
Implementation of a distributed video sharing
architecture for wireless networks with

heterogeneous links

Υλοποίηση κατανεμημένης αρχιτεκτονικής
διαμοιρασμού βίντεο σε ασύρματα τοπικά

δίκτυα με ετερογενή χαρακτηριστικά
διασυνδέσεων

Διπλωματική Εργασία
του ΔΟΥΛΗ Μιχαήλ

Επιβλέποντες
ΑΡΓΥΡΙΟΥ Αντώνιος

ΤΑΣΣΙΟΥΛΑΣ Λέανδρος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
 Τμήμα Ηλεκτρολόγων Μηχανικών &

Μηχανικών Υπολογιστών

2013

This page is intentionally left blank

Acknowledgments

I would like to thank my supervisor Prof. Antonios Argyriou who guided
me with determination and patience, from the moment we started to discuss
the topic of my Thesis up until the completion of the last page of this
report. Furthermore, I am grateful to my co-supervisor Prof. Leandros
Tassiulas and all the Department’s professors for the invaluable knowledge
that they offered to me throughout my studies.

This page is intentionally left blank

Περίληψη

Την περίοδο που συντάσσεται το παρόν, το Διαδίκτυο έχει εξελιχθεί
σε ένα παράδεισο διαμοιρασμού περιεχομένου πολυμέσων.
Παράλληλα, οι εξελίξεις στον τομέα υλικού (ολοκληρωμένα
κυκλώματα, ευκρινείς οθόνες αφής μικρού μεγέθους κ.α.) και η
ανάπτυξη εύχρηστου και αξιόπιστου λογισμικού για φορητές
συσκευές οδήγησαν στη ραγδαία αύξηση της χρήσης των τοπικών
ασύρματων δικτύων. Τα τοπικά αυτά δίκτυα φέρουν συνήθως
ετερογενή χαρακτηριστικά, κυρίως ως προς την επεξεργαστική ισχύ
των κόμβων τους και το bandwidth των επιμέρους συνδέσεων.
Συνεπώς οι χρήστες του δικτύου έχουν διακριτές απαιτήσεις, οι
οποίες όμως αφορούν στο ένα -κοινό- περιεχόμενο πολυμέσων. Σε
αυτή την κατεύθυνση εργαστήκαμε για να υλοποιήσουμε μια
κατανεμημένη αρχιτεκτονική διαμοιρασμού βίντεο για δίκτυα
τέτοιου τύπου. Η αρχιτεκτονική που υλοποιήσαμε εκμεταλλεύεται
τον υψηλό ρυθμό μετάδοσης συνδέσμων μεταξύ κόμβων,
συνδεδεμένων σε τοπικά ασύρματα δίκτυα, ενώ παράλληλα
εγγυάται την απόδοση του κλασσικού μοντέλου πελάτη-
εξυπηρετητή. Παράλληλα μέσα από μια σειρά πειραμάτων
αποδείξαμε πως η προσέγγυσή μας προσφέρει σημαντική βελτίωση
στην απόδοση διαμοιρασμού βίντεο, εστιάζοντας στις παραμέτρους,
εκείνες, που επηρεάζουν τα μέγιστα τη συμπεριφορά της
υλοποιημένης αρχιτεκτονικής.

This page is intentionally left blank

Contents
1 Introduction 2

2 Background Knowledge 4
2.1 Cooperative Networks 4

2.1.1 Micro Cooperative Architecture & Scenarios 5
2.2 Video Streaming In General 6
2.3 Peer-To-Peer Video Streaming 7

3 Architecture Overview 10
3.1 Connection Options, Data Rates & Channels 10
3.2 Basic Framework 11

3.2.1 Principles, Methods and Algorithms 11
3.2.2 Abstract Form of the Architecture 15

4 Implementation 18
4.1 An Overview of Omnet++ Network Simulator 18
4.2 Modeling the System's Components. 19

4.2.1 Network Description – Structure and Organization 22
4.2.2 Simulation Modules,Parameters and Functionality 23

5 Experiments 35
5.1 Validating the System's Behavior 35
5.2 Experimenting With the Window of Availability 36
5.3 Measuring the Latency 37
5.4 Experimenting with Data Rates 38

6 Conclusions 44

1

Chapter 1

Introduction

The invention of the motion picture camera in 1888, allowed the modern man, for the
first time in human history, to capture and store single pictures on a single reel. Since
then, video has served as a medium for entertainment and communication [1].
Television broadcasting gave an extra boost in the popularity of video. Recorded shows
or live events were made available to millions of people around the world through
over-the-air broadcasts and cable signals.

At the end of the millennium, Internet and World Wide Web offered a new boost in
the popularity of video. Initially, demands for text, pictures and document exchange
were typical for the provided services which were available at the time, such as Web
browsing and file transfer. Soon enough though, individuals started to experiment with
the transfer of multimedia data– mainly sound and video– over the Internet.
Furthermore, reinforced by technological advancements such as processing power,
video compression techniques and higher networking speeds real-time multimedia
transfer over the Internet gained significant attention during the last ten years.

Streaming is a technology that allows the user to transfer video over the net in real-
time, without waiting for the entire file to be downloaded [2]. This technology is based
on the idea that a video file can be separated into small parts. These parts are
transmitted in succession to the end-user and then combined together again in order to
playback the video, without waiting for all the parts to be delivered. Therefore,
streaming offers nearly instantaneous playback of a video file in spite of it’s size. This
size undependability, plus the fact that end users do not spare any storage space for
streaming a video, combined with the rise of broadband Internet connections resulted in
a major boost in streaming popularity [3].

This popularity made video distribution to be the primary reason behind the major
growth of data traffic over wireless networks. Moreover, an increase by two orders of

2

magnitude compared with the current volume of data is expected within the next four
years [4].

Despite the advancements in wireless networks and wireless data services, this
increased demand is likely to lead in a breakdown of cellular and wireless systems.
This problem can be addressed by bringing the video content closer to the end users.
This can be achieved by caching popular video files and then through localized
communication exploit their proximity in order to improve video throughput [5]. The
cooperation of coexisting heterogeneous wireless networks promises great potential,
especially in our study case of localized communication, i.e video distribution via
short-range links among the user terminals.

The architecture which we implemented for the purposes of this Thesis embodies
many of the above characteristics. Our system exploits the short-range/high-rate
connections between the mobile devices of a local WAN in order to stream video files.
The system offers actually a generic framework for simulating networks with many
terminals. At the same time it facilitates configurable heterogeneous links and is
designed in a way to be expandable.

