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DESIGN AND DEVELOPMENT OF A FUEL CELL SYSTEM (PEM 

TYPE) – WATER ELECTROLYSIS TYPE PEM: PREPARATION AND 

CHARACTERIZATION OF LOW COST ELECTROCATALYSTS 

 

Abstract 

In today’s world, the demand for clean and sustainable energy sources has become a 

strong driving force in continuing economic development, and thus as well in the 

improvement of human living conditions. Proton exchange membrane (PEM) fuel cells, as 

clean energy-converting devices, have drawn a great deal of attention in recent years due to 

their high efficiency, high energy density, and low or zero emissions. In these systems, 

hydrogen is considered as the preferred fuel in virtue of its high activity and environmental 

benignity. Fuel cell is considered as one of the most promising products of 21st Century, as it 

can compete, in terms of efficiency, with batteries, internal combustion engines and other 

conventional power supply technologies. However, the major barrier to the widespread use of 

fuel cells is their a) high cost and b) low reliability/durability. This high cost of the catalyst is 

due to the extensively adopted platinum (Pt) based nanomaterials for the desirable PEMFC 

performance with high activity and high stability. The limited resources of platinum are the 

major factors in these challenges, increasing the interest of the scientific community towards 

the exploration of Pt-free electrocatalysts.  

The last decade, a severe number of research groups world-widely have focused on the 

investigation of electrocatalysts with small amount of Pt or without Pt, for both the hydrogen 

oxidation reaction (HOR) and the oxygen reduction reaction (ORR). With the exception of 

Pt, the electrocatalytic activity of palladium (Pd) is one of the highest among the pure metals 
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for both HOR and ORR. This, combined with the fact that the cost of Pd is about the half of 

Pt, makes it an attractive alternative [20]. 

The subject of the thesis concerns the study of low cost electrocatalysts based on the 

palladium. More precisely, in the first part of this thesis, literature review was conducted in 

order to identify the most active electrocatalysts towards hydrogen oxidation reaction and 

oxygen reduction reaction (HOR & ORR). To this purpose, in the present work binary Pd-

based electrocatalysts PdxRhy/ Vulcan XV-72, PdxIry/ Vulcan with atomic ratio (x,y = 3:1, 

1:1, 1:3) and PdPt (97:3, 98:2, 99:1) were prepared by a modified-microwave assisted polyol 

method. The low Platinum electrocatalysts PdPt (97:3, 98:2, 99:1), were studied as anodes in 

Proton Membrane Fuel Cell (PEMFCs). 

The physicochemical characterization of electrocatalysts was conducted by X-ray 

Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical 

characterization was carried out with the Cyclic Voltammetry (CV), Rotating Disk Electrode 

Technique (RDE) and Chronoamperometry techniques (CA).  

Thereafter, a PEM made of Nafion 212, with Pd97Pt3/C, Pd98Pt2/C loading 0.5mgPtcm
-2

 

as an anode and Pt loading 0.5mgPtcm
-2

 as a cathode, was used. The performance of the 

MEA was evaluated, using serpentine flow channels with total surface area = 5cm
2
 

(2.24x2.24) of Fuel Cell Technologies, Inc. company. Polarization studies were conducted at 

various cell temperatures with humidified hydrogen and oxygen gas reactants. Impedance 

measurements were carried out using a Materials M 520 frequency response analyser 

(AMEL) coupled to 7050 AMEL electrochemical station. 

Hydrogen in molecular form can be produced from many different sources and in many 

different ways. In the second part of this work, we discuss about one of the main sources 
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used for the production of hydrogen. Electrolysis is the reverse of the hydrogen oxidation 

reaction in a fuel cell. This reaction takes place in a unit called an electrolyzer. Electrolyzers 

can be small, appliance-size equipment and well-suited for small-scale distributed hydrogen 

production. However, electrolyzers are facing the main problem that fuel cells faced with. 

Their prohibitive cost which comes mainly from the use of noble metals as electrocatalysts, 

postpones applications in the industry. Many concerns are related to the high costs of 

catalysts used, based on Ir and Pt black with high metal loading. It is suggested that capital 

costs could be reduced by reducing the loading and/or substituting the expensive noble 

materials used for the fabrication of catalyst layers. In this thesis we study the efficiency and 

the electrocatalytic activity of different PdRh and PdIr nanostructures prepared via a 

modified pulse-microwave assisted polyol method, in 0.5 mol L
-1 

H2SO4 toward hydrogen 

evolution reaction (HER). The results show that incorporation of Ir and Rh in Pd as a binder 

in construction of the electrode, improve the electrocatalytic behavior of palladium for proton 

reduction. 
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Σχεδιασμός και ανάπτυξη συστήματος κυψελίδας καυσίμου (τύπου 

pem) – κυψελίδας ηλεκτρόλυσης νερού (τύπου pem): παρασκευή και 

χαρακτηρισμός νέων ηλεκτροκαταλυτικών υλικών χαμηλού κόστους 

Περίληψη 

Τα τελευταία χρόνια, η απαίτηση για καθαρές και βιώσιμες πηγές ενέργειας έχει γίνει 

μια ισχυρή κινητήριος δύναμη για τη συνέχιση της οικονομικής ανάπτυξης καθώς επίσης και 

για τη βελτίωση των συνθηκών διαβίωσης του ανθρώπου. Για το λόγο αυτό η παγκόσμια 

ερευνητική κοινότητα έχει στρέψει το ενδιαφέρον της στην ανάπτυξη νέων συστημάτων 

μετατροπής ενέργειας, όπως είναι οι κυψέλες καυσίμου πολυμερικής μεμβράνης (ΡΕΜ), 

δηλαδή μεμβράνες ανταλλαγής πρωτονίων, στοχεύοντας σε υψηλότερες ενεργειακές 

αποδόσεις και χαμηλές ή μηδενικές εκπομπές καυσίμου. Στις κυψέλες καυσίμου τύπου PEM, 

το προτιμώμενο καύσιμο θεωρείται το καύσιμο του υδρογόνου, λόγω της υψηλότερης 

απόδοσης τους (έως 70%), Οι κυψέλες καυσίμου θεωρούνται από τα πιο ελπιδοφόρα 

συστήματα μετατροπής της ενέργειας του 21
ου 

αιώνα, καθώς μπορούν να ανταγωνιστούν, 

από την άποψη της αποτελεσματικότητας, με τις μπαταρίες, τους κινητήρες εσωτερικής 

καύσης και τα ηλεκτρικά δίκτυα. Ωστόσο, το μεγάλο μειονέκτημα και ο βασικός λόγος που 

περιορίζεται η μαζική εμπορευματοποίηση των συστημάτων αυτών είναι το υψηλό τους 

κόστος. Το υψηλό κόστος οφείλεται κυρίως στην υψηλή τιμή και στα λίγα αποθέματα της 

πλατίνας (λευκόχρυσος Pt), η οποία μέχρι σήμερα θεωρείται ο αποδοτικότερος και 

σταθερότερος καταλύτης των κυψελίδων καυσίμου. Έτσι η επιστημονική κοινότητα, καθώς 

και ο στόχος της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη νέων καταλυτών 

μικρής (μgPt) ή μηδενικής περιεκτικότητας σε λευκόχρυσο, επιλύοντας ως έναν βαθμό το 

πρόβλημα κόστους.  
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Την τελευταία δεκαετία, ένας σοβαρός αριθμός ερευνητικών ομάδων παγκοσμίως 

επικεντρώθηκαν στην έρευνα των ηλεκτροκαταλυτών με μικρή ποσότητα Pt ή χωρίς Pt, τόσο 

για την αντίδραση της οξείδωσης του υδρογόνου (HOR) όσο και για την αντίδραση 

αναγωγής του οξυγόνου (ORR). Με εξαίρεση την πλατίνα, η ηλεκτροκαταλυτική 

δραστηριότητα του παλλαδίου (Pd) είναι μια από τις υψηλότερες μεταξύ των καθαρών 

μετάλλων και για την HOR και την ORR. Αυτό, σε συνδυασμό με το γεγονός ότι το κόστος 

του παλλαδίου είναι περίπου το ήμισυ του κόστους της πλατίνας, μας το καθιστά μια 

ελκυστική εναλλακτική λύση. 

Στην παρούσα διδακτορική διατριβή, διεξήχθη βιβλιογραφική ανασκόπηση με σκοπό να 

προσδιοριστούν οι πιο αποτελεσματικοί ηλεκτροκαταλύτες για τις κυψέλες καυσίμου 

πολυμερικής μεμβράνης τροφοδοσίας υδρογόνου. Το πρώτο βήμα του σχεδιασμού και της 

ανάπτυξης των κυψελών καυσίμου είναι η αναγνώριση των πιο δραστήριων 

ηλεκτροκαταλυτών ως προς την αντίδραση της ανόδου και της καθόδου. Για το σκοπό αυτό, 

στην παρούσα εργασία, διμεταλλικοί ηλεκτροκαταλύτες που έχουν ως βάση το παλλάδιο 

(Pd-based) κατασκευάστηκαν και εξετάστηκαν ως ανοδικοί και καθοδικοι 

ηλεκτροκαταλύτες, για HOR και ORR, αντίστοιχα. Πιο συγκεκριμένα, μια σειρά 

διμεταλλικών καταλυτών PdxRhy/ Vulcan XC-72, PdxIry  / Vulcan XC-72 με ατομική 

αναλογία (x,y = 3:1, 1:1, 1:3) και PdPt (97:3, 98:2, 99:1) μελετήθηκαν ως ανοδικοί και 

καθοδικοί καταλύτες για PEMFCs. 

Για την παρασκευή των εξεταζόμενων ηλεκτροκαταλυτών χρησιμοποιήθηκε η μέθοδος 

σύνθεσης πολυόλης με παλμικά μικροκύματα. Η μέθοδος παρασκευής είναι μια πολύ 

σημαντική παράμετρος για την απόδοση των καταλυτών, καθώς επηρεάζει τις ιδιότητές τους 

(παράμετρος πλέγμα, διάμετρος των νανοσωματιδίων). Τα αξιοσημείωτα πλεονεκτήματα της 
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μέθοδου της πολυόλης με τη βοήθεια μικροκυμάτων είναι τα εξής: i) η ταχεία ογκομετρική 

θέρμανση  ii) η υψηλότερη ταχύτητα και εκλεκτικότητα αντίδρασης iii) λιγότερος χρόνος 

αντίδρασης και ίν) υψηλότερη απόδοση του προϊόντος σε σύγκριση με τις συμβατικές 

μεθόδους θέρμανσης. Ως αποτέλεσμα, η θέρμανση με μικροκύματα καθιστά γρήγορη την 

παρασκευή νάνο-υλικών με σχετικά χαμηλό κόστος εξοικονόμηση ενέργειας, με μεγαλύτερη 

απόδοση προϊόντος και με τη δυνατότητα περισσότερων πρακτικών εφαρμογών. Για τους 

παραπάνω λόγους η μέθοδος σύνθεσης πολυόλης με τη βοήθεια παλμικών μικροκυμάτων 

είναι η πιο διαδεδομένη στην επιστημονική κοινότητα. 

Οι φυσικοχημικοί χαρακτηρισμοί των παρασκευασθέντων καταλυτών έγιναν με χρήση 

των τεχνικών της περίθλασης ακτίνων Χ (XRD) και της ηλεκτρονικής μικροσκοπίας 

διέλευσης (TEM). Τα φάσματα περίθλασης ακτίνων Χ ελήφθησαν με χρήση 

περιθλασίμετρου D/Max-IIIA (Rigaku Co., Japan) εξοπλισμένου με λάμπα Cu και φίλτρο Ni 

(ώστε να παρέχεται η ακτινοβολία Κα του Cu, λ=1.54056 nm). Οι μικρογραφίες των 

δειγμάτων με την τεχνική της ηλεκτρονικής μικροσκοπίας διέλευσης (Transmission Electron 

Microscopy - TEM) ελήφθησαν με ηλεκτρονικό μικροσκόπιο τύπου JEOL JEM-2010 (HR). 

