide when to interact with the system and not

vice-versa. In addition, applications can exploit implicit input to schedule file

transfers without the intervention of the user. Meanwhile, the automated garbage

collection feature relieves the user from having to manually make space for new

data all the time. Lastly, we point out that the replication of files, combined with

transparent fail-over in the event of sudden unavailability during file access, can

mask mischievous events.

On the other hand, our system has several limitations that need to be addressed.

The most striking one is that we have not considered operations involving multi-

ple users. Due to the importance of this area, have already made provisions for

such future work: our naming scheme guarantees the avoidance of naming con-

flicts, device registries can be used to track permissions and data repositories can

be exploited to assist in performing relevant operations at the infrastructure side.

However, we currently have not investigated, nor implemented, any support for

carrying out common tasks such as file exchange, collaborative work, etc. Work

needs to be done in this direction, to determine what can be accomplished and

what additions / modifications are required to implement the envisaged features.

Another area that must be considered in future work, is that of heuristic op-

eration. At the moment, system actions are driven by simple rules: backup is

initiated at fixed intervals; automatic replication is initiated for push-caching op-

erations that have an expiration date; the process of replicating such files is trig-

gered immediately upon their receipt; free space reclamation is controlled by fixed

120

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

pre-configured ratios, etc. The only source of dynamic, auto-adjustable input in

the system are co-location statistics, but these are only taken into account for data

placement decisions. The possibility of using this input in additional aspects,

along with the applicability of other heuristic methods (such as reputation-based

schemes or machine-learing) needs to be considered.

Other areas of great importance that require in-depth investigation are security

and power-consumption . Although we have kept these in mind, we have not in

fact focused on providing overall solutions, but rather limited ourselves to basic

features. While this oversight was intentional in order to remain focused on one

problem, it is now necessary to pinpoint and address the issues related to these

sensitive fields.

Finally, this work limits itself to user-created personal data files. Few provi-

sions are made for system and / or application data, such as configuration settings,

user-defined preferences, history, etc. We have addressed this area with the device

registry (see Section 4.2.2) in which we implemented support for storing configu-

ration information and making it available through the backbone to all interested

parties. We thus have a solid basis upon which one may build more sophisticated

services. It would be very interesting to see how – and to what extent – Omni-

Store’s approach towards data management can be applied in these other cases of

data.

In any case, even with all its limitations, this work’s most significant con-

tribution is perhaps that both our runtime for developing collaborative services

and applications in ad-hoc networking environments, as well as the storage man-

agement system, constitute enabling technology. The former provides the core

mechanisms required for ad-hoc computing systems in a tight, clean design. Its

121

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

scope goes well beyond the implementation of OmniStore, as it enables the devel-

opment a multidude of applications targeting such dynamic environments. This

is also true for the latter – our storage management system – for it is possible to

build upon its services to develop new ubiquitous computing applications. A lot

of potential exists in server-side processing of the context information attached to

files, by applying data-mining techniques and semantic reasoning. While we can

not forsee all areas that our work can potentially impact, we believe that we have

presented a convincing case for adopting personal data management solutions fol-

lowing our approach.

122

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Appendix A

A.1 Core runtime execution speed analysis

This appendix presents execution speed statistics regarding our runtime. The

meaning of each column of measurements is depicted in table A-1. It should

be noted that due to the large number of methods, we provide aggregate statistics

on a per-package basis. For selected packages, we provide detailed information

on a per-class basis, or even on a per-method basis. The information outlines

the core runtime’s performance, with a focus on service discovery and context

manipulation methods. The results are discussed Section 5.2.1.

Column name Interpretation
Base Time For any invocation, the base time is the time taken to

execute the invocation, excluding the time spent in other
methods that were called during the invocation.

Average Base Time The base time divided by the number of calls.
Cumulative Time For any invocation, the cumulative time is the time taken

to execute all methods called from an invocation. If an
invocation has no additional method calls, then the cu-
mulative time will be equal to the base time.

Invocations The number of calls made to the method.