In the second Chapter we present in brief some general principles, rules, techniques
and mechanisms regarding the basic knowledge that this Thesis is based on. In Chapter
3 we combine this knowledge and offer an overview of the distributed architecture,
including a brief discussion about connection options, a basic example and the abstract
form that we worked on, during the development of the Thesis. Chapter 4
accommodates all the details that we consider as critical for having a better
understanding of the implementation of the system. Initially we present an overview of
the simulation tool Omnet++. Furthermore we discuss the functionality of the different
components of the system highlighting the critical parts.

The behavior of the implemented framework is tested in Chapter 5. We conduct a
number of experiments aiming into validating the correct behavior of the system under
certain circumstances. We, further, focus on some interesting parameters offering a
broader view of the challenges that emerge. Finally in Chapter 6 we present our
conclusions.

3

Chapter 2

Background Knowledge

In this Chapter we present the principles, rules methods and mechanisms of various
schemes and systems, including both wireless networks and video streaming in order to
introduce some basic knowledge that we used during the development of the
implementation of the architecture.

In recent times, the expansion of wireless Local Area Networks(LAN) has been
immense. University campuses, cafeterías, hospitals and hotels have all been hotspots
for IEEE802.11 based wireless LANs. Furthermore, nowadays nearly all of the mobile
devices come with a type of 802.11 network interface. At the same time, cellular wide
access wireless networks have emerged and are gaining popularity. These
heterogeneous wireless networks coexist, but have many differences regarding data
rates, coverage, mobility and so on.

Local access wireless networks have, in general, high data rates and relatively small
power consumption on their terminals, but support limited mobility and coverage. On
the contrary, wide access networks have large coverage and mobility, while suffering
from lower data rates and high power consumption. Therefore, these two
heterogeneous wireless networks complement each other and could be both efficient in
case they operate in a cooperative way [6].

2.1 Cooperative Networks

Cooperative networking is a scientific issue that has many different understandings.
Cooperation can be distinguished into two major categories. Macro and Micro
cooperation.

4

Macro cooperation involves wireless terminals, wireless routers and access points
which all collaborate in order to exploit shorter radio propagation and increase the data
rate.

In micro cooperation the cooperating units may be algorithms, processing units or
functional parts. The gains of the micro cooperation can vary from increasing the
bandwidth of the backbone link, improving the reliability of the wireless channel and
lowering the power consumption of the terminal (end-user device).

Macro and micro cooperation are actually two approaches on the same issue of
cooperative networking. These approaches can be finally integrated together.

2.1.1 Micro Cooperative Architecture & Scenarios

Fig. 1 and Fig. 2 demonstrate two typical architectures of the different cooperation

categories that we discussed above. We are going to focus on the micro cooperative
network architecture of Fig. 2. This version facilitates a number of terminals that are
connected locally in a wireless network. At the same time they are connected
individually with an access point/base station using a different wireless standard, for
instance cellular reception. These terminals have to be multi-modality ones, i.e. they
should be able to communicate simultaneously with the access point/base station and
the peer terminals, with long and short range links respectively.

In this type of cooperative networks, the multi-modality terminals and the base
station usually operate and communicate down to packet granularity. Therefore, the
architecture of this network is actually very similar to the one of a centrally controlled
p2p network. There are many scenarios regarding the operation of the micro
cooperative networks which are discussed in [6]. One of them which is very interesting
and useful for our work is that of the Unicast Transport/Multicast Servise. In this
scenario the mobile terminals have multicast service and this service is transported
through unicast links to the other terminals (peers).

 The same team conducted a number of experiments by implementing cooperative
network prototypes to illustrate the potential of such type of networks.

In particular, they assumed that a server hosts some digital content which can be
accessed by mobile terminals over cellular interface. At the same time, the architecture
offers the possibility to the mobile terminals to collaborate and exchange disjointed
parts of the digital content over short-range links in case they manage to find a peer.

Two commercial Nokia N70 devices were used to illustrate this approach. The
devices communicated to each other via bluetooth and were connected to the base
station using GPRS. The base station provided two download possibilities to the mobile
terminals. A stand-alone download, where the content was available in a single large
file and a split file download, where the content was divided into two equally large

5

files. In the stand-alone download each terminal downloads the file in a given time T
with data rate R. In the cooperative scenario though, where the terminals download a
smaller file from the base station and then exchange the missing file with their
neighbors the download time became nearly half (~T/2). This simple experiment
demonstrated that through cooperation higher data rates are achievable without
increasing the complexity.

2.2 Video Streaming in general

Video Streaming refers to the constant delivery of video content from a provider, to an
end-user that instantly proceed to playback [7] . The client (end-user) can start to
playback the media before the whole video file has been transmitted. Therefore, the end
user can enjoy nearly instantaneous playback despite the size of the video.

The generic video streaming architecture can be divided into six areas; media
compression, application-layer QoS control, media distribution services, streaming
servers, media synchronization at the receiver side, and streaming media protocols [8].
In order for the video to be transmitted over a network it is necessary to be compressed
into a digital stream with a reduced bit rate.

This task is performed by various applications known as encoders. Decoders
decompress the compressed stream. These two types of applications combined together
form the codec. MPEG-2, MPEG-4, H-264 (also known as AVC-Advanced Video
Coding) are some of the well-known and most used codecs [9].

The coded video streams consist of successive pictures called inter- or intra-frames.
Inter frames are frames that result from Inter frame prediction. Inter frame prediction
tries to exploit the temporal redundancy between neighboring frames, thus leading to a
higher compression rate. There are two types of Inter-frame, the B-Frames and the P-
Frames. The main difference between the two types of frames is the reference frame
they use for the Inter prediction. Intra-frames are frames that do not depend on any
other –neighboring or not– frames of the video stream. They are known as I-Frames.

The Group of Pictures is a structured sequence of Intra- and Inter- frames. The
typical GoP structure is IBBPBBP... . The Inter prediction dictates that among the
frames of a Group of Pictures there are many dependencies. Fig. 3 illustrates these
dependencies in a typical GoP [10].

Video streaming, also, involves various transport protocols that packetize the
compressed bit-streams and send the packets to the clients that requested the given
video file. Since video streaming is affected by transport delays and packet losses many
network support mechanisms have emerged in order to cope with them. Among those
mechanisms are the application level multicast and content replication (caching)
which improves the scalability [8].