Οι ηλεκτροχημικές μετρήσεις διεξήχθησαν με τον ηλεκτροχημικό σταθμό AMEL 5000 με 

την μέθοδο της κυκλικής βολταμετρίας (CV), ηλεκτρόδιο περιστρεφόμενου δίσκου (RDE) 

και την τεχνική χρονοαμπερομετρίας (CA). Στο τέλος κάθε  κεφαλαίου συνοψίζονται τα 

επιστημονικά αποτελέσματα των εξεταζόμενων ηλεκτροκαταλυτών. Ταυτόχρονα, δίνονται 

κάποιες προοπτικές για περαιτέρω συνέχιση της έρευνας αυτής. 

Για τον ηλεκτροχημικό χαρακτηρισμό των συστοιχιών άνοδος/ηλεκτρολύτης/κάθοδος 

(membrane electrode assembly, MEA) χρησιμοποιείται κυψέλη καυσίμου τύπου (PEM) 

(Εικόνα 2A) με κανάλια ροής “σερπεντίνη” (Εικόνα 2Β) συνολικής επιφάνειας Α=5cm
2
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(2.24x2.24), της εταιρείας Fuel Cell Technologies, Inc. Το υδρογόνο τροφοδοτείται στην 

άνοδο και το οξυγόνο στην κάθοδο. Οι ροές της τροφοδοσίας ελέγχονται από ψηφιακά 

ροόμετρα μάζας (Brooks Instruments). Για λόγους ασφάλειας, αμέσως μετά την έξοδο από 

τα ροόμετρα έχουν τοποθετηθεί διοδικές βαλβίδες on/off στη ροή του υδρογόνου και του 

οξυγόνου. Στη συνέχεια οι ροές εισέρχονται στους κορεστές υγρασίας, όπου τα αντιδρώντα 

αέρια εμπλουτίζονται σε υδρατμούς και οδηγούνται προς την κυψέλη καυσίμου. Τα αέρια 

αντιδρώντα χρειάζεται να εμπλουτίζονται σε υδρατμούς πριν την είσοδο τους στην κυψέλη 

καυσίμου έτσι ώστε η μεμβράνη να ενυδατώνεται συνεχώς και να μην επηρεάζεται αρνητικά 

η αγωγιμότητά της. Το τμήμα των γραμμών τροφοδοσίας από την έξοδο των κορεστών μέχρι 

την είσοδο της ανόδου και της καθόδου θερμαίνεται. Η θερμοκρασία των συγκεκριμένων 

γραμμών δεν πρέπει να έχει μεγάλη απόκλιση (±5
ο
C) από τη θερμοκρασία της κυψέλης 

καυσίμου, καθώς μπορεί να προκληθεί συμπύκνωση των υδρατμών στο εσωτερικό της 

κυψέλης και να παρατηρηθούν φαινόμενα πλημμύρισης (flooding).  Οι ηλεκτροχημικές 

μετρήσεις λαμβάνουν χώρα με τη βοήθεια ηλεκτροχημικού σταθμού (AMEL 7050) και τα 

δεδομένα καταγράφονται σε υπολογιστή αυτόματα.   

Το υδρογόνο μπορεί να παρασκευαστεί με πολλούς και διάφορους τρόπους, όπως για 

παράδειγμα από την πυρηνική ενέργεια μέσω θερμικής αποσύνθεσης του νερού ή από την 

ηλιακή ενέργεια μέσω ηλεκτρόλυσης του νερού και έχει προταθεί από την επιστημονική 

κοινότητα σαν το πιο πιθανό καύσιμο του μέλλοντος λόγω των σημαντικών ιδιοτήτων του σε 

αντικατάσταση των παραγώγων του πετρελαίου, καυσίμων του σήμερα. Στο δεύτερο μέρος 

της εργασίας αυτής, συζητούμε για μία από τις κύριες πηγές που χρησιμοποιούνται για την 

παραγωγή του υδρογόνου. Η ηλεκτρόλυση του νερού είναι η αντίστροφη διαδικασία της 

αντίδρασης οξείδωσης του υδρογόνου σε ένα κελί καυσίμου. Κατά την ηλεκτρόλυση του 
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νερού, το νερό διασπάται στα βασικά στοιχεία, υδρογόνο και οξυγόνο, με την παροχή 

ηλεκτρικού ρεύματος. Η απαιτούμενη ηλεκτρική ενέργεια μπορεί να προέλθει από 

οποιαδήποτε ανανεώσιμη πηγή ενέργειας. Ένα από τα πλεονεκτήματα αυτής της μεθόδου 

είναι η υψηλής καθαρότητας υδρογόνο που παράγεται. Επίσης, το παραγόμενο οξυγόνο 

μπορεί να αξιοποιηθεί για βιομηχανική η άλλη χρήση.  

Μια συσκευή ηλεκτρόλυσης μπορεί να είναι μικρή σε μέγεθος και κατάλληλη για μικρής 

κλίμακας παραγωγή υδρογόνου. Ωστόσο, η μέθοδος της ηλεκτρόλυσης αντιμετωπίζει το 

βασικό πρόβλημα που αντιμετωπίζουν και οι κυψέλες καυσίμου. Το απαγορευτικό κόστος 

τους, το οποίο προέρχεται κυρίως από τη χρήση των πολύτιμων μετάλλων, αναβάλλει 

εφαρμογές στη βιομηχανία. Σε αυτό το κεφάλαιο μελετάται η αποτελεσματικότητα και η 

καταλυτική δράση ηλεκτροκαταλυτών μηδενικής περιεκτικότητας σε πλατίνα και με βάση το 

παλλάδιο, για την αντίδραση σχηματισμού υδρογόνου (HER) σε όξινο περιβάλλον. 
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1. Motivation & Background 

 

The population growth, resource consumption and environmental degradation are the 

challenges the world faces today. The environment is threatened by the perils of global 

warming, climate change and energy crises. Energy plays an important role in many aspects 

of our lives. Energy production and use is interconnected with many other aspects of 

modern life, such as water consumption, use of goods and services, transportation, 

economic growth, land use, and population growth. Production and use of energy (most of 

which comes from fossil fuels) also contributes to climate change, accounting for more than 

80% of greenhouse gas emissions. Moreover, the conventional power generation supply, 

based on fossil fuels, is limited and these fuels are expected to be fully depleted in the next 

years (40 - 100 years) [1]. Unless some immediate remedial measures are taken, things are 

only expected to get worse. 

An alternative approach considers the use of renewable sources to produce and store 

the energy needed. Renewable sources such as hydroelectric power [2, 3], biomass [4], 

solar [5], wind [5], and geothermal energy [6] are now being investigated to produce 

mainly electricity, but is also being investigated the use of bio-fuels [7-9], such as bio-

diesel [9, 10], bio-ethanol [11] or bio-methanol [12]. All these technologies have 

advantages and disadvantages, depending on the region and on the local peculiarities. 

Fuel cell Technology is now going through a decisive phase, where important changes 

in the innovation process may be expected. Worldwide development efforts of large 
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companies and huge public support programs document the hope that the use of this 

technology will lead to the opening of a huge market potential as well as to solutions for 

transportation and the energy industry. The fuel cell technology is in fact linked to 

prospects of environmentally friendly drives in road transportation and more ecologically 

efficient and better performing heat and power supply plants. Fuel cells could power our 

cars, with hydrogen replacing the petroleum fuel that is used in most vehicles today. 

Many vehicle manufacturers are actively researching and developing transportation fuel 

cell technologies [13].  

Fuel cells can power almost any portable device or machine that uses batteries. Unlike 

a typical battery, which eventually goes dead, a fuel cell continues to produce energy as 

long as fuel and oxidant are supplied. Laptop computers, cellular phones, video recorders, 

and hearing aids could be powered by portable fuel cells [14-16].  

Additionally, they have strong benefits over conventional combustion-based 

technologies currently used in many power plants and cars. They produce much smaller 

quantities of greenhouse gases and none of the air pollutants that create smog and cause 

health problems. If pure hydrogen is used as a fuel, fuel cells emit only heat and water as 

a byproduct. Hydrogen-powered fuel cells are also far more energy efficient than 

traditional combustion technologies [17].  

Despite the considerable advantages related with the use of fuel cells, they also show 

serious drawbacks. The major barrier to the widespread use of fuel cells is their high cost 

when compared with the available technologies and they cannot yet compete 

economically with more traditional energy technologies. Fuel cells systems are 

notoriously expensive due to their use of platinum material. Platinum is required for a fuel 

cell to generate electricity. This material makes up the catalysts that fuel cells use, which 

power electrochemical processes. Platinum is quite resistant to chemical corrosion and 
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has shown that it is the best material available for fuel cell catalysts of all kinds. The 

problem, however, is that platinum is both rare and expensive. The majority of the 

world’s platinum comes from South Africa and access to this resource is not readily 

available. The expensive nature of platinum translates directly into higher costs when it 

comes to fuel cell technology. 

The reason why platinum is today the most valuable of precious metals is because it is 

required in so many industrial applications. It is estimated that one-fifth of everything we 

use either contains platinum or requires platinum in its manufacture [18]. Among all the 

known modern uses of platinum, most of the annual production is consumed by two 

dominant categories - catalytic converters and fine jewelry. Together, these two 

applications consume more than 70% of the world's supply of platinum. 

Platinum has been considered as the best catalyst for the electrochemical reactions that 

take place in the anode compartment of PEMFCs, but accounts for about 50% of the fuel 

cells cost [19]. To accelerate breakthroughs in PEMFCs’ R&D and their sustainable 

commercialization, great effort has been devoted by a number of research groups world-

wide in order to decrease the Platinum (Pt) loading [20].  

With the exception of Pt, the electrocatalytic activity of Palladium (Pd) is one of the 

highest among the Hydrogen PEMFC. This, combined with the fact that the cost of Pd is 

lower than that of Pt, makes it an attractive alternative. In recent years, Pd-based catalysts 

have emerged as a potential alternative to Pt-catalysts for PEMFC applications, due to their 

lower cost, greater abundance and better resistance to CO-poisoning. For example, the 

replacement of Pt/C by PtPd/C with a 1:1 Pt:Pd atomic ratio, leads to a 35 wt. % of Pt 

reduction [21]. Nevertheless, critical challenges for Pd-based catalysts still remain in terms 

of their electrocatalytic activity and stability during hydrogen oxidation reactions [18]. The 

kinetic of the cathode ORR is relatively slow compared to that of the anode, releasing to a 
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large overpotential which contributes more in the total cell voltage. The challenge is to 

carefully replace the platinum loading in order to ensure good performance using non Pt or 

low Pt loading for catalysts. The first step of design and development of fuel cells is the 

recognition of the most active electrocatalysts towards anode and cathode reaction [22].  

Following this direction, many alloys were studied using mainly Ru as the second 

metal and a third component such as W [23], Sn [23], Os, Pd [24], Au, Ag, Rh, or W2C 

[25] to form binary and ternary alloys respectively. Another effective way to decrease Pt 

loading is the adoption of high specific surface area supports to enhance both Pt 

dispersion and utilization coefficient. To this purpose, novel carbon materials with special 

nano-scale surface structures have been developed, offering some advantages compared 

to the commonly and widely adopted XC-72R carbon black (Cabot Corp.) such as: higher 

surface area, higher conductivity, higher stability etc. As a result, through the above 

attempts the total Pt loading (anode + cathode) in H2-PEMFCs the last decade has been 

dramatically reduced [26] and there is still room for further reduction. 