Table A-1: The execution statistics table fields explained

123

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+]gr.jpan.runtime.components 0,026379 0,000776 0,105279 34

[-]gr.jpan.runtime 64,080588 0,036102 267,617736 1775

[+]Engine 1,025179 0,102518 212,165162 10

[+]BaseSystem 0,140160 0,000118 0,140160 1192

[+]Engine$EngineControl 0,000074 0,000002 0,000074 45

[+]Engine$BasicInterface 0,005655 0,000013 0,261099 431

[+]Engine$PrivilegedInterface 0,000338 0,000007 0,028357 46

[+]Engine$SystemInterface 0,000527 0,000007 0,038767 75

[+]Engine$StartComponentTask 0,000065 0,000005 0,151353 14

[+]SecurityComponent 0,027714 0,005543 0,179399 5

[+]RegistrationComponent 0,055255 0,013814 0,055691 4

[+]RegistrationComponent$RegistrationThread 62,826831 4,188455 63,877439 15

[+]Globals 0,000188 0,000188 0,000199 1

[+]Globals$1 0,000009 0,000009 0,000011 1

124

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+]gr.jpan.infoBeacon 0,028106 0,004015 203,928781 7

[+]gr.jpan.j2se.drivers.commIP 0,932501 0,001160 1,203453 804

[+]gr.jpan.runtime.comm 0,019298 0,000060 0,116667 322

[+]gr.jpan.bootloader 0,385136 0,011671 0,385136 33

[+]gr.jpan.crypto 0,010712 0,000249 0,096507 43

[-]gr.jpan.datastructs 0,251096 0,000048 0,251356 5272

[-]HashMap 0,141535 0,000426 0,151198 332

HashMap(int) 0,072625 0,012104 0,072625 6

get(...) 0,003998 0,000034 0,008818 117

put(...) 0,006353 0,000635 0,007021 10

iterator() 0,022332 0,000263 0,026804 85

lookupEntry(...) 0,000853 0,000009 0,004727 99

valuesIterator() 0,035374 0,002358 0,035929 15

[+]LinkedList 0,092991 0,000078 0,095948 1188

125

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+]LinkedList$Entry 0,001558 0,000002 0,001682 746

[+]ArrayOccupancyMap 0,000117 0,000008 0,000117 15

[-]LinkedList$LLIterator 0,013890 0,000005 0,014050 2676

LinkedList$LLIterator(...) 0,001529 0,000002 0,001529 617

hasNext() 0,010209 0,000008 0,010209 1244

next() 0,001056 0,000001 0,001056 774

addBefore(...) 0,001082 0,000028 0,001225 38

remove() 0,000016 0,000005 0,000032 3

[+]Map$Entry 0,000034 0,000003 0,000034 10

[+]HashMap$MapIterator 0,003478 0,000007 0,010052 483

[+]HashMap$ValuesIterator 0,000154 0,000004 0,001274 42

[+]gr.jpan.runtime.taskQueues 201,904642 0,175722 202,616502 1149

[+]gr.jpan.concurrency 0,000014 0,000014 0,000014 1

[-]gr.jpan.runtime.discovery 0,146062 0,000263 0,266746 556

126

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+]DeviceDetectorComponent 0,091318 0,000755 0,144034 121

[-]ServiceDiscoveryComponent 0,029356 0,000249 0,042426 118

ServiceDiscoveryComponent() 0,000112 0,000112 0,000308 1

piggyDiscoveryStuff() 0,005218 0,000193 0,006567 27

nextDiscoveryTask() 0,000395 0,000015 0,000395 27

registerInterest(...) 0,005995 0,005995 0,006468 1

setActiveDiscovery(...) 0,000097 0,000049 0,000920 2

getProviders(...) 0,001991 0,000181 0,005317 11

processReceivedLookup(...) 0,000295 0,000012 0,005066 24

processReceivedAdvertisement(...) 0,009297 0,000465 0,010712 20

unregisterInterest(...) 0,000016 0,000016 0,000081 1

registerService(...) void 0,005904 0,002952 0,006613 2

setActiveAdvertize(...) 0,000021 0,000021 0,000238 1

unregisterService(...) 0,000016 0,000016 0,000137 1

127

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+]DeviceDetectorComponent$BeaconTask 0,001288 0,000020 0,030672 65