6

During our work on this subject we took into consideration many of the above. Of
course we also had to maintain the complexity of our project in a permissible limit.
Hence, some simplifications were imposed.

2.3 Peer-To-Peer Video Streaming

In the introductory chapter we briefly reviewed the evolution of video streaming
through the Internet. The World Wide Web can be viewed abstractly as a collection of
millions of servers and clients that form a distributed system in order to provide access
to associated documents and files.

The client-server model that was initially employed in the WWW proved to be
inadequate. This was due to the fact that resources are usually concentrated in a small
number of nodes, while in order to provide continuous service and permissible
responsiveness, complex fault-tolerant and load-balance algorithms have to be
employed. Additionally the limitations set on network bandwidth worsened the
situation even more. These two important issues lead the researchers to explore
alternative models and schemes which allocate processing load and network bandwidth
among all the nodes that form a distributed system [11].

P2p networking exploits the computer power, the network connectivity and the
storage in a way that allows users to leverage their collective power to the benefit of
all. The nodes of a p2p network have equal roles thus they are often called peers. The
peers of a p2p network cooperate in a distributed manner in order to achieve the
desired objective.

One of the key features of a p2p system is that every peer contributes resources
such as processing power, storage and of course bandwidth. Therefore, the overall
system capacity increases as more nodes/peers join the system, making it's scalability
significantly better than the one of the client-server model.

Those intrinsic characteristics make the P2P model a potential candidate to solve
various problems in multimedia streaming over the Internet [12]. A peer can act
simultaneously as a client and as a server. This allows a peer who is downloading a
video file to upload it to other peers at the same time. Therefore according to [13] p2p
streaming decreases considerably the bandwidth needs of the source. The objective of
this type of streaming is to maximize the video quality on individual peers despite
the bandwidth heterogeneity and irregularity of the links among them. This
objective then is closely related with our work. In our implementation we have
included some features and functionality from p2p streaming systems such as
Chainsaw [14].

7

8

Figure 1. Macro cooperative architecture

Figure 2. Micro cooperative architecture

Figure 3. GoP structure [10]

9

This page is intentionally left blank

Chapter 3

Architecture Overview

In this section we are going to discuss the basic features of the distributed video sharing
architecture that we propose.

Our architecture aims into fulfilling the requirements of video streaming, i.e. high
data rates and low latency, by exploiting the advantages offered by new schemes of
networking and communication such as micro cooperative networks and p2p systems.
By combining various elements, methods and disciplines of these schemes we propose
and implement a distributed video sharing architecture for wireless networks with
heterogeneous links.

In this chapter we are going to study a generic architecture of a wireless LAN
consisting of a number of end-user devices such as laptops, smartphones and tablets.
Moreover, we try to analyze the possible connections of the devices, examine a specific
architecture and it's abstracted version on which our implementation is developed and
finally present details regarding our algorithms and techniques used in it.

3.1 Connection Options, Channels and Data Rates

As we have previously seen from the literature regarding the evolution of
heterogeneous wireless networks and cooperative networks the options of connecting
the mobile devices with each other and the access point/base station are numerous.
Cellular reception, bluetooth and Wi-Fi are some of the standards that have been tested
from researchers. Table 1 shows some connection options and features of them.

As we discussed in previous chapters, IEEE802.11 is the most popular standard for
wireless communications. This connection option forms a basic framework that we can

10

work on, which at the same time is plausible and based on contemporary popular
wireless standards. The devices that form the wireless network in our initial framework
are connected to an access point via an IEEE802.11.b connection. Furthermore, they
are connected to each other via IEEE802.11.a.

So far we have discussed the wireless part of our architecture. A part of it though is
wired. In this part resides the video server which is connected to the access point via
the Internet. This connection is considered as a standard DSL Internet connection.
More connection options and details will be discussed in Chapter 5.

802.11 Frequency(GHz) Max. Data Rate (Mbit/s) Outdoor Range(m)

a 5 54 120

b 2.4 11 140

g 2.4 54 140

n 2.4/5 72.2 250

Table 1

3.2 Basic Framework

The architecture is based on a framework consisting of a local wireless network and a
remote video server. A number of mobile devices such as laptops, tablets and
smartphones may be connected to the wireless network. Fig. 4 illustrates the
framework we had in mind when we started working on the generic architecture of this
project.

The particular wireless network of the figure consists of 4 devices connected on an
access point (blue links). The devices of this particular figure are two laptops, one
tablet PC and one smartphone. The access point connects over the Internet with a video
server. The dotted line shows the wired and the wireless segment of our architecture.

3.2.1 Principles, Methods and Algorithms

The contemporary model of video transfer is that of the client-server one. Fig. 5
demonstrates such a transfer taking place into the familiar system that we are
discussing. Particularly, the user of the smartphone requests a video from the video
server. A connection between the smartphone and the server is established and then the
server starts to stream the video file. We notice that the gray rectangles that resemble
the packets are indexed in a way to illustrate that they are streamed in order. The

11

packets travel from the server through the Internet and then through the wireless link
(blue line).

The key difference between this model and the one of the proposed architecture is
that user devices may request and –in case they are available– receive data/packets
from other devices of the local WAN.

Fig. 6 illustrates a system that allows a node of the local wireless network which is
already receiving data/packets to share them with another node of the local network.
This is a core function of our system. The packets are transmitted via a wireless link
(red line) which connects the smartphone directly with the laptop and has no relevance
to the standard WiFi connection between the laptop and the access point (blue line).
This feature is based on the micro cooperative architecture that we discussed in Chapter
2.

By combining the two previous approaches we have a distributed system which
receives data from both the Internet (video server) and peers that have them available.
Fig. 7 shows a distributed system that operates in the way we described. In particular,
the laptop user requests a video file from the smartphone. The first frames/packets of
the video stream to the laptop (orange rectangles with id's 0 and 1). In this scenario
some frames are missing from the smartphone. This can occur for a number of reasons.
For instance, these frames may part of the enhancement layer that is not necessary for a
low quality version of the video that the smartphone user requested, or they could be
missing due to packet loss. The missing frames then can be transferred from the video
server to the laptop through the other wireless link (blue line) and be combined for a
high quality version of the video.

Our design gives priority on the transfer of data from the peers at the local
WAN. This is a core feature due to the fact that with this system we try to exploit the
proximity of the data residing in nodes that are connected via short-range/high-
bandwidth links.