The present PhD research, is devoted to the study of different platinum-free (PdRh 

and PdIr) and quasi zero-platinum (PdPt) nanostructures (prepared via a modified 

microwave-assisted polyol method) as anode and cathode electrocatalysts for hydrogen 

oxidation and oxygen reduction reactions. Cyclic voltammetry, rotating disk electrode 

and electrochemical impedance spectroscopy techniques were adopted to estimate the 

electrochemical active surface area and to characterize the electrocatalyst. For all 

measurements, the catalyst total loading was maintained at 11 μg cm
-2

. Moreover, 

membrane electrode assemblies were constructed, with ultra low platinum electrocatalysts 

as anode and cathode, and their performance was measured by the aid of a single 

hydrogen proton exchange membrane fuel cell (H2-PEMFC).  
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2. PhD Thesis Outline 

The PhD thesis is consisted of two parts: i) the first and bigger one is devoted to 

fabrication and investigation of active low cost electrocatalysts towards anode and 

cathode reaction for Hydrogen PEMFC and ii) the second is devoted to PEM electrolysis, 

viable hydrogen production solution, by studying the electrochemical behavior of low 

cost electrocatalysts towards hydrogen evolution reaction (HER).  

More precisely, the PhD thesis is classified into the following nine chapters: 

Chapter 1: Motivation and Background 

Chapter 2: The aim of Chapter 2 is a quick introduction at the basic elements of fuel 

cells, the main types of fuel cells and a brief discussion about the fuels used in fuel cells. 

In sequence a quick view of hydrogen production methods, storage methods and 

hydrogen uses are also discussed. Moreover, a brief historical overview of hydrogen 

proton exchange membrane fuel cells and the state-of-the-art of low Pt-loading anodes, 

low Pt-loading cathodes and platinum free electrocatalysts for Hydrogen PEMFC are also 

discussed.  

Chapter 3: The experimental apparatus that were used to carry out the experimental 

measurements for the physicochemical and electrochemical characterization of the 

studied electrocatalysts are described in this chapter. At first stage their physicochemical 

characterization was conducted by the techniques of Transmitting Electrode Microscopy 

(TEM) and X-Ray Diffraction (XRD). Then, their electrochemical characterization 

towards hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) was 

conducted by the Cyclic Voltammetry (CV), Chronoamperometry and Rotating Disk 

Electrode (RDE) methods. Fuel cell performance was studied and examined by 
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electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and 

potentiodynamic (I-V) techniques. 

Chapter 4: In this chapter carbon-supported (Vulcan XC-72) Pd, Rh, and PdxRhy 

(20wt.%, x:y=1:1, 3:1, 1:3) electrocatalysts are prepared according a modified pulse-

microwave assisted polyol synthesis method and their hydrogen electrooxidation (HOR) 

and oxygen reduction (ORR) electrocatalytic activity is measured. The as-prepared 

electrocatalysts were physicochemically characterized by Transmission Electron 

Microscopy (TEM) and X-ray diffraction (XRD). Their electrochemical characterization 

is carried out by the aid of Cyclic Voltammetry (CV), Rotating Disk Electrode (RDE) and 

Chronoamperometry (CA) techniques. 

Chapter 5: In chapter PdxIry supported on Vulcan XC-72 carbon (with x:y atomic ratios 

3:1, 1:1, 1:3) are prepared by a modified microwave-assisted polyol method, 

physicochemically characterized and electrochemically studied both as anodes for 

Hydrogen Oxidation Reaction (HOR) and as cathodes for Oxygen Reduction Reaction 

(ORR) in acid media. The as prepared catalysts are characterized structurally by X-ray 

diffraction (XRD), morphologically by Transmission Electron Microscopy (TEM), while 

their electrocatalytic properties are evaluated by cyclic voltammetry (CV) and by rotating 

disk electrode (RDE). 

Chapter 6: The tungsten carbide (WC) stability during the preparation of Pt@WC/OMC 

(Ordered Mesoporous Carbon) electrocatalysts, via a pulse microwave-assisted polyol 

method, is investigated by the aid of X-ray diffraction and thermogravimetric method. 

More precisely, OMC self-supported Tungsten Carbide (WC/OMC) is successfully 

synthesized by combing the hydrothermal process with a hard template method and its 

stability is step by step checked during the preparation process of the Pt@WC/OMC 

electrocatalyst by the pulse microwave-assisted polyol method. 
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Chapter 7: Very low-platinum electrocatalysts, Pd97Pt3/C, Pd98Pt2/C, Pd99Pt1/C and pure 

Pd/C are prepared and examined for the hydrogen oxidation (HOR) with the rotating 

electrode technique and in a single hydrogen proton exchange membrane fuel cell. The 

electrocatalysts are physicochemically characterized with techniques of X-ray diffraction 

(XRD) and transmission electron microscopy (TEM). Among the investigated 

electrocatalysts Pd98Pt2/C presented the highest electrocatalytic activity. Moreover, 

Pd97Pt3/C and Pd98Pt2/C electrocatalysts are examined as anode electrode in a single 

hydrogen proton exchange membrane fuel cell. Along with the temperature increased from 

30 to 80
o
C, the power density increases.  

Chapter 8:  A brief summary of the fundamentals of water electrolysis and the available 

electrolyzers’ technology are presented. Moreover, the fabrication and investigation the 

electrochemical behavior of cathode catalysts appropriate for medium- temperature proton 

exchange membrane (PEM) water electrolysis (WE) is shown. The electrochemical 

characterizations were performed using cyclic voltammetry (CV), linear sweep 

voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). 

Chapter 9:  The Conclusions and future perspectives are summarized in this Chapter. A 

modified microwave assisted polyol method was chosen for the preparation of 

electrocatalysts, because the following remarkable advantages: i) rapid volumetric heating, 

ii) higher reaction rate and selectivity, iii) shorter reaction time and iv) higher yield of the 

product compared. Atomic ratios PdRh3 and PdIr are suggested as anode electrocatalysts in 

fuel cells, while PdRh3 and Pd3Ir as cathode electrodes as they present the optimum 

electrocatalytic activity. 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



8 

References 

[1] S. Shafiee, E. Topal. Energy Policy 37 (2009) 181-189. 

[2] C.P. Barros. Energy Economics 30 (2008) 59-75. 

[3] F.C. Menz. Energy Policy 33 (2005) 2398-2410. 

[4] A.L. Cowie, W. David Gardner. Biomass and Bioenergy 31 (2007) 601-607. 

[5] Varun, R. Prakash, I.K. Bhat. Renewable and Sustainable Energy Reviews 13 

(2009) 2716-2721. 

[6] D.L. Gallup. Geothermics 38 (2009) 326-334. 

[7] A. Demirbas. Energy Conversion and Management 50 (2009) 2239-2249. 

[8] A. Murugesan, C. Umarani, R. Subramanian, N. Nedunchezhian. Renewable and 

Sustainable Energy Reviews 13 (2009) 653-662. 

[9] D. Subramaniam, A. Murugesan, A. Avinash, A. Kumaravel. Renewable and 

Sustainable Energy Reviews 22 (2013) 361-370. 

[10] M. Balat, H. Balat. Applied Energy 87 (2010) 1815-1835. 

[11] M. Balat, H. Balat. Applied Energy 86 (2009) 2273-2282. 

[12] K.A. Vogt, D.J. Vogt, T. Patel-Weynand, R. Upadhye, D. Edlund, R.L. Edmonds, 

J.C. Gordon, A.S. Suntana, R. Sigurdardottir, M. Miller, P.A. Roads, M.G. Andreu. 

Renewable Energy 34 (2009) 233-241. 

[13] K.R. Cooper, V. Ramani, J.M. Fenton, H.R. Kunz, Experimental Methods and 

Data Analysis for Polymer Electrolyte Fuel Cells, Scribner Associates, Southern Pines, 

N.C., 2005. 

[14] J. Ramírez-Salgado, M.A. Domínguez-Aguilar. Journal of Power Sources 186 

(2009) 455-463. 

[15] P. Agnolucci. International Journal of Hydrogen Energy 32 (2007) 4319-4328. 

[16] C.A. Cottrell, S.E. Grasman, M. Thomas, K.B. Martin, J.W. Sheffield. 

International Journal of Hydrogen Energy 36 (2011) 7969-7975. 

[17] C. Song. Catalysis Today 77 (2002) 17-49. 

[18] Non-Noble Metal Fuel Cell catalysts, in: Z. Chen, J.-P. Dodelet, J. Zhang (Eds.), 

© 2014 Wiley-VCH GmbH & Co, 2014. 

[19] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner. Applied Catalysis B: 

Environmental 56 (2005) 9-35. 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



9 

[20] Platinum Today Available from: , http://www.platinum.matthey.com/prices/price-

charts. 

[21] F. Alcaide, G. Álvarez, P.L. Cabot, O. Miguel, A. Querejeta. International Journal 

of Hydrogen Energy 35 (2010) 11634-11641. 

[22] A. Brouzgou, S.Q. Song, P. Tsiakaras. Applied Catalysis B: Environmental 127 

(2012) 371-388. 

[23] M. Götz, H. Wendt. Electrochimica Acta 43 (1998) 3637-3644. 

[24] C. He, H.R. Kunz, J.M. Fenton. Journal of The Electrochemical Society 150 

(2003) A1017-A1024. 

[25] R. Venkataraman, H.R. Kunz, J.M. Fenton. Journal of The Electrochemical 

Society 150 (2003) A278-A284. 

[26] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher. Applied Energy 88 

(2011) 981-1007. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228

http://www.platinum.matthey.com/prices/price-charts
http://www.platinum.matthey.com/prices/price-charts


10 

 

 

 

 

Hydrogen Fuel Cell systems – Theoretical background 

 

 

 

 

 

 

 

Abstract 

The aim of Chapter 2 is to provide a quick introduction to the basic elements of fuel cells, 

and a quick view to their historical background and their applications. In these systems, 

hydrogen is considered as the preferred fuel in virtue of its high activity and 

environmental benignity. The expense of rare metals such as platinum in a polymer 

electrolyte membrane fuel cell (PEMFC) is one of the most important barriers to the 

commercialization of fuel cells. The cost target of ∼30 $/kW (current Internal 

Combustion Engine's cost) that has been set for 2015 and can be met only if the 

maximum mass specific power density (max-MSPD) will be reduced to less than 200 mg 

of Pttotal per kW at cell voltages higher than 0.65 V (U.S. Department of Energy, DOE). 
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2.1 Introduction 

Global warming occurs when gases like carbon dioxide and methane stay trapped in 

the earth’s atmosphere. This carbon overload is caused mainly when we burn fossil fuels 

like coal, oil and gas or cut down and burn forests. There are many heat-trapping gases 

(from methane to water vapor), but CO2 puts us at the greatest risk of irreversible changes 

if it continues to accumulate unabated in the atmosphere. 

These gases are known as ‘greenhouse gases’ because of their capacity to retain heat and 

this effect is known as the greenhouse effect [1]. Originally, it was this effect that made the 

earth a habitable place or it would have been too cold to live in. However, retention of 

excess heat or the ‘enhanced greenhouse effect’ is a serious threat to the planet as it leads to 

an increase in global temperature which in turn is the cause of global climate change. Land 

degradation, air and water pollution, sea-level rise, flood of coastal areas and loss of 

biodiversity are only a few examples of the consequences of climate change. 

It is now widely accepted that if are not taken concerted efforts to reduce greenhouse 

gas emissions (GHGs), it is possible that the levels of GHGs will triple by the year 2100. 

Resolving the problem of climate change requires multiple, long-term strategies that will 

demand enormous sustained effort, engaging the cooperation of both developed and 

developing countries. Currently, developed countries account for the larger share of 

greenhouse gas emissions, but developing country emissions continue to rise steadily. By 

the year 2025 emissions from developing countries are expected to represent 50% of the 

global total. This calls for immediate action globally. 

The economic development of modern societies is crucially dependent on energy. 

Energy is vital for sustainable development. It is used to generate electricity for a variety 

of needs, among which are domestic needs, transport needs and industrial needs. The 

methods of production, supply and consumption of energy are key issues in sustainable 
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development because they strongly affect the local and global environment. However, the 

current methods of energy production are primarily by the use of fossil fuels. These 

methods of production are not sustainable in the long run and therefore do not contribute 

to sustainable development. 

In the past, fossil energy sources could be used to solve world energy problems. 