[+]DeviceDetectorComponent$PruneColocDataTask 0,002493 0,000156 0,081561 16

[+]ServiceDiscoveryComponent$ServiceInterestList 0,000058 0,000007 0,000288 8

[+]ServiceDiscoveryComponent$ServiceInterestInfoNode 0,000036 0,000006 0,000036 6

[+]DeviceHistoryInfo 0,023445 0,000115 0,031771 204

[+]ServiceDiscoveryComponent$EndpointDiscoveryInfo 0,000089 0,000002 0,000089 45

[-]gr.jpan.runtime.context 0,008865 0,000097 0,027889 91

[-]ContextManagerComponent 0,003256 0,000099 0,005149 33

-clinit-() 0,000043 0,000043 0,000043 1

ContextManagerComponent() 0,000009 0,000009 0,000020 1

startup() 0,001197 0,001197 0,001650 1

access$0(...) 0,000004 0,000004 0,000004 1

access$1(...) 0,000004 0,000004 0,000004 1

access$2(...) 0,000005 0,000005 0,000005 1

128

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

post(...) 0,000031 0,000010 0,002184 3

internalPost(...) 0,001591 0,000530 0,002139 3

cleanupStaleTuples() 0,000127 0,000032 0,000318 4

notifyAdded(...) 0,000010 0,000003 0,000062 3

processFrame(...) 0,000176 0,000015 0,000911 12

read(...) 0,000049 0,000049 0,000300 1

notifyRemoved(...) 0,000005 0,000005 0,000025 1

[+]ContextManagerComponent$ContextBeaconTask 0,002872 0,000115 0,023019 25

[+]ContextTuple 0,002823 0,000076 0,004586 37

[+]gr.jpan.exceptions 0,000124 0,000062 0,000124 2

[+]gr.jpan.utils 0,009213 0,000709 0,009777 13

129

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

130

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Appendix B

B.1 Core runtime memory consumption analysis

This appendix presents statistics regarding the memory usage of our runtime. The

meaning of each column of measurements is depicted in table B-1. Again, due

to the large number of classes, we provide aggregate statistics on a per-package

basis. For selected packages, we provide detailed information on a per-class basis.

The information outlines the memory usage of the runtime system with a focus on

service discovery and context manipulation. The results are discussed in Section

5.2.1.

Column name Interpretation
Total instances The total number of instances that had been created of

the selected package or class.
Live instances The number of instances of the selected package or class,

where no garbage collection has taken place.
Collected The number of instances of the selected package or class,

that were removed during garbage collection.
Total size The total size (in bytes) of the selected package or class,

of all instances that were created for it, including what-
ever has been removed through garbage collection.

Active size The summed size of all live instances.

Table B-1: The memory consumption statistics table fields explained

131

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Package / Class Total Instances Live Collected Total Size Active Size

(bytes) (bytes)

[+](default package) 1750 1612 138 775624 176024

[+]gr.jpan.bootloader 1 1 0 40 40

[+]gr.jpan.concurrency 1 1 0 16 16

[+]gr.jpan.crypto 7 7 0 168 168

[-]gr.jpan.datastructs 327 327 0 8416 8416

[LinkedList 6 6 0 808 808

ArrayOccupancyMap 1 1 0 24 24

HashMap 6 6 0 96 96

HashMap$MapIterator 24 24 0 576 576

HashMap$ValuesIterator 5 5 0 120 120

LinkedList 16 16 0 384 384

LinkedList$Entry 105 105 0 2520 2520

LinkedList$LLIterator 185 185 0 4440 4440

Map$Entry 6 6 0 96 96

132

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class Total Instances Live Collected Total Size Active Size