Moreover, a node of the local WAN is, also, able to request data from the video
server. This characteristic ensures that each mobile device/node will definitely receive
video frames at some time -assuming that the channel connecting the node with the
access point does not drop any packets. Additionally, this feature is absolutely essential
because initially we assume that none of the nodes has any video frames, thus the first
node requests the video stream from the video server.

12

13

Figure 5. Standalone streaming according to the client-
server model

Figure 4. Architecture with 4 mobile devices

14

Figure 6. Streaming from a peer

Figure 7. Distributed streaming

3.2.2 Abstract form of the Architecture

Although the framework presented in Fig. 4 is very intuitive and offers a fair
understanding of the components and connections of our architecture, we ultimately
had to come up with a more abstract version of it.

This version reduces and factors out many details so that we can focus on the
features of the framework that we are interested in. Fig. 8 illustrates the abstract form
of the architecture of Fig. 4 .

Initially, we notice that there is no distinction among the mobile devices, thus they
are labeled simply as terminals. The access point remains as a component. It's role is
auxiliary and is limited on an elementary level of routing between the terminals and the
base station. An individual could argue that in the abstract form of the architecture that
we examine, the access point could be eliminated without any obvious consequences
regarding the coherence of our system, but the module itself serves a structural
necessity. It helps us to facilitate two types of heterogeneous links, one representing the
wireless links that connect to the terminals and the other representing the connection to
the Internet the base station. The latter is actually the video server that we have seen in
previous illustrations. We named this component in a way that reflects it's generic
overseeing role in the whole system. In essence the base station embodies a fraction of
the operations of the video server, plus some new functionality regarding the
distributed nature of our system.

Finally, the abstract form of the system demonstrates three types of links. The blue
and the red ones are wireless links, but have different colors due to the fact that we
regard them as heterogeneous, i.e. links with different data rates, delay and packet drop
rate. The black link represents the connection of the local WAN to the Internet and thus
the base station. Again, we are going to present more details regarding the links in the
next Chapter.

15

16

Figure 8. Abstract form of the architecture

17

This page is intentionally left blank

Chapter 4

Implementation

In order to verify the feasibility of our distributed video sharing architecture we used
the OMNET++ network simulator to design, simulate and define our system's features
in detail.

Initially, in this Chapter we present an overview of the tool we used to implement
our system, the Omnet++ network simulator. Then, we discuss the key features of our
system in detail. Subsequently, we examine various details regarding the structure and
organization of our implementation as well as the functionality of each module and the
behavior of the whole system in some intriguing scenarios.

4.1 An Overview of OMNET++ Network Simulator

Omnet++ is described from it's official site as ''an extensible, modular, component-
based C++ simulation library and framework, primarily for building network
simulators. 'Network' is meant in a broader sense that includes wired and wireless
communication networks, on-chip networks, queuing networks, and so on" [15].

Omnet++ is a network simulator that initiated by András Varga in Technical
University of Budapest, Department of Telecommunications (BME-HIT). It is
developed in C++ and it is free to use for Academic and non-profit projects. All these
features made Omnet++ an ideal tool for academic research, boosting it's popularity in
the global scientific community.

Omnet++ is not a simulator itself. Instead, it offers a set of tools that form an
infrastructure for simulating networks. The most fundamental ingredient of Omnet++
is it's component architecture. Simulation models are assembled from components

18

labeled as modules. These modules can be written in a way to be reusable, thus forming
a generic and flexible architecture. Modules have parameters that can customize their
behavior. The modules of the lowest hierarchy level are called simple modules. Simple
modules are written in C++ and make use of the simulation library [15].

Along with the modularity and the flexibility of the simulation components Omnet+
+ offers great scalability. Modules can be connected to each other through gates and
combine to form compount modules. The number of hierarchy levels is unlimited.
Model structure is described in Omnet++'s NED language.

Modules communicate with each other through a message passing mechanism.
Messages can carry arbitrary data structures and can be delivered directly or through a
predefined path to their destination module, making Omnet++ ideal for modeling both
wire and wireless communication systems. Fig. 9 illustrates an abstract layout of
simple and compount modules, connections and gates.

The timing simulation is very simple. The "local simulation time" of a module
advances only when a message is received. The message can arrive either from another
module or from the receiving module itself through the selfmessage feature –mainly
used to implement timers.

Gates are the main communication interfaces of the modules. Incoming messages
are delivered on the input gates, while outcoming messages depart from the output
gates. A connection links two gates. Additionally, channels are C++ classes, which
encapsulate parameters and behavior regarding connections, such as data rate,
propagation delay and packet error rate. These parameters are very useful in case a
physical link is to be modeled.

The user defines the structure of the model in NED language descriptions (Network
Description). NED lets the user declare simple modules, and connect and assemble
them into compound modules.

Finally, Omnet++ comes with a build-in mechanism to record simulation results
and collect statistics.

All these features, along with the GUI for simulation execution and the IDE based
on the Eclipse platform, conveyed us in choosing the Omnet++ as the most suitable
simulator for implementing our architecture.

4.2 Modeling the System's Components

4.2.1 Network Description – Structure and Organization

In Chapter 3 we discussed an abstract form of the architecture which lets us focus on
the important features of it, while reducing any abundant details. Our implementation is

19

based upon this abstract form, regarding both the system's structure and the
functionality of each module.

The system's structure and organization is described in a NED file. As we can
observe from the abstract form of the architecture three basic components stand out and
therefore we model these components in our implementation as three simple modules .
The NED file then includes the declaration of three simple modules, the terminal, the
base station and the access point.

 The terminals have one gate for connection to the access point and N-1 gates for
connection to the other terminals in the local WAN –where N is the total number of
terminals in the WAN. The base station has only one input/output gate that connects it
to the access point. The access point has the most gates among the three simple
modules because it's routing role places it in the center of our system, functioning as a
“bridge” between the Internet and the local wireless network. The access point
accommodates one gate for connection to the base station and N other gates for
connecting with all the terminals.