However, fossil fuels cannot continue indefinitely as the principal energy sources due to 

the rapid increase of world energy demand and energy consumption. Fossil and nuclear 

fuel reserves are becoming increasingly limited and the world’s energy future will have to 

include several renewable alternatives to these failing resources. As a consequence, 

investigations of alternative energy strategies have recently become important, 

particularly for future world stability. The most important property of alternative energy 

sources is their environmental compatibility. In line with this characteristic, hydrogen 

likely will become one of the most attractive energy carriers in the near future [2]. Much 

research, including experimental and theoretical studies, has recently been carried out on 

hydrogen energy [3]. 

Providing safe, environmentally friendly, and reliable energy supplies is essential for 

having a sustainable and high quality life, but they are subjected to social, political, 

environmental and economic challenges [4]. Fuel cells technology is seen as a viable 

clean air alternative to all applications of internal combustion engine and other 

conventional power supply technologies. In terms of greenhouse gas emissions, fuel cells 

offer a significant improvement over internal combustion engines. In addition, the future 

demand for portable electric power supplies is likely to exceed the capability of current 

battery technology [5]. Fuel cells can operate on hydrogen or a variety of gaseous and 

liquid hydrocarbons fuels. 
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2.2 Fuel Cells 

Hydrogen is the most common fuel used in fuel cells and is also the least harmful to 

the environment. Fuel cells are electrical generation devices that utilize a chemical 

reaction to unleash a fuel’s latent energy. They are clean and efficient energy sources for 

transportation, stationary, and distributed power. 

In a typical fuel cell, gaseous fuels are fed continuously to the anode (negative electrode) 

compartment and an oxidant (i.e., oxygen from air) is fed continuously to the cathode 

(positive electrode) compartment; the electrochemical reactions take place at the electrodes 

to produce an electric current. The fuel processor is a critical component of a fuel cell 

power system and must be able to provide a clean H2 or H2-rich synthesis gas to the fuel 

cell stack for long term operation. In spite of the increasing technical and commercial 

importance of fuel cells, there are few books in which fuel processing technology is treated 

comprehensively. The majority of books over the years about fuel cells address fuel 

processing technologies only briefly; e.g., in a single section in a chapter. 

A fuel cell, although having components and characteristics similar to those of a 

typical battery, differs in several respects. The battery is an energy storage device. The 

maximum energy available is determined by the amount of chemical reactant stored 

within the battery itself. The battery will cease to produce electrical energy when the 

chemical reactants are consumed (i.e., discharged). In a secondary battery, the reactants 

are regenerated by recharging, which involves putting energy into the battery from an 

external source. The fuel cell, on the other hand, is an energy conversion device that 

theoretically has the capability of producing electrical energy for as long as the fuel and 

oxidant are supplied to the electrodes. Both convert chemical energy directly into 

electricity. The difference is that in a battery the chemical energy has to be stored 

beforehand, while fuel cells only operate when it is supplied from external sources and 
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the energy produces continuously as the fuel is supplied to the anode. A fuel cell consists 

of two electrodes sandwiched around an electrolyte. Oxygen passes over one electrode 

and hydrogen over the other, generating electricity, water and heat.  

The first developed fuel cells were alkaline. The principle of operation of the hydrogen-

oxygen alkaline fuel cell is simply a reversal of the process of the electrolysis of water. 

Principle of H2-O2 Fuel Cell (1969): 

Hydrogen Electrode (anode reaction):          2 H2 <=> 4 H
+
 + 4 e

-   
                                  (2.1) 

   4H
+
 + 4OH

-
<=> 4H2O                         (2.2) 

Oxygen electrode (cathode reaction):           O2 + 2H2O + 4e
-
 <=> 4OH

-   
                       (2.3) 

Overall Cell Reaction:                                      2 H2 + O2 <=> 2 H2O                          (2.4) 

An oxygen molecule is adsorbed on the cathode’s surface, where it picks up four 

electrons and combines with two of the water molecules present in the electrolyte, 

forming four hydroxyl ions. Two hydrogen molecules are adsorbed on the anode and are 

contemporaneously oxidized to hydrogen ions, which ultimately combine with the 

hydroxyl ions producing water and four electrons. If the process were perfectly reversible 

in the thermodynamic sense, the fuel cell would generate a voltage just equal to the 

required for the electrolysis, 1.23 V [6]. 

Since the fuel cell technology has been evolved and solid membranes replaced liquid-

electrolytes the operation of hydrogen-oxygen fuel cell has been simplified according to 

the following reactions:   

Principle of H2-O2 Fuel Cell (today): 

Hydrogen Electrode (anode reaction):              H2 <=> 2H
+
 + 2e

-    
                                   (2.5)  

 

Oxygen electrode (cathode reaction):                1/2O2 + 2H
+
 + 2e

-
 <=> H2O              (2.6) 

 Overall Cell Reaction:                                       H2 + 1/2O2 <=> H2O                          (2.7) 

Hydrogen gas is fed to the anode where it adsorbs onto the catalyst surface and oxygen 

from the air enters the fuel cell through the cathode. With the aid of a catalyst, the 
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hydrogen molecule splits into two protons and electrons, which take separate paths to the 

cathode. The proton passes through the electrolyte membrane and the electrons create a 

current that is utilized before it returns to the cathode. At the cathode, the electrons are 

reunited with the hydrogen and oxygen to form water. A schematic representation of a 

fuel cell with the reactant/product gases and the ion conduction flow directions through 

the cell is shown in Figure 2.1. 

 

Figure 2.1: Schematic design of a proton exchange membrane fuel cell using 

hydrogen as fuel. 

2.2.1 Different Types of Fuel Cells 

Just like there are different types of internal combustion engines, there are also 

different types of fuel cells - choosing the most suitable fuel cell depends on the 

application. Designers and engineers need to consider many factors including; the 

operating temperature, the fuel type, the electrical efficiency, the amount of vibration, 

physical shock loading and of course, any size constraints. 

Fuel cells can be grouped into high temperature and low temperature types. Low 

temperature fuel cells require a relatively pure supply of hydrogen as a fuel. This often 
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means that a fuel processor is required to convert or ‘reform’ the primary fuel (such as 

natural gas) into pure hydrogen. This process consumes additional energy and requires 

specialized equipment. High temperature fuel cells do not need this additional process 

because they can ‘internally reform’ the fuel at elevated temperatures, meaning it is not 

necessary to invest money in hydrogen infrastructure. 

Different types of fuel cells are categorized by the type of electrolyte. Within each 

fuel cell type different companies are using different designs to tailor a fuel cell’s 

performance for a given application. The main groups of fuel cells are listed below [7]: 

 Polymer Electrolyte Fuel Cell (PEFC) or Proton Exchange Membrane Fuel Cell 

(PEMFC): Here, the electrolyte is a polymer ion exchange membrane that is very good 

at conducting protons often combined with an expensive platinum catalyst. These fuel 

cells are a good option for automotive and portable applications as they are best suited 

for fast start up and shut down situations. 

 Phosphoric Acid Fuel Cells (PAFCs): In this fuel cell, concentrated phosphoric acid 

is used as the electrolyte. The design and power outputs make them suitable for buses 

and large stationary applications. 

 Alkaline Fuel Cells (AFCs): The electrolyte is essentially a potassium hydroxide 

solution. These fuel cells are often used for expensive mission critical applications such 

as the USA space programs.  

 Molten Carbonate Fuel Cells (MOFCs): These highly specialized fuel cells use a 

combination of high temperature alkali carbonates (sodium or potassium) as an 

electrolyte and can use a wide range of fuel types. MCFC are best suited to large 

stationary power applications. 

 Solid Oxide Fuel Cells (SOFCs):  With SOFCs, the electrolyte is a solid non-porous 

ceramic based metal oxide often Yttria doped Zirconia material. Because SOFCs 
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operate at high temperature, a wide range of fuels can be used without having to 

specially pre-treat the fuel. 

Table 2.1: Characteristics of each type fuel cell 

Type Electrolyte Fuel 
Operating 

temperature 

Typical 

applications 

Proton Exchange 

Membrane Fuel Cells 

(PEMFCs) 

 

Sulfonic acid 

incorporated into 

a solid membrane 

Pure Hydrogen, 

Methanol 

50-90
0
C Transport, mobile 

applications 

Phosphoric Acid Fuel 

Cells (PAFCs) 

Phosphoric acid Pure Hydrogen 190-220
0
C Buses, trucks & large 

stationary applications 

Solid Oxide Fuel 

Cells (SOFCs) 

Ceramic, solid 

oxide, zirconia 

Most 

hydrocarbon 

based fuels 

450-1000
0
C Small (<1kW) to large 

(mW) stationary 

power generation 

Molten Carbonate 

Fuel Cells (MCFCs)  

Molten lithium 

carbonate 

Most 

hydrocarbon 

based fuels 

550-700
0
C Large stationary 

power generation 

Alkaline Fuel Cells 

(AFCs) 

Potassium 

hydroxide 

Pure Hydrogen 150-200
0
C Space exploration, 

power generation 

 

Different types of fuel cells operate at different temperatures. While PEMFC and AFC are 

generally called low temperature fuel cells and MCFC and SOFC being called high 

temperature fuel cells, the PAFC falls in between and can be called an intermediate 

temperature fuel cell. 

2.2.2 Main advantages & disadvantages of Fuel Cells 

Fuel cells systems are rapidly gaining worldwide attention as a feasible energy 

medium and power source for a variety of portable, stationary and mobile applications 

.Fuel cells offer significant benefits and have various advantages compared to 

conventional power sources, such as internal combustion engines or batteries.  

a. Portable, transportation or stationary sectors 

One of the characteristics of fuel cell systems is that their efficiency is nearly 

unaffected by size. This means that small, relatively high efficient power plants can be 

developed, thus avoiding the higher cost exposure associated with large plant 
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development. They can be used advantageously in the portable [8, 9], transportation 

or stationary sectors [8, 10]. Portable power solutions like cellular phones, video 

cameras, personal digital assistants (PDAs) or laptops, among others, are easily found 

everywhere. The portable power solutions face significant challenges such as to 

provide more power and power for longer periods of time. Fuel cells show some 

advantages comparing with the direct competitors: easy recharging, compactness, low 

noise and are easily scalable, being also able to produce different amounts of power. 

In the transportation sector, the fuel cells allow a new range of power use from 

scooters to trucks or other vehicles.  

b. High efficiency 

Fuel cells convert chemical energy directly into electricity without the combustion 

process. As a result, a fuel cell is not governed by thermodynamic laws, such as the 

Carnot efficiency (ηc =1-TL/TH, where TL and TH the low and high temperature), 

associated with heat engines, currently used for power generation. Instead, the maximum 

energy or electrical work available is defined by the Gibbs energy (ΔG) of the reactants 

and products: 

                                                       ηrev=ΔG/ΔH                                                         (2.8) 

where ηrev is the reversible efficiency and ΔH is the enthalpy change of the 

electrochemical reaction. The maximum efficiency of a fuel cell is around 83% when it 

works reversibly. This ideal value decreases when the fuel cells starts to generate 

electrical power. Despite this efficiency reduction, the actual performance of fuel cells, 

ηrev =40−55%) is still very high compared to thermal conversion systems. 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



21 

c. Low environmental impact 

Fuel cell systems operate without pollution when run on pure hydrogen, the only by-

product of the electrochemical reactions is water or CO2 at very low concentrations. 

Moreover, the use of low temperatures avoids other side reactions involving pollution by 

products (nitrogen and sulphur oxides, etc). Another important advantage is the use of 

bio-alcohols. Methanol and ethanol can be used in the so-called Direct Methanol Fuel 

Cells or Direct Ethanol Fuel Cells (DMFCs, or DEFCs, respectively). Since alcohols can 

be obtained from renewable sources, this process of energy conversion is sustainable. 