(bytes) (bytes)

[+]gr.jpan.infoBeacon 1 1 0 40 40

[+]gr.jpan.j2se.drivers.commIP 45 45 0 984 984

[+]gr.jpan.runtime 13 13 0 368 368

[+]gr.jpan.runtime.comm 12 12 0 240 240

[+]gr.jpan.runtime.components 1 1 0 16 16

[-]gr.jpan.runtime.context 5 5 0 264 264

ContextManagerComponent 1 1 0 56 56

ContextManagerComponent$ContextBeaconTask 1 1 0 64 64

ContextTuple 3 3 0 144 144

[-]gr.jpan.runtime.discovery 5 5 0 344 344

DeviceDetectorComponent 0 0 0 0 0

DeviceDetectorComponent$BeaconTask 1 1 0 64 64

DeviceDetectorComponent$PruneColocDataTask 1 1 0 64 64

DeviceHistoryInfo 1 1 0 88 88

133

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class Total Instances Live Collected Total Size Active Size

(bytes) (bytes)

ServiceDiscoveryComponent 1 1 0 96 96

ServiceDiscoveryComponent$EndpointDiscoveryInfo 1 1 0 32 32

[+]gr.jpan.runtime.taskQueues 3 3 0 64 64

[+]gr.jpan.utils 0 0 0 0 0

[+]java.lang 65 65 0 5744 5744

134

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Appendix C

C.1 Storage system execution time analysis

This appendix presents execution time statiistics regarding the storage system.

The meaning of each column of measurements are the same as those of Section

A.1 and are depicted in table A-1. Yet again, due to the large number of methods,

we provide aggregate statistics on a per-package basis. For selected packages,

we provide detailed information on a per-class basis, or even on a per-method

basis. The information provides an overview of the performance of storage-related

methods and is discussed in Section 5.2.2.

135

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+](default package) 0,000000 0,000000 0,000000 0

[+]gr.jpan.bootloader 0,038258 0,002733 0,038258 14

[+]gr.jpan.comm 0,000300 0,000001 0,000300 217

[+]gr.jpan.components.gatewayClient 0,014306 0,001590 0,082451 9

[+]gr.jpan.components.registry 0,000194 0,000097 0,000622 2

[+]gr.jpan.concurrency 0,000026 0,000026 0,000026 1

[+]gr.jpan.crypto 0,095456 0,010606 2,501784 9

[+]gr.jpan.datastructs 1,954963 0,000046 1,954973 42924

[+]gr.jpan.jni.drivers.commIP 0,294297 0,000257 0,478927 1143

[+]gr.jpan.jni.drivers.storage 1,099043 0,000029 1,099276 38246

[+]gr.jpan.omnistore 0,028335 0,000727 0,438613 39

[-]gr.jpan.omnistore.drivers.jni 26,113380 0,000521 32,583020 50168

[+]AnnotationsFile 6,593798 0,000534 24,093936 12340

[+]AnnotationsFile$AnnotationRecord 15,071270 0,000406 15,071270 37118

136

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[-]OFileHandleJNI 4,263265 0,006610 32,284041 645

close() void 0,000111 0,000111 0,061853 1

getAllKeyValues(...) List 2,108839 0,006202 23,837768 340

listKeys() List 1,881901 0,037638 5,512696 50

OFileHandleJNI(...) 0,013649 0,013649 0,016318 1

read(...) int 0,000642 0,000013 0,000642 50

seek(long) void 0,000685 0,000007 0,000685 100

size() long 0,000027 0,000027 0,000027 1

updateAnnotation(...) void 0,256138 0,004926 2,852805 52

write(...) int 0,001273 0,000025 0,001273 50

[+]OmnistoreDriverJNI 0,168459 0,005809 0,329213 29

[+]OmnistoreDriverJNI$1 0,016589 0,000461 0,016589 36

[+]gr.jpan.runtime 0,286727 0,000227 2.128,790 1264

[+]gr.jpan.runtime.comm 0,130401 0,000574 0,252291 227

137

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Package / Class / Method Base Time Average Cumulative Invocations