The NED file also contains the definition of the channels that connect the modules
of our system. If we go back again to the abstract picture of our system we notice that
there are three colors of lines, the red, the blue and the black ones. Therefore we
modeled three channels, each with different characteristics. All three of these channels
are extended from the ned.DatarateChannel class provided by Omnet++'s simulation
library. Fig. 10 demonstrates the names of the particular channels and the parameters
that they inherit from the DatarateChannel class. WirelessA and WirelessB serve as
wireless links between the access point and the terminals and among the terminals
themselves respectively. We can define each channel's parameters separately and
model the heterogeneous links of our system with precision and flexibility. ap2Internet
is the channel that models the Internet connection. Again we can modify the parameters
accordingly in order to experiment with different data rates and delays. Fig. 11 shows
the GUI output of the network overview of our system for a local WAN of three
terminals.

20

21

Figure 9. Simulation modules layout

Figure 10. Channel sublassing

Figure 11. Network topology for 3
terminals

4.2.2 Simulation Modules – Parameters and Functionality

After finishing the design of the network structure in the NED file we have to
implement the functionality of each module. This is done by writing the code in a
separate C++ file, which is later linked with the NED and the simulation files (.ned and
.ini respectively).

 Simple modules are represented by a C++ class which is subclassed from the
cSimpleModule class provided by the simulation library. The modules then are
registered by the Define_Module() macro. In every module we redefine two methods
from the cSimpleModule class; initialize() which is invoked from the simulation kernel
just once at the beginning of every simulation, and handleMessage() which is invoked
whenever a message arrives at the module. In our implementation we had to add some
extra methods in every module. These methods are auxiliary and mainly generate or
forward the various messages of our simulation. Fig. 12 illustrates the modules and the
extra methods or parameters that each of them uses.

As we mentioned in the overview of Omnet++, modules communicate through
messages. The messages are represented as objects of the cMessage class or it's
subclasses. Messages that are sent or scheduled (selfmessages) are held by the
simulation kernel in a list which maintains their order until their time comes to be
delivered to the modules via the handleMessage() method. When a message arrives in
a module the programmer is responsible for writing the code accordingly in order to
establish the behavior of the module. Therefore, the main functionality of our modules
is implemented in the redefined handleMessage() method. Moreover, for our
implementation we subclassed and created a number of new message classes due to the
varying amount and types of data that we had to attach to them. They are depicted in
Fig. 13 where we can also view each message's parameters.

Now we are going to study in detail the implementation of each module. Let us
begin with the module that embodies the core –and arguably the most complex–
functionality, the terminal.

Each terminal maintains a struct that stores information about:

• the number of video files that the terminal requests.
• the number of video frames of each video file that are stored and ready for

playback.
• the exact frames that have already been requested, either from another

terminal or from the base station. This is very useful in order to avoid double
requests of the same frame.

• the availability of every video frame in every terminal.

22

23

Figure 12. Simulation modules subclassing

24

Figure 13. Message subclassing and the extra parameters we used for our
implementation

For the implementation we consider that every video file is divided into groups of
pictures, called GoPs. Every GoP consists of a number of bframes. This assumption is
not 100% accurate regarding the video streaming and coding we discussed in Chapter
2. However, it offers a simple modeling, close to the actual layered video coding. The
code is written in a way that both the number of GoPs and bframes can be defined
easily, offering a flexible base for experimentation.

The behavior of the terminal module depends on what message it receives. When a
message arrives, the terminal updates it's struct with the data attached to the message
and depending on the situation it sends new messages. Fig. 14 demonstrates the
functionality of the module as a state machine. Now we are going to study each state.

Idle. This is the initial state of each module after the invoking of the initialize()
method. In this method we initialize the struct of each terminal, where we can
implicitly set which terminals we want to act as seeders. Also we can set explicitly
when each terminal will start to request a video file. This happens by sending an
“initialize” message to the base station.

When a terminal receives a “trigger” message from the base station it moves to the
next state. The initialization process and the message exchange between the terminals
and the base station is depicted in Fig. 15.

State 1. As we described earlier each terminal requests the video stream from other
terminals first. Therefore, it is necessary to know which terminals have the content
available. This is established by exchanging “index” messages. An index message is a
message that carries an index of a video file. The index is a boolean array which
indicates what bframes a certain terminal has stored.

In this state if the terminal is not a seeder it requests via a “REQ BlayerIndex”
message an index from all the other terminals.

When a terminal receives a “REQ BlayerIndex” message from any other terminal it
moves to the next state.

State 2. In this state a terminal generates a “RPL BlayerIndex” message that
attaches the index of the requested video file. Fig. 16 shows an index for a video file
with 3 GoPs, each one consisting of 5 bframes. The terminal that generated this
particular index has only the first GoP of the video available. The message then is sent
directly to the interested terminal.

When a terminal receives a “RPL BlayerIndex” message it moves to the next state.

25

26

Figure 14. Terminal state machine

State 3. In our implementation a terminal retrieves the information from the “RPL
BlayerIndex” message it receives and then updates the available2request field of its
struct. Available2request is a two-dimension array that stores information regarding the
availability of GoPs on each terminal. In general if a GoP is marked as available on a
terminal then the streaming of the frames of this GoP may begin. Table 2 illustrates a
particular instance of the available2request field of terminal 1. Please notice that the
line which corresponds to the terminal's id (1) is highlighted with blue color. Also,
notice that all the GoPs of this line are marked as non-available to request from this
terminal. In our implementation we assume that the line that corresponds to the
terminal itself, has by default marked all the GoPs with 0. In the instance of Table 2 if
terminal 1 needs to request GoP 1, it could choose between terminal 2 and 3. If it needs
to request GoP 4, though, it will scan the respective column and after finding all the
entries as zeros will eventually send a request message to the base station.

The terminal continues to the next state only when all the peers of the local WAN
has sent an Index reply. We implement this by scheduling a “Notify” self-message.
Fig. 17 demonstrates the sequence of messages that the terminals exchange in order to
obtain the video Indexes.

GoP

Terminal

0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 0

2 1 1 1 1 0

3 1 1 0 0 0
Table 2

State 4. When a terminal is in this state it is certain that it has all the necessary
information in order to start requesting bframes. It is worth noticing here that GoPs and
bframes are requested, either from a peer or the base station, sequentially. In this state
we handle the first frame of the first GoP of the video file. The terminal checks if the
GoP is available in the peers through a simple iteration of them. Subsequently, it sends
a “REQ Bframe” message to the first peer that has the first GoP available. If no peers
have this GoP in their cache the terminal sends the message to the base station. A
pseudo-code that summarizes the above is given in Algorithm 1.