Despite the considerable advantages related with the use of fuel cells, they also show 

serious drawbacks. The major barrier to the widespread use of fuel cells is their high cost 

when compared with the available technologies. Additional limitations of fuel cells are 

related to their durability, room temperature compatibility and ability to produce good 

performances right after starting or restarting after a resting period. The use of the fuel 

cell technology is intimately related with the ability to develop technological solutions 

that minimize or solve these drawbacks 

2.3 Fuels for Fuels Cells 

For the past one hundred years, liquid hydrocarbon fuels have been a major driving 

force behind industrialized countries [11]. Product demand has increased at a phenomenal 

rate, and we have reached the point where the demand to the liquid hydrocarbon fuels 

culture is approaching and other fuel sources are being sought. As other sources and types 

of fuels are being sought, it is considered useful to include information on the various 

types of liquid fuels and the relevant chemical and physical properties of these fuels as a 

means of comparison to the fuels of the future.  

Just as a regular fuel generates energy by combustion, a fuel cell is a device that 

generates electricity by a chemical reaction. In fact, a fuel cell is an electrochemical cell 
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that produces electricity through the reaction, triggered in the presence of an electrolyte, 

between the fuel (on the anode side) and an oxidant (on the cathode side). The reactants 

flow into the cell and the reaction products flow out of it, while the electrolyte remains 

within it and the reactions that produce electricity take place at the electrodes. Hydrogen 

or hydrogen-rich synthesis gas is the basic fuel for fuel cells. Unfortunately, the lack of 

available alternative sources of hydrogen dictates that the hydrogen (or hydrogen-rich 

synthesis gas) derives from hydrocarbon fuels. Depending on the application (stationary, 

central power, remote, auxiliary, transportation, military, etc.), there are a wide range of 

conventional fuels, such as natural gas, liquefied petroleum gas (LPG), light distillates, 

methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and 

biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-

rich synthesis gas) to power fuel cells [12]. 

Hydrocarbon fuels behave differently and in order to place fuel cells in the proper 

perspective, with some degree of detail, of the manufacture and properties of the common 

fuels as well as a description of various biofuels. This would not be an exhaustive 

treatment of all fuel properties, but only of those relevant to fuel processing for the 

purpose of providing hydrogen (or hydrogenrich synthesis gas) for fuel cells, e.g., 

aromatic content (which affects coking), olefin content, contaminant levels, additives, and 

boiling point range (which affects vaporization of the fuels in the fuel processor), all of 

which may affect the catalysts used for fuel processing [12]. 

2.3.1 Methanol 

Among all possible fuels that can be used for feeding directly a fuel cell, methanol is 

the most studied due to its high electrochemical activity when compared with other liquid 

fuels such as ethanol or formic acid. Simultaneously, methanol is liquid at room 

temperature, has high energy density and is not expensive. Furthermore, methanol 
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production is not dependent on hydrogen generation processes because it can be obtained 

by steam reformation of natural gas or by wood distillation. 

Historically, methanol (wood alcohol) was first produced by destructive distillation 

(pyrolysis) of wood. Biomethanol may be produced by gasification of organic materials to 

synthesis gas followed by conventional methanol synthesis. This was one of the older 

alternative fuels. It used to be used in vehicle concentrations as high as M85, but it is not 

commonly used in such high blends anymore because automakers are not developing 

methanol powered vehicle. Like Ethanol, Methanol is very good for blending with 

gasoline to replace the harmful octane enhancers. 

Methanol, like ethanol, burns at lower temperatures than gasoline. Using methanol as a 

fuel in spark ignition engines can offer an increased thermal efficiency and increased 

power output (as compared to gasoline) due to its high octane rating (114) and high heat 

of vaporization. Methanol, an industrial chemical that can also be used as fuel, can be 

made from a wide variety of source materials. Viable feedstocks include agricultural 

products such as corn, sugarcane and switch grass, as well as other sources such as natural 

gas, coal, or municipal waste. Can even be produced using carbon dioxide emissions that 

would otherwise contribute to greenhouse gas.  

Direct methanol fuel cells are regarded as promising electrochemical systems for directly 

converting the chemical energy of a fuel and an oxidant into electric energy in a wide range 

of the portable and transportation applications. A short list of their advantages may include, 

interalia, their suitability for applications where mass and volume constraints are stringent, 

the compatibility of liquid methanol for handling and storage in the existed gasoline 

infrastructure, and their ability for quick start-up and immediate response to consumer 

needs [13, 14].  
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2.3.2 Ethanol 

Other fuels that are becoming more important to feed directly a fuel cell are ethanol 

(direct ethanol fuel cells – DEFC) [15]. Ethanol (C2H6O) ethyl alcohol, pure alcohol, 

grain alcohol, drinking alcohol) is a volatile, flammable, and colorless liquid. It is a 

psychoactive drug, best known as the type of alcohol found in alcoholic beverages and in 

thermometers. In common usage, it is often referred to simply as alcohol. Ethanol is 

considered to be attractive due to its low toxicity, natural availability, renewability and 

minimal pollutants emission. However, under similar operating conditions, the direct 

ethanol fuel cells performance is still much inferior to that of fuel cells fed with hydrogen 

or methanol. This happens essentially due to the slow reaction kinetics of the ethanol 

electro-oxidation. 

Ethanol fuel is a gasoline alternative that is manufactured from the conversion of 

carbon based feed stocks such as sugar cane, sugar beets, switch grass, corn, and barley. 

In the dry milling process (production of bioethanol), the corn kernel or other starchy 

grain is ground into flour (meal) and processed without separating out the various 

component parts of the grain.  

Direct ethanol fuel cells (DEFCs) have spurred more and more interest in recent years due 

to ethanol intrinsic advantages such as its low toxicity, renewability, and its easy production 

in great quantity by the fermentation from sugar-containing raw materials [16]. Furthermore, 

the high theoretical mass energy density (about 8.00 kWh/kg) [17] provides it with a potential 

candidate fuel for polymer electrolyte membrane fuel cells. When ethanol is used as the fuel, 

its desired reaction in DEFCs is the complete oxidation to CO2 and water. 
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2.3.3 Biodiesel 

Biodiesel is a fuel produced from biological source and is the generic name for fuels 

obtained by esterification of vegetable oil. Biodiesel can be used in a diesel engine without 

modification and is a clean burning alternative fuel produced from domestic, renewable 

resources. The fuel is a mixture of fatty acid alkyl esters made from vegetable oils, animal 

fats, or recycled greases. 

Biodiesel is better for the environment because it is made from renewable resources and 

has lower emissions compared to petroleum diesel. It is less toxic than table salt and 

biodegrades as fast as sugar. Produced domestically with natural resources, its use 

decreases our dependence on imported fuel and contributes to our own economy.  Biodiesel 

use also reduces greenhouse gas emissions. The carbon dioxide released in biodiesel 

combustion is offset by the carbon dioxide sequestered while growing the feedstock from 

which biodiesel is produced. Pure biodiesel (B100) use reduces carbon dioxide emissions 

by more than 75% compared to petroleum diesel. Using 20%biodiesel (B20) reduces 

carbon dioxide emissions by 15%. 

2.3.4 Hydrogen 

Hydrogen comes from the Greek words ‘‘hydro’’ and ‘‘genes’’ meaning ‘‘water’’ and 

‘‘generator’’. Hydrogen is one of the main compounds of water and of all organic matter 

and it’s widely spread not only in the Earth but also in the entire Universe. In the 20th 

century, hydrogen was extensively used in the manufacture of ammonia, methanol, 

gasoline and heating oil, as well as in such commodities as fertilizers, glass, refined 

metals, vitamins, cosmetics, semi-conductor circuits, lubricants, cleaners, margarine and 

rocket fuel. After 1974, many studies were conducted to investigate the uses for hydrogen 

energy and facilitate its penetration as an energy carrier. Subsequently, many industries 
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worldwide began developing and producing hydrogen, hydrogen-powered vehicles, 

hydrogen fuel cells, and other hydrogen-based technologies. 

Hydrogen is not an energy source, but an energy carrier because it takes a great deal of 

energy to extract it from water. In nature, hydrogen is never found on its own; it is always 

combined into molecules with other elements, typically oxygen and carbon. Hydrogen 

can be extracted from virtually any hydrogen-containing compound, including both 

renewable and non-renewable resources. There are three hydrogen isotopes: i) protium, 

mass 1, found in more than 99,985% of the natural element, ii) deuterium, mass 2, found 

in nature in 0.015% approximately and iii) tritium, mass 3, which appears in small 

quantities in nature but can be artificially produced by various nuclear reactions. 

Hydrogen obtained from dissociation of water with renewable energy, nuclear or the 

water-gas shift reaction in advanced gasification technologies provided with CO2 capture 

and sequestration has been identified as one of the strategic technologies for an appealing, 

clean, abundant, safe and cost effective energy carrier for a low carbon economy. 

Hydrogen produced through renewable energy sources is an emissions-free way to carry 

clean energy. Hydrogen is most commonly generated from renewables with a device 

called electrolyzer, which uses electricity to separate water into hydrogen and oxygen. By 

converting renewable electricity into hydrogen, the intermittent power of wind and 

sunlight can be stored for long periods and used in a fuel cell for power at any time. It can 

be burned in internal combustion engines. Hydrogen Fuel Cells are being looked into as a 

way to provide power and research is being conducted on hydrogen as a possible major 

future fuel. For instance it can be converted to and from electricity from bio-fuels, from 

and into natural gas and diesel fuel, theoretically with no emissions of either CO2 or toxic 

chemicals. 
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Several important properties of hydrogen are listed in Table 1. In comparison to air 

(see also Table 1), hydrogen exhibits 14-fold lower density, 3.8-fold higher speed of 

sound, and seven-fold higher thermal conductivity. These exceptional properties of 

hydrogen have useful applications: Its low density and high sonic speed are exploited in 

the supersonic tube vehicle (STV) concept, and its high thermal conductivity has been 

exploited by using hydrogen gas as a coolant for nuclear reactors so as to avoid 

radioactive contamination of the coolant. 

Table 2.2: Properties of Hydrogen and Comparison with properties of Air 

 
   

Property                                Hydrogen                     Air         Hydrogen Value / Air Value 

Molecular Mass                     2,016    

Boiling point, K                     20    

Melting point, K                    14    

Density (ρ), g/L                      0,082                       1,16                  0,071    

Viscosity (μ), μPa-s               9,0                            18,6                  0,48    

Speed of sound, m/s (km/h)         1.310 (4.720)    346 (1.246)      3,8    

Thermal conductivity, mW/m-K  187                  26,2                  7,1    
*
At pressure P = 100kPa and temperature T = 298-300K    

    

The greatest obstacle for the wide use of hydrogen as an energy carrier in our daily life 

is the generation and distribution of hydrogen. Although hydrogen can be produced in 

various ways, most of the hydrogen produced today comes from large chemical plants 

making its way to the final customer very long. 

 

Figure 2.2: Schematic Representation. 

Like any other product, hydrogen must be packaged, transported, stored and 

transferred, to bring it from production to final use (Figure 2.2). These standard product 
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processes require energy. In today’s fossil energy economy, the energy lost between the 

well and the consumer is about 12% for oil and about 5% for gas. 

2.4 Hydrogen Production 

Hydrogen production is the family of industrial methods for generating hydrogen. 

Hydrogen in molecular form can be produced from many different sources and in many 

different ways. It can be produced from a wide of feedstocks and any hydrogen- rich 

material can serve as a possible fuel source for fuel cells. The vast majority of today’s 

hydrogen is produced via steam reformation of natural gas (95% in the U.S., roughly 48% 

globally) but alternative sources such as biogas are growing in popularity. Many other 

methods are known including electrolysis and thermolysis. 

2.4.1 Steam reforming 

Fossil fuels are the dominant source of industrial hydrogen. Hydrogen can be 

generated from natural gas with approximately 80% efficiency or from other 

hydrocarbons to a varying degree of effiency. Specifically, bulk hydrogen is usually 

produced by the steam reforming of methane or natural gas. At high temperatures (700- 

1100
o
C), steam (H2O) reacts with methane (CH4) in an endothermic reaction to yield 

syngas.  