(seconds) (seconds) (seconds)

[+]gr.jpan.runtime.components 0,034963 0,000795 0,076783 44

[+]gr.jpan.runtime.context 0,020664 0,000093 0,027455 222

[+]gr.jpan.runtime.discovery 0,140144 0,000138 0,330196 1019

[+]gr.jpan.runtime.taskQueues 2.124,677863 0,319982 2.125,527 6640

[+]gr.jpan.storage 3,677003 0,000144 4,874877 25520

[+]gr.jpan.storageBox 0,243268 0,060817 2.161,482 4

[+]gr.jpan.utils 2,789436 0,000641 2,789436 4352

[+]java.lang 0,000000 0,000000 0,000000 0

138

Institutional R
epository - Library &

 Inform
ation C

entre - U
niversity of T

hessaly
05/06/2024 10:09:07 E

E
S

T
 - 18.191.150.2

Bibliography

[AS03] Daniel Ashbrook and Thad Starner. Using GPS to learn signifi-

cant locations and predict movement across multiple users. Personal

Ubiquitous Comput., 7(5):275–286, 2003.

[BGI99] James Beck, Alain Gefflaut, and Nayeem Islam. MOCA: a service

framework for mobile computing devices. In Proceedings of the 1st

ACM international workshop on Data engineering for wireless and

mobile access, pages 62–68. ACM Press, 1999.

[BLR+04] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy,

Scott Shenker, Ion Stoica, and Michael Walfish. A layered naming

architecture for the internet. In SIGCOMM ’04: Proceedings of the

2004 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 343–352, New York,

NY, USA, 2004. ACM Press.

[Bus96] Vannevar Bush. As we may think (reprint). Interactions, 3(2):35–46,

1996.

[CBR04] Ian D. Chakeres and Elizabeth M. Belding-Royer. AODV Rout-

ing Protocol Implementation Design. In Proceedings of the Inter-

139

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

national Workshop on Wireless Ad hoc Networking (WWAN), pages

698–703, Tokyo, Japan, March 2004.

[CGS+02] Shang-Wen Cheng, David Garlan, Bradley R. Schmerl, João Pedro

Sousa, Bridget Spitznagel, Peter Steenkiste, and Ningning Hu. Soft-

ware architecture-based adaptation for pervasive systems. In Pro-

ceedings of the International Conference on Architecture of Com-

puting Systems, pages 67–82. Springer-Verlag, 2002.

[Cha06] Chakraborty, Dipanjan and Joshi, Anupam and Yesha, Yelena and

Finin, Tim. Toward distributed service discovery in pervasive com-

puting environments. IEEE Transactions on Mobile Computing,

05(02):97–112, 2006.

[CY04] Fang-Yu Chen and Soe-Tsyr Yuan. A contextualized fault-tolerant

infrastructure for P2P mobile service composition. In IEEE Inter-

national Conference on Services Computing (SCC 2004) Shanghai,

China. IEEE Computer Society Press, September 2004.

[Dey01] Anind K. Dey. Understanding and using context. Personal Ubiqui-

tous Comput., 5(1):4–7, 2001.

[GJSO91] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W.

O’Toole, Jr. Semantic file systems. In Proceedings of the thir-

teenth ACM symposium on Operating systems principles, pages 16–

25. ACM Press, 1991.

[GM99] Burra Gopal and Udi Manber. Integrating content-based access

mechanisms with hierarchical file systems. In Proceedings of the

140

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

third symposium on Operating systems design and implementation

(OSDI ’99), pages 265–278. USENIX Association, 1999.

[Gra03] Jim Gray. What next?: A dozen information-technology research

goals. J. ACM, 50(1):41–57, 2003.

[GSB02] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-

sensor context-awareness in mobile devices and smart artifacts. Mo-

bile Networks and Applications, 7(5):341–351, 2002.