27

28

Figure 15. Initialization sequence

Figure 16. Index structure

Figure 17. Index exchange sequence

Algorithm 1 Request the first bframe of the first GoP of a video file

Input: number of terminals in the local WAN, terminals

for each t in terminals do
if available2request[t][0] then

“REQ Bframe” ← generateRequestBframeMessage(0)
sendMessage(“REQ Bframe”, t)

else
“REQ Bframe” ← generateRequestBframeMessage(0)
sendMessage(“REQ Bframe”, base station)

endif
endfor

State 5. In case the terminal receives a request message for a frame it generates a
reply message which is subclassed from the cPacket library class. This message has
extra parameters that are essential for the purposes of our implementation. Particularly,
we have the ability to set the length of the message in bytes or bits, thus the links with
different data rates can be simulated properly.

The terminal's function in this state is rather straightforward. It simply sends the
generated message (“RPL Bframe”) back to the sender.

State 6. When a reply message arrives at the terminal a sequence of checks takes
place in order to establish the correct behavior of the system. Our implementation has
some dynamic elements that enhance the performance of the architecture exploiting it's
distributed and real-time characteristics.

The system embodies an update mechanism which is deployed when a terminal
reaches a certain amount of cached GoPs. We call this amount the Window of
Availability (WoA). If the GoPs that the terminal has received cover the WoA, the
terminal sends an “Update” message to all the other terminals in order to inform them
that it has bframes available for streaming. Algorithm 2 shows a pseudo-code that
summarizes all the above.

In our implementation a terminal requests a bframe only when it has received the
previous one. An alternative approach would be for the terminals (and the base station)
to exchange acknowledgment messages. However, this would increase the number of
exchanging messages, thus the congestion on our network.

Every time a terminal receives a “RPL Bframe” message it checks to verify whether
the Bframe is the last one of the current GoP. If the Bframe concludes the GoP, we
proceed to the next GoP and check if this is the last Gop of the video file. In that case
the terminal stores the simulation time in a local variable, which will help us with the
statistics collection. Furthermore, we schedule a self-message (“terminate”) which will

29

make the transition of the terminal to the final State 8. If the current GoP is not
complete yet, we choose the next bframe generate a new request message. In order to
establish from where to send the new message, the terminal checks it's
available2request struct. If the GoP that accommodates the Bframe is not cached in
any of the peers, the terminal requests it from the base station. Otherwise it selects
randomly a peer and forwards the newly generated “REQ Bframe” message to that one.
Algorithm 3 summarizes in pseudo-code the above procedure, from the moment a reply
message arrives at the terminal, up until the moment the terminal requests the next
bframe. An interesting scenario that involves an update is depicted in Fig. 18.

Algorithm 2 Send Update Messages

Input: number of terminals in the local WAN, terminals &
 window of availability, WoA &
 counter for delivered GoPs to the terminal, accumulatedGoPs.

receiveMessage(“RPL Bframe”)
accumulatedGoPs←accumulatedGoPs+1

if accumulatedGoPs=WoA then
accumulatedGoPs← 0
“Update” ← generateUpdateMessage()
for each t in terminals do

send(“Update”, t)
endfor

endif

Algorithm 3 Request next bframe

Input: total number of Groups of Pictures of the video file, NoGoPs &
 number of terminals in the local WAN, terminals &
 the id of the current GoP extracted by the received “RPL Bframe” message, gop

receiveMessage(“RPL Bframe”)
A ← currentGoPHasMissingFrames(gop)
if A then

nextBframe ← findFirstMissingBframeOfGoP(gop)
else

gop ← gop+1
endif

30

if gop != NoGoPs then
for each t in terminals do

if available2request[t][gop] then
gopNotCachedInTerminal ← False

else
gopNotCachedInTerminal ← True

endif
endfor
if gopNotCachedInTerminal then

“REQ Bframe” ← generateRequestBframeMessage(nextBframe)
sendMessage(“REQ Bframe”, base station)

else
destination ← rand()%terminals
while ((destination == self)&& (!(available2request[destination][gop])))

destination ← rand()%terminals
endwhile
“REQ Bframe” ← generateRequestBframeMessage(nextBframe)
sendMessage(“REQ Bframe”, terminal)

endif
else

finished ← getSimulationTime()
self-message(“Terminate”)

endif

State 7. This is the state of a terminal that has just received an "Update" message.
The message carries an index which is exactly the same as the index that the peers
exchange after the initialization process. The receiver terminal updates the
available2request field that is associated with the sender. The process is the same as in
State 3.

State 8. In this state the terminal just checks whether all the other terminals have
finished the streaming and if it is so, it ends the simulation by invoking the
endSimulation() method.

The next module that we are going to study is the base station. As we can assume
simply by observing the Fig. 19 that illustrates the states of the module and the
transitions among them, this module is less complex. The base station module has also
a struct that acts like a local database, useful for storing information regarding the
video files. Here, we only had to maintain data regarding the structure of the video
files, particularly the number of GoPs and bframes per video file.

In a matter of fact, we could say that although the name of this module implies a
key role to the architecture, in reality it acts like a slave, i.e. this module does not iniate

31

32

Figure 18. Update scenario sequence

Figure 19. Base station state machine

any action in our system. It's behavior is limited in initiating a video stream and
sending reply messages to the interested terminals. Therefore, the functionality is rather
limited. The following three states summarize it for a better understanding.

Idle. In this state the base station has just finished the initialization process. This
process involves the video files that this module has in memory. The base station then,
waits for an "initialize" message from any of the terminals.

State 1. When an "initialize" message arrives on the base station the module
invokes a method that generates a "trigger" message. The message then is sent back to
the original sender through the access point, triggering the start of a video streaming.

State 2. The base station in this state behaves exactly as the terminal in state 5. If it
receives a request for a bframe from a certain terminal, it invokes a "RPL bframe"
message generator method which sets the parameters of the reply packet, i.e. packet
length, appropriately. The base station attaches the id of the original sender on the reply
and forwards the message to the access point.

The last simulation module of our implementation is the access point. As we have
mentioned in Chapter 3 this module's role is auxiliary. It's only contribution revolves
around the routing of messages that the terminals exchange with the base station.
Again, we demonstrate the different states of this module in Fig. 20 .

Idle. The initialize() method of this simulation module is actually blank, because
there is nothing to be initialized. It does not maintain any kind of information regarding
the video files or anything else relevant to our architecture.

State 1 & State 3. These are the two states in which the access point receives
messages from the terminals and forwards them to the base station. The forwarding is
done by invoking methods for each case.