CH4 + H2O → CO + 3 H2                                                                                                                                 (2.9) 

In a second stage, additional hydrogen is generated through the lower –temperature, 

exothermic, water gas shift reaction, performed at about 130
o
C: 

CO + H2O → CO2 + H2                                                                                           (2.10) 

Essentially, the oxygen (O) atom is stripped from the additional water (steam) to oxidize CO 

to CO2. This oxidation also provides energy to maintain the reaction. Additional heat required 

to drive the process is generally supplied by burning some portion of the methane. 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



29 

Natural gas, the feedstock of choice for most of today’s mass-produced hydrogen, 

contains methane (CH4) that can be used to produce hydrogen via a thermal process 

known as steam-methane reformation. In steam-methane reforming, methane reacts with 

steam in the presence of a catalyst to produce hydrogen, carbon monoxide, and a 

relatively small amount of carbon dioxide. Steam reforming is endothermic, meaning heat 

must be supplied to the process for the reaction to proceed. The process is approximately 

72% efficient. This type of reforming works similarly for other hydrocarbon fuels, 

combining the fuel with steam by vaporizing them together at high temperatures. 

Hydrogen is then separated out using membranes. 

Another type of reformer is the partial oxidation (POX) reformer. Partial oxidation is a 

reforming process in which the fuel is partially combusted; it is exothermic and provides 

heat for other reactions in the reforming system (usually in combination with steam 

reforming). The oxygen fed into the system is sub-stoichiometric so that both CO and 

CO2 are formed. Some CO2 is emitted in the reforming process, but the emissions of 

NOX, SOX, particulates, and other smog producing agents are cut to zero. 

2.4.2 Water Electrolysis 

Electrolysis is the process of using electricity to split water into hydrogen and oxygen. 

Making hydrogen from water by electrolysis is one of the more energy-intensive methods. 

As long as the electricity comes from a clean source, electrolysis is a clean process, but it 

is associated with considerable losses. Electrolysis is the reverse of the hydrogen 

oxidation reaction in a fuel cell. This reaction takes place in a unit called an electrolyzer. 

Electrolyzers can be small, appliance-size equipment and well-suited for small-scale 

distributed hydrogen production. Research is also under way to examine larger-scale 

electrolysis that could be tied directly to renewable or other non-greenhouse gas emitting 
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electricity production. Hydrogen production at a wind farm generating electricity is an 

example of this. The overall electrolysis reaction is: 

e
-
 + H2O  ½ O2 + H2                                                                                                                                 (2.11) 

Hydrogen produced via electrolysis can result in zero greenhouse gas emissions, 

depending on the source of the electricity used [18]. The source of the required electricity 

including its cost and efficiency, as well as emissions resulting from electricity generation 

must be considered when evaluating the benefits of hydrogen production via electrolysis. 

In many regions of the country, today's power grid is not ideal for providing the 

electricity required for electrolysis because of the greenhouse gases released and the 

amount of energy required to generate electricity. Hydrogen production via electrolysis is 

being pursued for renewable (wind) and nuclear options. These pathways result in 

virtually zero GHG emissions and criteria pollutants.  

Electrolysis technologies with reduced capital costs, enhanced system efficiency, and 

improved durability for distributed scale hydrogen production from electricity and water. 

When an electric current is introduced to water (H2O), hydrogen and oxygen are 

separated, with hydrogen forming at the cathode and oxygen forming at the anode. 

Electricity can be provided from any source, but using solar and wind energy to 

electrolyze water provides the cleanest pathway to produce hydrogen. This model is being 

used in some hydrogen refueling stations and in renewable energy storage systems that 

utilize hydrogen. 

2.4.3 Enzymes  

Another method to generate hydrogen is with bacteria and algae. Cyanobacteria, an 

abundant single-celled organism, produce hydrogen through its normal metabolic 

function. Cyanobacteria can grow in the air or water, and contain enzymes that absorb 
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sunlight for energy and split the molecules of water, thus producing hydrogen. Since 

cyanobacteria take water and synthesize it to hydrogen, the waste emitted is more water, 

which becomes food for the next metabolism. Sodium borohydride (NaBH4) is an 

inorganic compound that can dissolve in water in the absence of a base. Hydrogen can be 

generated through catalytic decomposition. 

2.5 Storage and delivery  

Hydrogen storage is a key enabling technology for the advancement of hydrogen and 

fuel cell power technologies in transportation, stationary, and portable applications. 

Hydrogen can be stored in materials, such as nanotubes [19], carbon fibers [20], metal 

hydrides and in a number of chemical compounds. Hydrogen stored in alcohols or 

hydrocarbons such as methanol or methane can be an option. Such alcohols and 

hydrocarbons are usually reformed into hydrogenrich synthesis gases by several methods, 

the main processes are catalytic steam reforming (CSR), partial oxidation (POX) and 

autothermal reforming (ATR). 

Lower-cost, lighter-weight, and higher-density hydrogen storage is one of the key 

technologies needed for the introduction of hydrogen-based systems. Hydrogen can be 

stored as either a liquid or a gas. To store hydrogen in liquid form, hydrogen must be 

cooled to -423
o
F, requiring a tremendous amount of energy. Therefore, hydrogen 

produced in large quantities is usually pressurized as a gas then stored in caverns, gas 

fields, or mines before being piped to the consumer as natural gas is today. Researchers 

are examining an impressive array of storage options with support from the U.S. 

Department of Energy. 

High-pressure tanks can be used to store hydrogen. Today, compressed hydrogen tanks 

for 5,000 psi (~35 MPa) and 10,000 psi (~70 MPa)] have been certified worldwide 

according to ISO 11439 (Europe), NGV-2 (U.S.), and approved by TUV (Germany) and 
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The High Pressure Gas Safety Institute of Japan (KHK). However, driving ranges for 

compressed tanks remain inadequate and the energy consumed to compress the hydrogen 

reduces the efficiency of this storage media. The weight and size of the tanks are also an 

impediment to this application. 

Liquefied Hydrogen - The energy density of hydrogen can be improved by storing 

hydrogen in a liquid state. However, hydrogen losses become a concern and improved 

tank insulation is required to minimize losses from hydrogen boil-off. In addition, 

advances in liquefaction efficiencies are required to reduce the energy required to cool 

and liquefy hydrogen gas.  

2.6 Hydrogen uses 

Hydrogen is the lightest and most common element in the world. It is one of the 

components of water and vital to life. There are a lot of benefits that can be derived from 

using hydrogen as opposed to other chemical elements. It is widely used in many 

industries mainly because it causes for more sustainable form of energy. 

2.6.1 Fueling 

The element is often used as fuel because of its high calorific value. Combustion 

generates plenty of energy. Numerous transit systems around the world have conducted 

demonstration programs placing hydrogen fuel cell buses in operation that provide 

pollution-free, quiet urban public transportation. Hydrogen vehicle fueling stations may 

generate hydrogen on-site or receive deliveries of trucked-in hydrogen. In either case, the 

stations possess equipment to compress, store and dispense the hydrogen fuel. 

Compressing hydrogen gas to 350 (5,000 psi) or 700 bar (10,000 psi) reduces the volume, 

and the compressed gas is then stored onsite in high pressure or cryogenic tanks. A few 

sites store hydrogen in liquid form, which is converted to a gaseous state and compressed 
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before being dispensed. Researchers are also examining additional storage options, such 

as the use of advanced solid state materials and liquid materials. 

On-board hydrogen storage is a challenge for automotive engineers, who are limited 

by size and weight constraints while seeking to meet the driving range of today’s gas-

fueled vehicles (300 or more miles per fueling). Several recent fuel cell vehicles have 

either met or exceeded this milestone with novel tank design. Researchers are examining 

an array of storage options with support from the U.S. Department of Energy (DOE). 

Today’s fuel cell electric (FCEVs) use compressed hydrogen tanks or liquid hydrogen 

tanks. New technologies, such as metal hydrides and chemical hydrides may be come 

viable in the future. Another option is to store hydrogen-containing compounds, such as 

gasoline or methanol, onboard a vehicle and extracting the hydrogen using a fuel 

reformer. 

Today, there are more than 100 hydrogen fueling stations operating around the world, 

with a fueling process that is swift (just minutes) and remarkably similar to filling up a 

tank with gasoline. 

2.6.2 Industrial applications  

Other uses of hydrogen are in the fertilizer and paint industries. It is also used in the 

food and chemical industries. Food industries use the element to make hydrogenated 

vegetable oils such as margarine and butter. In this procedure, vegetables oils are 

combined with hydrogen. By using nickel as a catalyst, solid fat substances are produced. 

In petrochemical industry, hydrogen is required for crude oil refinements. 

Welding companies use the element for welding torches. These torches are utilized for 

steel melting. Hydrogen is required as a reducing agent in chemical industries. Chemical 

industries use them for metal extraction. For example, hydrogen is needed to treat mined 

tungsten to make them pure.  
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2.6.3 Chemical compounds 

This element is used for producing several chemical compounds. Apart from ammonia, 

hydrogen can be harnessed in other ways. It can be used to make fertilizers, hydrochloric 

acis and an assortment of bases. The same element is required for methyl alcohol 

production. Methyl alcohol is used in inks, varnishes and paints. Hydrogen peroxide is 

another vital compound. 

Hydrogen peroxide is used in many ways. First and foremost it is used for medication. 

It is included in most first aid kits. It is primarily used for treating wounds and cuts. 

Peroxide is also a toenail fungus disinfectant. Hydrogen peroxide can be diluted in water. 

It can kill bacteria and germs if used as whitewash. The same element can be used for 

teeth whitening and canker sores treatment. 

2.7 Hydrogen PEM fuel cell  

The development of highly active oxygen reduction electrocatalysts with enhanced 

durability remains still to be a critical challenge for a wider commercialization of 

hydrogen proton exchange membrane fuel cells (PEMFCs). The hydrogen proton 

exchange membrane fuel cell converts chemical Gibbs free energy directly into electrical 

energy with the single product of water. It is one of the promising technologies for low 

emission and noise energy production in different fields, for example in automotive or 

portable applications. The overall reaction of a hydrogen / oxygen PEM fuel cell is 2H2 + 

O2 => 2H2O. Figure 1 shows a schematic of a single cell (membrane electrode assembly, 

MEA) hydrogen / oxygen PEM fuel cell. 
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Figure 2.3: Schematic of a single cell (membrane electrode assembly, MEA) 

hydrogen /oxygen PEM fuel cell. 

The oxygen reacts on the cathode side of the PEMFC with protons and electrons to form 

water according to the half-cell redox process 

O2 + 4 H
+
 + 4 e

-   2 H2O 

where the protons are supplied by the hydrogen splitting on the anodic side via membrane 

crossing [21]. This oxygen reduction reaction (ORR) on the cathodic side is a sluggish 

rate limiting reaction and therefore leads to significant cell voltage and overall efficiency 

losses in a PEMFC [22, 23].  

2.7.1 Hydrogen PEM fuel cell electrocatalyst research targets 

It is well known that PEMFC systems are intended to be used for transportation and 

portable applications as well as for stationary ones, mainly due to their low temperature 

operation and quick start-up. Fuel cell is considered as one of the most promising 

products of 21st Century, as it can compete, in terms of efficiency, with batteries, internal 

combustion engines and power grids. The challenge is whether fuel cell can be made with 

a reasonable price [24]. 
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Whatever the case will be, Pt or Pt-based binary or ternary catalysts are still the well-

known and commonly-adopted materials providing the highest activity for electrode 

reactions and lifetime stability. Nevertheless, the total Pt reserves in the world will be 

depleted if each vehicle, which is powered by a 75 kW fuel cell stack, needs 

approximately 75 g of Pt (∼1 mg Pt/W) [25]. More precisely, one and a half billion cars 

will require more than 110,000 tons of Pt, which is far more than the world-wide 

estimated Pt reserves (∼28,000 tons), in addition to the other applications of Pt in the area 

of catalysis, jewellery and so on. Therefore, in order to increase Pt's utilization coefficient 

and consequently decrease its content, the research and development has shot either to Pt-

based electrocatalysts with low-Pt loading, which are usually dispersed on carbon 

supports with high specific surface area [26] or to non-Pt (Pt-free) electrocatalysts. 