[Hag87] R. Hagmann. Reimplementing the Cedar file system using logging

and group commit. In SOSP ’87: Proceedings of the eleventh ACM

Symposium on Operating systems principles, pages 155–162, New

York, NY, USA, 1987. ACM Press.

[HH04] Abdelsalam Helal and Joachim Hammer. Ubidata: requirements and

architecture for ubiquitous data access. SIGMOD Rec., 33(4):71–76,

2004.

[HJ04] Yih-Chun Hu and David B. Johnson. Exploiting congestion infor-

mation in network and higher layer protocols in multihop wireless

ad hoc networks. In Proceedings of the 24th International Confer-

ence on Distributed Computing Systems (ICDCS’04), pages 301–

310, 2004.

[HKSSR97] Todd D. Hodes, Randy H. Katz, Edouard Servan-Schreiber, and

Lawrence Rowe. Composable ad-hoc mobile services for univer-

sal interaction. In Proceedings of the 3rd annual ACM/IEEE in-

141

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

ternational conference on Mobile computing and networking, pages

1–12. ACM Press, 1997.

[ISI81] University of Southern California Information Sciences Institute.

Transmission control protocol (TCP). RFC 739, Internet Engineer-

ing Task Force (IETF), September 1981.

[JM96] David B Johnson and David A Maltz. Dynamic source routing in

ad hoc wireless networks. In Imielinski and Korth, editors, Mobile

Computing, volume 353. Kluwer Academic Publishers, 1996.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,

Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea,

Hakim Weatherspoon, Chris Wells, and Ben Zhao. Oceanstore: an

architecture for global-scale persistent storage. In ASPLOS-IX: Pro-

ceedings of the ninth international conference on Architectural sup-

port for programming languages and operating systems, pages 190–

201, New York, NY, USA, 2000. ACM Press.

[KL05] Alexandros Karypidis and Spyros Lalis. Exploiting co-location his-

tory for efficient service selection in ubiquitous computing systems.

In 2nd International Conference on Mobile and Ubiquitous Sys-

tems (MobiQuitous 2005): Networking and Services, pages 202–

209. IEEE Computer Society Press, July 2005.

[KL06a] Alexandros Karypidis and Spyros Lalis. Automated context aggre-

gation and file annotation for pan-based computing. Personal Ubiq-

uitous Comput., 11(1):33–44, 2006.

142

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

[KL06b] Alexandros Karypidis and Spyros Lalis. OmniStore: A system for

ubiquitous personal storage management. In Proceedings of the

Fourth Annual IEEE International Conference on Pervasive Com-

puting and Communications (PerCom’06), pages 136–147. IEEE,

March 2006.

[KS03] Gerd Kortuem and Zary Segall. Wearable communities: Augment-

ing social networks with wearable computers. IEEE Pervasive Com-

puting, 2(1):71–78, 2003.

[LHSA99] Juha Lehikoinen, Jussi Holopainen, Marja Salmimaa, and Angelo

Aldrovandi. MEX: A distributed software architecture for wearable

computers. In Proceedings of the 3rd IEEE Internation Symposium

on Wearable Computing, pages 52–57, 1999.

[Lin03] Tancred Lindholm. XML three-way merge as a reconciliation en-

gine for mobile data. In MobiDe ’03: Proceedings of the 3rd ACM

international workshop on Data engineering for wireless and mobile

access, pages 93–97, New York, NY, USA, 2003. ACM Press.

[LKS05] Spyros Lalis, Alexandros Karypidis, and Anthony Savidis. Ad-hoc

composition in wearable and mobile computing. Commun. ACM,

48(3):67–68, 2005.

[LKSS03] Spyros Lalis, Alexandros Karypidis, Anthony Savidis, and Constan-

tine Stephanidis. Runtime support for a dynamically composable

and adaptive wearable system. In Proceedings of the 7th IEEE Inter-

143

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

nation Symposium on Wearable Computing, pages 18–21, October

2003.