State 2 & State 4. In these two states the access point forwards messages from the
base station back to the terminals. Again, the forwarding is performed by invoking the
appropriate methods. An interesting observation regarding all the states of this module
is that in every state the access point forwards a message that caused the transition on
the current state.

33

34

Figure 20. Access point state machine

Chapter 5

Experiments

Despite the fact that the main purpose of this Thesis is to implement a generic
framework for a distributed video sharing architecture for heterogeneous wireless
networks, one final goal is a brief analysis of the behavior of our system under various
conditions. These conditions regard structural parameters of the system such as data
rates or the number of terminals and, also, other parameters such as the Window of
Availability.

In order to verify the correct behavior on each occasion and validate the
functionality of our implementation we conducted a series of experiments. These
experiments involved some alternations to the C++ code of our modules. However,
Omnet++ offers a result recording and statistics collection mechanism that helped us to
limit those alternations, thus maintaining the complexity of our code in permissible
levels.

5.1 Validating the system's behavior

Initially we tested whether the system actually works as it was supposed to. We
initiated a network consisting of three terminals. We assumed that the video file
consists of 20 GoPs and each GoP accommodates 5 bframes. The packet length that we
used in all our experiments is set to 1475 bytes. This makes the size of a GoP 7375
Bytes. We should note here that this number has not connection at all with GoP sizes of
coding methods such as MPEG-4. It's purpose is to facilitate a reasonable packet size in
order to help us test our system in permissible time limits.

In this first experiment we tested two scenarios. In the first scenario, all three

35

terminals request the video file at the same time. Additionally we deactivate the update
mechanism. Therefore, all the terminals start to stream the file in the conventional
client-server model. Every terminal requests a bframe and when it receives it proceeds
with the next request. In the second scenario we test the fully cooperative case, which
dictates that a terminal joins the network while the other two have already streamed the
video file and have it cached. From now on we are going to refer to the first scenario as
the standalone and to the second one as the fully cooperative.

The results of both simulations were plotted on the same diagram Fig. 21. The time
of the vertical axis is the accumulated time of the simulation, i.e. the sum of the
completion times of the three terminals. On the horizontal axis we have various
AP2Internet data rates. As we move rightwards on this axis the data rates increase. In
all occasions the fully cooperative streaming is faster than the standalone one. A very
interesting observation is the steady difference in accumulated times of the two systems
no matter how big the data rate of the Internet connection is. The real improvement
then relies on the approach of our design and not on connection speeds.

5.2 Experimenting with the Window of Availability

In the next series of experiments we concentrated on a critical parameter of our imple-
mentation. Window of Availability serves as an update indicator affecting the dynamic
nature of the architecture. The lower the WoA is, the more dynamic our system is.
Excluding this parameter for this sequence of experiments we used again the same
parameters as before. Our scenario in this case involves three terminals who do not
request a stream simultaneously, but sequentially with some seconds separating the
requests. We record the finish times of each one and accumulate them to take the
diagram of Fig. 22. The WoA is illustrated as the percentage of the total number of the
video's GoPs. We observe that for small window sizes the times remain low and as the
window increases, less updates are sent to the terminals, thus many of them do not have
information about the availability of GoPs on terminals and they request them from the
base station. If the update mechanism is completely disabled (No WoA) the
accumulated times are the same as the standalone scenario of the first phase of
experimentation, which is actually the worst case scenario.

This gain in performance though comes at a cost. Small window equals with many
updates, which equals with many “Update” messages exchange on the network. During
this phase of experimentation we modified the C++ code of the terminal modules in
order to record the number of update messages exchanged between the terminals for.
We run again the same scenario for the same WoA values. The results are illustrated in
Fig. 23 which confirms our claim. Small windows increase the number of messages on
the local network.

36

From this diagram though we can infer another important issue. When a terminal
completes it's Window of availability, sends an update message. In order for the GoPs
of the window to be available for streaming, they have to be cached on the terminal.
This puts caching on the frame, too, and it can be combined with research towards
distributed caching. Finding a trade off between these parameters is an emerging
challenge [5] .

5.3 Measuring the latency

An important quality measure regarding video streaming is the latency, especially the
one of the first GoPs, which dictates the playback startup. In this phase of
experimentation we took advantage of Omnet++'s record result and statistics
mechanism. We used it to record the delay of the reply packets. The delay was
measured by timestamps attached to the reply messages.

We simulated the same scenario as in the previous phase. This time we opted for a
different representation of the results. We present the delay of each terminal in a
separate diagram. This alternation offers a better insight on the systems dynamic
nature.

In Fig. 24 we observe the delay of reply packets arriving on terminal 0. This is the
first terminal that initiates a request. The delays for a given Internet data rate are the
same regardless of the WoA's size. This is due to the fact that the first terminal always
requests and receives packets from the base station. The update messages are in fact
delivered, but the GoPs they revolve have already been streamed from the base station.
The variation on results in this case regards the decreased delays when the Internet
connection gets faster which is absolutely justified.

The delays of terminal 1, which is the second one to request the particular stream
are depicted in Fig. 25. In this case we observe that there are variations among different
WoA values, which indicates that this terminal does stream from other peers (in
particular it streams from terminal 0). As we can infer from the fourth column
standalone downloads from the base station deteriorate the latency. The differences of
delay among simulations with different Internet connection speeds are now smaller.
This provides another proof for our claim that terminal 1 streams from peers, since the
Internet's speed impact is rather limited.

Fig. 26 corroborates the conclusion that we made above. Terminal 2 which is the
last one to start the streaming enjoys the smallest delay of all the terminals in all
simulations, due to the fact that it exploits the cached GoPs on the other two terminals
and streams them through the high data rate short-range links. As well as before, in
this case the Internet speed has a very limited impact, smaller than that of terminal 2,
which is again justified.

37

5.4 Experimenting with data rates

In the next phase we experimented with the structure parameters, the data rate of the
Internet connection and the wireless channels.

We simulated both the above scenarios with different AP2Internet channel data
rates. The data rates represent the speeds of modern ADSL and VDSL connections.
Moreover, the data rates of the wireless channels are 72 and 54 Mbps for WirelessA
and WirelessB respectively. These values maintain the condition that the local
bandwidth (WirelessA) is always higher than the bandwidth to the Internet (WirelessB).
The results for five different connections are illustrated in Fig. 27. As we can observe
the finish time of the particular terminal of the system (the one that is not a seeder) is
the same in all occasions which is correct due to the fact that the fully cooperative
scenario does not involve any streaming from the base station. The line that represents
the finish times of the terminal in the standalone scenario is declining as the connection
speeds increase. We expect this behavior because higher data rates lessen the
transmission time of the packets, thus leading to decreased streaming completion time
for the particular terminal.