Moreover, the cost target of ∼30 $/kW (current Internal Combustion Engine's cost) that 

has been set for 2015 and can be met only if the maximum mass specific power density 

(max-MSPD) will be reduced to less than 200 mg of Pttotal per kW (higher than 

5mW         
  ) at cell voltages higher than 0.65 V (U.S. Department of Energy, DOE). 

This cost reduction could be achieved: (a) by increasing the power density to 0.8-

0.9W     
   at cell voltages >0.65 V, (b) by reducing mass transfer loss at higher current 

densities, and (c) by reducing Pt-loading in MEAs to < 150μg     
   [25]. 

In literature a lot of novel materials have been studied as anode and cathode 

electrocatalysts for (H2-PEMFCs). Many different techniques have been adopted in order to 

reduce Pt loading in PEMFCs sputter deposition [27], hydrothermal method [28], 

electrospinning and chemical dealloying techniques [29, 30], thin film method [31, 32], ion 

beam assisted deposition (IBAD) method [33].  

Fig.2.4 summarizes all the results reported in the International literature the last 

decade, concerning both low Pt anodes and low Pt cathodes. As it can be seen, the results 
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Using a modified thin-film method, Manthiram et al. [36] fabricated a MEA with 25 

μgPtcm
-2

 each electrode and achieved a power density of 601 mWcm
-2

. Additionally, 

Antolini et al.[37] also achieved 600 mWcm
-2

 over electrodes prepared by replacing Pt/C 

with PdPt/C indicating that Pd-based catalysts can substitute conventional Pt catalysts in 

PEMFCs with only a slightly loss in cell performance. 

Ultra-low platinum loading cathode electrocatalyst of 12μgPtcm
-2

 was fabricated using 

thin films of multiwall carbon nanotube supported Pt catalysts (Pt/MWNTs) [38]. As it 

can be seen (Fig.3) the peak power density, for a H2-PEMFC’s membrane electrode 

assembly loaded with 12μgPt cm
-2

 and tested at 70°C, was 613 mWcm
2
. Brault et al.[39] 

fabricated ultra-low Pt content PEMFC electrodes (10μg cm
-2

 for anode and 10μg cm
-2

 

for cathode) employing a method of carbon and platinum magnetron co-sputtering on a 

commercial E-Tek un-catalyzed gas diffusion layer, which presented high power density 

of 400 mWcm
-2

,  equivalent to a specific power of 20kW gPt
-1

. Moreover, another 

attractive strategy to reduce precious metal loading, is making catalyst skins over 

nanoporous metal supports. Erlebacher et al.[40] fabricated platinum-plated nanoporous 

gold leaf (Pt-NPGL) MEA (carbon-free electrocatalyst), which exhibited maximum 

power density 250 mWcm
−2

. By sputter-deposited Pt thin film layers onto different 

porous electrodes, Gruber et al.[41] reached 132 mWcm
−2

 over a very low total Pt 

amount of 10μg cm
-2

. 

More precisely, Fig. 2.5 depicts the results of the recently appeared investigations 

concerning different techniques that are used for the preparation of low platinum anodes 

and low platinum cathodes for H2-PEMFC. A three step electrodeposition process has 

been adopted for the preparation of a PtFeNi catalyst [42] with an ultra-low Pt loading of 

50 μgPtcm
-
2, which exhibited good performance and stability. Mougenot et al.[43] 

prepared a MEA with an ultra-low Pt loading made by pure Pd anode and PdPt cathode, 
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deposited on commercial carbon woven web and carbon paper GDLs by plasma 

sputtering, that under fuel cell operation performed 250 mWcm
−2

. 

 

Figure 2.5: Maximum Power Density (mWcm
−2

) dependency different Pt anodes and 

Pt cathodes. Inside the columns is reported the platinum amount (μgcm
−2

) contained 

in each electrode. 

As expected, using Pt-based binary or ternary catalyst and increasing Pt's utilization 

coefficient are the commonly methods for decreasing Pt content and providing the highest 

activity for electrode reactions and lifetime stability. 

2.8 Platinum free electrocatalysts for Hydrogen PEMFC 

2.8.1 Anodes  

In recent years, considerable progress have been achieved in developing non-platinum 

electrodes, however there are few reports on H2-PEMFCs with Pt-free anode 

catalysts.  Even in these cases the cathode was loaded with Pt. A successful anode catalyst 

should combine high HOR activity with good long-term stability, a major challenge in the 

strongly acidic environment of the PEMFC anode. The last decade’s efforts for the 

replacement of the expensive and scarce Pt by non-Pt electrocatalysts in PEMFC anodes 

is depicted in Fig. 2.5. As one can distinguish, the highest performance (Fig.2.4) for Pt-
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free anode achieved by Jianxin Ma et al.[44]. They prepared highly dispersed non-

platinum catalyst based on Ir and Ir-V nanoclusters for PEMFC anode via ethylene glycol 

method, which at 0.512V exhibited about 563mWcm
-2

. This material is expecting to be 

very promising candidate as platinum alternative anode catalyst. Recently, Hyuk Chang et 

al.[45] over a Pd3Au/WC catalyst achieved a performance of 238mWcm
-2

, which was the 

second best value after that of iridium-vanadium alloy. Moreover, a strong interaction 

between PdNi alloys and WC in the case of PdNi/WC anode electrocatalyst for HOR 

caused a performance of 230mWcm
-2

 [46]. Jacobson et al. focused on transition metal 

sulfides (RuS2/C) for HOR under fuel cell operation and they measured maximum power 

density value at 100 mWcm
-2

 which is the third better fuel cell performance at non –Pt 

anodes Fig. 2.6. 

 

Figure 2.6: Maximum Power Density (mWcm
−2

) over different Pt-free anodes. 

2.8.2 Cathodes 

The last decade, a large number of investigations have also been appeared regarding 

the replacement of Pt in fuel cells’ cathodes, aimed at the enhancement of the activity 

towards ORR, which is much slower than HOR. The highest performance reported in the 

literature for non-platinum cathode in H2-PEMFC, is 529 mWcm
−2

 achieved by B. N. 
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Popov et al.[47] over Co-Fe-N/C electrocatalyst, obtained through high-temperature 

pyrolysis of Co-Fe-N chelate complex on the support, followed by chemical leaching. 

The maximum power density of 517 mWcm
-2

 obtained by 40% Ir–10% V/C as the 

cathode catalyst and 400 μgcm
-2 

Pt anode loading [48]. In the case that polyaniline [49] 

was used as both carbon and nitrogen precursor, the cell maximum power density reached 

the value of 380 mWcm
−2

, the anode's Pt loading was 250 μgcm
−2

. In a general overview 

of Fig. 2.6, comparison of the performances exhibited by Pt catalysts, the transition 

metals (binary and ternary) carbides, nitrides and oxynitrides exhibited remarkably equal 

or slightly better performance with the same loading of metal. The most common 

examined binary and ternary alloys are Pd-M (M = Ti [50], Ni [51], Co-Mo [52]. 

 

Figure 2.7: Maximum power density (mWcm
−2

) over different Pt-free cathodes. In 

the column is reported the Pt amount (μgcm
-2

) contained in the anode. 

The cobalt tungsten Co–W/C treated by ammonia [53] obtained performance of 382 

mWcm
−2

 (anode Pt loading: 400 μgcm
−2

). According to Zelenay et al. [54] using cathode 

catalyst cynamide as a nitrogen source, H2-PEMFC exhibited a maximum power density 

of 370 mWcm
−2

. A highly ordered Pt-free Fe–N–C catalyst is synthesized by Tang et al. 

[55] achieving maximum power of the cell 252 mWcm
−2

. 
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Abstract 

This chapter initially indicates an analytical description of the preparation method of the 

studied electrocatalysts. The method that was used for the preparation of the 

electrocatalysts is microwave assisted polyol and is referred analytically. Moreover, the 

experimental apparatus that were used to carry out the experimental measurements of the 

Fuel Cell and the experimental techniques for the physicochemical and electrochemical 

characterization of the studied electrocatalysts are given. At first stage their 

physicochemical characterization was conducted by the techniques of Transmitting 

Electrode Microscopy (TEM) and X-Ray Diffraction (XRD). Then, their electrochemical 

characterization towards hydrogen oxidation reaction (HOR) and oxygen reduction 

reaction (ORR) was conducted by the Cyclic Voltammetry (CV), Chronoamperometry 

and Rotating Disk Electrode (RDE) methods. Fuel cell performance was studied and 

examined by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and 

potentiodynamic (I-V) techniques. 
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3.1 Preparation Method of Electrocatalysts: modified 

microwave assisted polyol method. 

Microwaves are electromagnetic waves with frequencies in the range of 0.3 to 300 

GHz. The commonly used frequency for microwave heating is 2.45 GHz. The principle of 

microwave heating is related to the polar characteristics of molecules. During the 

microwave heating, polar molecules such as water molecules try to orientate with the 

electric field. When dipolar molecules try to re-orientate with the rapidly changing 

alternating electric field, the heat is generated by rotation, friction and collision of 

molecules. One of the advantages of the microwave heating is rapid volumetric heating, 

which results in the higher reaction rate and selectivity, reduction in the reaction time 

often by orders of magnitude and higher yield of the product compared to the 

conventional heating methods. As a result, the microwave heating opens up the possibility 

of realizing fast preparation of materials in a very short time, leading to relatively low 

cost, energy saving and high efficiency for materials production. The microwave energy 

is found to be more efficient in the selective heating in many processes. These processes 

are environmentally friendly, requiring less energy than the conventional methods. 

Since the first reports of the microwave-assisted organic synthesis in 1986, the 

microwave heating has received considerable attention as a promising heating method for 

both organic and inorganic synthesis. The use of microwave heating as an alternative heat 

source is becoming more and more popular in chemistry and materials science. The 

microwave heating has received considerable attention as a new promising method for the 

rapid preparation of inorganic nanostructures in the liquid solvents.  

A variety of nanomaterials such as metals, metal oxides, metal sulphides, selenides, 

tellurides, carbonates organic/inorganic composites have been prepared by the microwave 

heating method [1].  Nanostructures with various morphologies including spheres, 
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polygonal plates, sheets, rods, wires, tubes and dendrites were prepared within a few 

minutes under microwave heating. Morphologies and sizes of metal nanostructures could 

be controlled by changing various experimental parameters, such as the concentration of 

metal salt and the chain length of the surfactant, the solvent and the reaction temperature. 

The heating rate and efficiency of the microwaves strongly depends on the properties of 

the reaction mixture. When good microwave absorbing solvents are used the results is a 

very fast heating. Among the typical solvents commonly used in microwave heating, 

water alcohols and ethylene glycol are ideal solvents and they are commonly used for the 

preparation of inorganic nanostructures. Ethylene glycol also has a reductive ability. 

The microwave-assisted polyol method has been developed for the preparation of 

inorganic nanostructures such as metals, metal oxides and sulphides. Liu et al. [2]  

reported the synthesis of spherical metal nanoparticles by the microwave-polyol method. 

In summary, the heating mechanism of the microwaves is different from the conventional 

heating. Unlike other heating methods the microwave heating has remarkable advantages 

such a) higher temperature inside the product than on its surface, b) due to the heating of 

the material throughout the whole volume the high uniformity of warming is reached as 

well as more precise temperature regulation, c) shorter reaction time and higher yield of 

the product and we should point that d) overheating of certain parts (to the overcritical 

damaging temperature) of the product can be better prevented this way [3]. 

In the present work the electrocatalysts’ preparation procedure was the following: A 

certain amount of PdCl2/ethyl glycol (EG) or/and second metal salt/EG solution were well 

mixed with EG in ultrasonic bath, and then carbon powder was added into the solution 

according to the pre-calculated metal loading. After stirring, 2.0 mol L
-1

 NaOH/EG was 

added into the solution to adjust the pH value of the above mixture to be more than 12. 