[LV03] Peter Lyman and Hal R. Varian. How much information.

http://www.sims.berkeley.edu/how-much-info-2003 on 31 January

2006, 2003.

[MTX03] Mallik Mahalingam, Chunqiang Tang, and Zhichen Xu. Towards

a semantic, deep archival file system. In Proceedings of the 9th

IEEE Workshop on Future Trends of Distributed Computing Systems

(FTDCS’03), pages 115–121. IEEE Computer Society, May 2003.

[NKR+02] Chandra Narayanaswami, Noboru Kamijoh, Mandayam Raghunath,

Tadanobu Inoue, Thomas Cipolla, Jim Sanford, Eugene Schlig,

Sreekrishnan Venkiteswaran, Dinakar Guniguntala, Vishal Kulka-

rni, and Kazuhiko Yamazaki. IBM’s Linux watch: The challenge of

miniaturization. IEEE Computer, 35(1):33–41, January 2002.

[PB94] Charles E. Perkins and Pravin Bhagwat. Highly dynamic

Destination-Sequenced Distance-Vector routing (DSDV) for mobile

computers. In SIGCOMM ’94: Proceedings of the conference on

Communications architectures, protocols and applications, pages

234–244. ACM Press, 1994.

[Rho03] Bradley J. Rhodes. Using Physical Context for Just-in-Time Infor-

mation Retrieval. IEEE Transactions on Computer, 52(8):1011–

1014, 2003.

144

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

[RNP03] Mandayam Raghunath, Chandra Narayanaswami, and Claudio Pin-

hanez. Fostering a symbiotic handheld environment. IEEE Com-

puter, 36(9):56–65, 2003.

[RRP04] David Ratner, Peter Reiher, and Gerald J. Popek. Roam: a scalable

replication system for mobility. Mob. Netw. Appl., 9(5):537–544,

2004.

[Sat02] M. Satyanarayanan. The evolution of coda. ACM Transactions on

Computer Systems (TOCS), 20(2):85–124, 2002.

[Sch00] A. Schmidt. Implicit human computer interaction through context.

Personal Technologies, 4(2-3):191–199, June 2000.

[SFH+99] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alis-

tair C. Veitch, Ross W. Carton, and Jacob Ofir. Deciding when to

forget in the elephant file system. In Proceedings of the seventeenth

ACM symposium on Operating systems principles (SOSP ’99), pages

110–123. ACM Press, 1999.

[SG03] Craig A. N. Soules and Gregory R. Ganger. Why can’t I find my

files? New methods for automating attribute assignment. In Pro-

ceedings of HotOS IX: The 9th Workshop on Hot Topics in Operating

Systems, pages 181–186. USENIX Association, May 2003.

[SGN85] Michael D. Schroeder, David K. Gifford, and Roger M. Needham. A

caching file system for a programmer’s workstation. SIGOPS Oper.

Syst. Rev., 19(5):25–34, 1985.

145

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

[Shi93] O. Shivers. BodyTalk and the BodyNet: A Personal Information

Infrastructure. Personal Information Architecture Note 1, MIT Lab-

oratory for Computer Science, Cambridge, MA, December 1993.

[SKW+02] Edward Swierk, Emre Kiciman, Nathan C. Williams, Takashi

Fukushima, Hideki Yoshida, Vince Laviano, and Mary Baker. The

Roma personal metadata service. Mobile Networks and Applica-

tions, 7(5):407–418, 2002.

[The] The Bluetooth SIG. Bluetooth Specification.

http://www.bluetooth.com.

[THKS04] Niraj Tolia, Jan Harkes, Michael Kozuch, and M. Satyanarayanan.

Integrating portable and distributed storage. In Proceedings of the

3rd Conference on File and Storage Technologies (FAST ’04), pages

227–238, San Francisco, CA, March 31 - April 2 2004. USENIX.

[Tim02] Tim Kindberg and Armando Fox. System software for ubiquitous

computing. IEEE Pervasive Computing, 1(01):70–81, 2002.

[Var05] Hal R. Varian. Universal access to information. Commun. ACM,

48(10):65–66, 2005.