In Chapter 3 we referred briefly to the various wireless connection options that are
available for the local WAN. During our experimentation we tested some different
combinations while keeping the AP2Internet data rate at 8Mbps and the results are
depicted in Fig. 28. An interesting observation on this particular figure is that the
second pair of columns demonstrates the smaller difference between the two scenarios
and the fourth the biggest. If we take into consideration that the standalone scenario
relates only with the WirelessB link and the fully cooperative one only with the
WirelessA link this outcome is expected. Of course in this occasion an individual could
argue that we stretched the boundaries of the assumption we made before, i.e. that the
local bandwidth should be higher than the bandwidth to the internet. We should keep in
mind thought that the AP2Internet link still serves as a bottleneck in the connection of a
terminal to the Internet, thus we took the initiative to assign equal speeds to the
wireless connections.

38

39

Figure 21. Accumulated time for two different system configurations.
The classic-standalone and the distributed-cooperating streaming.

Figure 22. The effect of WoA on the accumulated time of a three-terminal
distributed-cooperative system.

40

Figure 23. The number of “Update” messages exchanged in a three-terminal
distributed configuration for various WoA values.

Figure 24. The delay of the first terminal that triggers a stream on a three-terminal
distributed configuration, illustrated for various Internet connection speeds and

indicative values of WoA.

41

Figure 25. The delay of the second terminal that triggers a stream on a three-terminal
distributed configuration, illustrated for various Internet connection speeds and

indicative values of WoA.

Figure 26. The delay of the third terminal that triggers a stream on a three-terminal
distributed configuration, illustrated for various Internet connection speeds and

indicative values of WoA.

42

Figure 27. The effect of the Internet connection speed on the finish time of terminal 2
(the second that starts to request the video) of a three-terminal distributed system run

for both configurations.

Figure 28. The effect of the combination of various Wireless data rates on the finish
time of terminal 2 (the second that starts to request the video) of a three-terminal

distributed system run for both configurations.

43

This page is intentionally left blank

Chapter 6

Conclusions

In this final section we restate the observations that we made after experimenting with
our implementation and we conclude.

The rise of broadband Internet connections and the oversupply of cheap yet
powerful mobile devices led to a boost in sharing multimedia content over wireless
networks. Furthermore, as we discussed in Chapter 2, research on the heterogeneous
wireless networks shows that the development towards fully cooperative networks may
facilitate higher data rates without increasing the complexity. Additionally, micro
cooperative networks may be regarded as centrally controlled p2p systems. We
combined this observation with various elements of existing p2p systems targeted into
video streaming and we implemented a distributed video sharing architecture for local
wireless networks with heterogeneous links.

Moreover, we conducted a series of experiments in order to verify the behavior of
our system under certain conditions. During these experiments we focused on the
characteristics that mostly defined our approach and could validate the correct behavior
in each occasion. We examined the performance of the distributed architecture under
various data rate combinations. For all possible combinations the results indicate that
our approach does offer an advantage when compared to the contemporary client-
server streaming model for local WANs. Further, since latency is a decisive factor for
video streaming performance we showed that that our system decreases it. The most
interesting outcome of these experiments though, is the impact of the update
mechanism that our implementation embodies. Although it is essential for the
distributed function of the system, an aggressive configuration of this mechanism may
increase dramatically the number of messages on the network. Finally, this mechanism
can also be linked with issues regarding the impact of caching data in terminals.

With this work we showed that there is a great potential in approaches regarding
video sharing that are targeted into cooperative networking for wireless networks.

44

Bibliography

 [1] INTERNAP, The next big wave in convergence – Building the right foundation
for Internet TV. Streaming Media Magazine. Retrieved May 5, 2010 from
www.internap.com .

 [2] Telecom, ATIS Telecom Glossary 2007, American National Standard for
Telecommunications. Retrieved June 1, 2010 from http://www.atis.org, 2007.

 [3] B. Dutson, The European Streaming Industry: Clearing the Barriers to Growth.
Re-trieved 12, May 2010 from http://www.streamingmedia.com/ .

 [4] http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537
/ns705/ns827/white/paper/c11-520862.html .

 [5] K Shanmugam, N Golrezaei, A G. Dimakis, A. F. Molisch, G.
Caire,FemtoCaching: Wireless Video Content Delivery through Distributed
Caching Helpers, In proceedings of the 33rd Annual IEEE International
Conference on Computer Communications, 2012.

 [6] Qi Zhang, Frank H.P. Fitzek, Marcos Katz, Evolution of Heterogeneous Wireless
Networks: Towards Cooperative Networks, In proceedings of the 3rd International
Conference of the Center for Information and Communication Technologies,
2006.

 [7] http://en.wikipedia.org/wiki/Streaming_media. Streaming media, Wikipedia page.

 [8] S. M. Thampi, A Review On P2P Streaming, published in eprintarXiv:1304.1235,
04/2013.

 [9] http://en.wikipedia.org/wiki/Video_codec. Video Codecs, Wikipedia page.

[10] http://en.wikipedia.org/wiki/Group_of_pictures. Group of Pictures structure, Wi-
kipedia page.

[11] Aberer, K. & Hauswirth, M.,An overview on peer-to-peer information systems,
Proc. Workshop on Distributed Data and Structures, pp. 171-188, March, 2002

45

[12] Meddour, D., Mushtaq, M., & Ahmed, T., Open Issues in P2P Multimedia
Streaming, MULTICOMM 2006 proceedings, pp.43-48, 2006.

[13] Liu, J., Rao, S. G., Li, B. & Zhang, H., Opportunities and Challenges of Peer-
to-Peer Internet Video Broadcast, Proc. IEEE, Vol. 96 Issue 1, pp. 11-24, 2008.

[14] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, and A. Mohr, B Chainsaw:
Eliminating trees from overlay multicast, Proc. 4th Int. Workshop Peer-to-Peer
Systems (IPTPS), Feb. 2005.

[15] http://www.omnetpp.org/. Omnet++ Network Simulator webpage.

46