[VRdL05] Alex Varshavsky, Bradley Reid, and Eyal de Lara. A cross-layer ap-

proach to service discovery and selection in MANETs. In the Sec-

ond International Conference on Mobile Ad-Hoc and Sensor Sys-

tems (MASS 2005), November 2005.

146

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

[WBS04] Micahel Walfish, Hali Balakrishnan, and Scott Shenker. Untangling

the web from DNS. In Proceedings of the 1st USENIX/ACM Sym-

posium on Networked Systems Design (NSDI ’04), pages 225–238,

San Francisco, CA, March 2004. USENIX.

[Wei91] Mark Weiser. The computer for the 21st Century. Scientific Ameri-

can, 265(3):94–104, September 1991.

[WPD+02] Roy Want, Trevor Pering, Gunner Danneels, Muthu Kumar, Murali

Sundar, and John Light. The Personal Server: Changing the Way We

Think About Ubiquitous Computing. In Proceedings of the 4th In-

ternational Conference on Ubiquitous Computing, pages 194–209,

2002.

[XKTK03] Zhichen Xu, Magnus Karlsson, Chunqiang Tang, and Christos Kara-

manolis. Towards a semantic-aware file store. In Proceedings of

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems,

pages 115–120. USENIX Association, May 2003.

[Yau02] Yau Stephen S. and Karim Fariaz and Wang Yu and Wang Bin and

Gupta Sandeep K. S. Reconfigurable context-sensitive middleware

for pervasive computing. IEEE Pervasive Computing, 1(03):33–40,

2002.

[Yau03] Yau, Stephen S. and Karim, Fariaz. An energy-efficient object

discovery protocol for context-sensitive middleware for ubiquitous

computing. IEEE Transactions on Parallel and Distributed Systems,

14(11):1074–1085, 2003.

147

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 10:09:07 EEST - 18.191.150.2

	Cover
	Εισαγωγή
	Λογισμικό υποστήριξης αδόμητης επικοινωνίας
	Ευριστική επιλογή υπηρεσιών στο αδόμητο δίκτυο με βάση την αναμενόμενη διαθεσιμότητα
	Ανακάλυψη υπηρεσιών
	Επικοινωνία
	Διαμοιρασμός πληροφοριών επικρατουσών συνθηκών

	Αυτοματοποίηση διαχείρισης δεδομένων
	Υπηρεσίες υποδομής
	Ομαδική λειτουργία συσκευών

	Thesis
	Introduction
	The information explosion
	The personal data management problem
	Organization
	Placement

	Distraction-free personal data management

	Data management in ubiquitous computing environments
	Storage element characteristics and challenges
	A plethora of portable devices with storage
	Ad-hoc networking potential
	User interaction restrictions

	Usage review of storage on portable devices
	Producers
	Consumers
	Couriers

	Storage in ubiquitous computing environments

	Core runtime mechanisms
	Beaconing: the runtime's heartbeat
	Maintaining co-location history for service selection
	Collecting co-location statistics
	Pruning co-location history

	Service discovery
	Active discovery
	Passive discovery

	Communication
	Unreliable communication
	Reliable communication
	Accessing infrastructure services

	Context aggregation
	Generating and reviewing context information
	Context information propagation
	Controlling context propagation

	File management system
	Overall architecture
	Device management
	Device registration
	Device configuration

	File naming and access model
	Naming scheme
	File organization with semantic annotations
	File access model

	Infrastructure-based functionality
	Automated archival
	Push-caching
	The synchronization process
	Application services

	Personal area network functionality
	Context-based annotation
	Off-loading and replication
	Distributed lookup and access

	Security aspects

	Evaluation
	Usage
	Mock-up devices
	Registry management application
	Repository management application
	Usage scenarios

	Performance evaluation
	Core services
	Storage system operations

	Related work
	Discussion
	Core runtime execution speed analysis
	Core runtime memory consumption analysis
	Storage system execution time analysis