After further stirring for another 1h, the slurry was pulse microwave heated for several 

times in a 10s-on/10s-off pulse form and then re-acidified with hydrochloric acid. The 
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pulse-microwave procedure was adopted in order to avoid the agglomeration of the metal 

particles at high temperatures. This is due to the fact that continuous microwave can 

easily cause a quite rapid heating rate for carbon materials. In this process, EG acts not 

only as dispersant and reducing agent, but also as the microwave additive due to the fact 

that the dielectric constant (41.4 at 25 °C) and dielectric loss for ethylene glycol are high, 

and consequently rapid heating takes place under the microwave radiation. The support, 

carbon (Vulcan XC-72R, Cabot Corp.) is also a microwave-sensitive material, which is 

believed to play an important role in the acceleration of the metal reduction. Hydrochloric 

acid was added into the above dispersion system as the sedimentation promoter to 

accelerate the adsorption of the suspended Pt nanoparticles onto the carbon support. The 

obtained black solid sample was washed by hot deionized water and dried in a vacuum 

oven at 80
o
C for 12 h. 

3.2 Physical characterization for Catalyst Activity Evaluation 

3.2.1 Transmission Electron Microscopy (TEM) characterization 

Transmission electron microscope (TEM) is one of the most powerful techniques to 

characterize materials with nanometer-scale features. TEM is a tool for exploring the 

micro- and the nano-world and it can provide information from micron sizes down to 

atomic scale. It provides a wide range of different imaging modes with the ability to 

provide information on elemental composition and electronic structure at the ultimate 

sensitivity, that of a single atom. The TEM uses a high energy electron beam transmitted 

through a very thin sample (< 50nm) to image and analyze the structure of materials. 

TEM comprises a variety of methods:  

 Bright Field (BF)/Dark Field (DF) methods can provide information about size and 

morphology of particles, can detect crystalline areas, defects, grain boundaries and phases. 
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 Electron Diffraction (ED) is applied to obtain crystallographic information such 

as lattice parameters, crystal symmetry and orientation. 

 High Resolution Transmission Electron Microscopy (HRTEM) allows lattice fringe 

imaging, that can be directly related to the structure (interpretation has to be confirmed by 

image simulation) and visualization of defects and interfaces at atomic scale resolutions. 

TEM enable identification and classification of aggregates, which may include 

protofibrils, amyloid fibrils containing varying numbers of strands, and amorphous 

aggregates. In contrast, methods used to quantify fibril production, such as thioflavin-T 

binding, light scattering, Fourier transform infrared spectroscopy, and circular dichroism 

spectroscopy, cannot discriminate among different types of β-sheet rich species. 

Nevertheless, TEM imaging provides no quantitative information about aggregation kinetics 

or about the concentrations of the observed fibrils. In addition, rare species or aggregates that 

do not stick to the TEM grids may not be detected. Therefore, TEM can confirm the presence 

of a particular type of aggregate, but it cannot prove that a type is disallowed. 

3.2.2 Basic principles of transmission electron microscopy 

The TEM operates on the same basic principles as the light microscope but uses 

electrons instead of light. Because the wavelength of electrons is much smaller than that 

of light, the optimal resolution attainable for TEM images is many orders of magnitude 

better than that from a light microscope. However, in TEM, the transmission of electron 

beam is highly dependent on the properties of material being examined. Such properties 

include density, composition, etc. For example, porous material will allow more electrons 

to pass through while dense material will allow less. As a result, a specimen with a non-

uniform density can be examined by this technique. Whatever part is transmitted is 

projected onto a phosphor screen for the user to see [4]. 
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Working principle 

TEM works like a slide projector. A projector shines a beam of light which transmits 

through the slide. The patterns painted on the slide only allow certain parts of the light 

beam to pass through. Thus the transmitted beam replicates the patterns on the slide, 

forming an enlarged image of the slide when falling on the screen. 

3.2.3 X-Ray Diffraction Technique 

X-ray powder diffraction (XRD) is one of the most powerful techniques for qualitative 

and quantitative analysis of crystalline compounds. This provides information that cannot 

be obtained with any other way. The information that can be obtained includes types and 

nature of present crystalline phases, structural make-up of phases, degree of crystallinity, 

amount of amorphous content, microstrain and size and orientation of crystallites.  

When a material (sample) is irradiated with a parallel beam of monochromatic X-rays, the 

atomic lattice of the sample acts as a three dimensional diffraction grating causing the X-ray 

beam to be diffracted to specific angles. The diffraction pattern, that includes position 

(angles) and intensities of the diffracted beam, provides much information about the sample. 

In the present work the X-ray Diffraction (XRD) measurements were carried out by the 

aid of a D/Max-IIIA (Rigaku Co., Japan) employing Cu Kα (λ = 0.15406 nm) as the 

radiation source. The samples were scanned over the range 10° ≤ 2θ ≤ 86°. The peak at 

68° (Pd 220) was used for the calculation of crystallites size using the Scherrer formula 

and Bragg equation [5]: 

                         d=nλ/2sinθ                                                                                     (3.1) 

where λ is the X-ray wavelength (λ = 1.5418 Å) and θ is the angle of (111) peaks. 
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3.3 Electrochemical methods for Catalyst Activity Evaluation 

3.3.1 Introduction 

Since a fuel cell is an electrochemical device, electrochemical methods are playing 

roles in characterizing and evaluating the cell and its components such as the electrode, 

the membrane and the catalyst. The most popular electrochemical characterization 

methods include potential step, potential sweep, potential cycling, rotating disc electrode, 

rotating ring-disk electrode and impedance spectroscopy.  Some techniques derived from 

these methods are also used for fuel cell characterization.  

An electrochemical reaction involves at least the following steps: transport of the 

reactants to the surface of the electrode, adsorption of the reactants onto the surface of the 

electrode and transport of the product(s) from the surface of the electrode. The purpose of 

the electrochemical characterizations is to determine the details of these steps [6]. 

The electrochemical characterizations are carried out in various electrochemical cells. 

There are typically three types of cells: conventional 3-electrode cells, half-cells, and single 

cells. In those cells, the entity (e.g., catalyst, electrode) to be characterized forms the working 

electrode, the potential of which or the current passing through which is controlled or 

monitored. What happens on the working electrode is the sole interest of the investigation. 

The working electrode and another electrode, called the counter electrode, form a circuit, and 

the current flowing through this circuit will cause some reaction on the counter electrode as 

well. However, the investigation has no interest in what happens on the counter electrode, 

except that the reaction occurring on it should not interfere with the working electrode. 

In order to minimize the impact of the solution (or electrolyte) resistance on the potential 

of the working electrode, a reference electrode is often used to form another circuit with the 

working electrode. Ideally, this electrode is non-polarizable and maintains a stable potential. 

There is high input impedance in the voltage measurement equipment, which makes the 
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current flowing in this circuit very small. Therefore, the impact of the uncompensated 

electrolyte resistance on the potential of the working electrode is minimized [6].  

In the following section is described a brief introduction to techniques, principles and 

instrumentation. The illustration is limited to low- to medium temperature fuel cells such 

as the proton exchange membrane (PEM). All electrochemical techniques involve the use 

of electricity as either an input or an output signal. The function of an electrochemical 

instrument is to generate an input electrical signal and to measure the corresponding 

output electrical signal. More details will be given in the discussion below of different 

types of electrochemical techniques.  

3.3.2 Conventional 3-Electrode Cells or Cyclic Voltammetry 

Cyclic voltammetry is the most widely used technique for acquiring qualitative 

information about electrochemical reactions. Cyclic Voltammetry (CV) is an 

electrochemical technique which measures the current that develops in an electrochemical 

cell under conditions where voltage is in excess of that predicted by the Nerst equation. CV 

is performed by cycling the potential of a working electrode, and measuring the resulting 

current. 

3.3.3 The electrochemical Cell 

A typical cell design for a cyclic voltammetric experiment is shown in Fig.1. The 

simplest approach is merely to have the three electrodes immersed in the solution very 

close. The Luggin capillary further isolates the reference solution from the cell solution. 

At the outset of the experiment the cell contains solvent, electrolyte, one or more 

principal electroactive species and possibly added reagents that will undergo reactions 

with the electrolytic products. Before the experiment, it is necessary to remove dissolved 
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oxygen, which has a cathodic signal that can interfere with the observed current response. 

This is normally done by purging the solution with an inert gas such as N2 or Ar.  

The exposed surface of an electronically conducting disk such as glassy carbon, gold, 

or platinum sealed in an inert material such as glass is the working electrode. A piece of 

Pt coil or sheet with a surface area much larger than that of the working electrode is used 

as the counter electrode. The purpose of a larger counter electrode is to assure that the 

electrochemical reaction occurring on it is fast enough so that it does not impede the 

electrochemical reaction occurring on the working electrode. The potential of the working 

electrode is measured against a reference electrode which maintains a constant potential 

and the resulting applied potential produces an excitation signal. Figure 3.1 depicts the 

basic structure of a conventional CV. 

         

Figure 3.1: Basic structure of cyclic voltammetry.  

3.3.4 Experimental apparatus 

A typical experimental apparatus contains the electrolyte in a single compartment into 

all three electrodes are inserted. The electrolytic current (I) flows through the electrolyte 

between the working (W) and counter (C) electrodes in response to the potential of the 

working electrode (Figure 2). The electrode potential of interest (E) is that between W 

and the reference electrode (R). The instrument which controls the E is the potentiostat. 
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The linear potential sweep is relayed to the potentiostat by a function generator and the 

waveform shown is a single cycle CV.   

 

Figure 3.2: Illustration of the basic circuitry of a potentiostat [6]. 

A resistance in the electric circuit is used to adjust and maintain the potential of the 

working electrode. For example, in order to keep the potential of the working electrode 

constant during a potential step measurement that involves changing current, the resistance 

(R) of the resistors will be varied so that the voltage drop (iR) on the resistor is the same.  

A potentiostat measures the voltage difference between the reference and the working 

electrode. A potentiostat has extremely high input impedance so that the input current is 

nearly zero, which enables the reference electrode to keep a constant potential. The current 

passing through the working and the counter electrodes is determined by measuring the 

voltage drop through a known resistor according to Ohm’s law. When the electronic circuit 

is slightly modified so that the current is controlled and the corresponding potential of the 

working electrode is measured, it becomes a galvanostat [6]. 

Electron transfer plays a fundamental role in governing the pathway of chemical 

reactions. Yet the speed and size of the electron mean that tracing its movement is 

difficult using tradition methods such as spectroscopy and synthetic chemistry. 

Consequently our knowledge of the driving force for many reactions remains elusive. 
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Electrochemical methods offer the potential to investigate these processes directly by the 

detection of the electrons involved.  

Cyclic voltammetry refers to cycling the potential between a low and high potential 

value and recording the current in the potential cycling region. The resulting potential 

versus current plot is called a voltammogram. The sweeping of the potential is carried out 

linearly, and the sweeping rate can be controlled in a wide range. Most studies are carried 

out with a potential scanning rate between 1 and 1000 mV s
–1

. Before the scanning starts, 

the working electrode is usually held at a potential that does not cause any 

electrochemical reactions. After the start of the scanning, the potential goes higher (or 

lower), and when it becomes high (or low) enough to cause the oxidation (or reduction) of 

an electrochemically active species, an anodic (or cathodic) current appears. The anodic 

(or cathodic) current increases as the potential increases (or decreases) because the 

reaction kinetics becomes faster. 

A typical electrode reaction involves the transfer of charge between an electrode and a 

species in solution. The electrode reaction usually referred to as electrolysis, typically 

involves a series of steps (Figure 3): 

 

Figure 3.3: An electrode reaction 

a) Reactant (O) moves to the interface: this is termed mass transport.  

b) Electron transfer can then occur via quantum mechanical tunneling between the electrode 

and reactant close to the electrode (typical tunneling distances are less than 2 nm) 

c) The product (R) moves away from the electrode to allow fresh reactant to the surface. 

The above electrode steps can also be complicated by: 
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1) The applied voltage on the electrode. 2) The reactivity of the species. 3) The nature of 

the electrode surface. 4) The structure of the interfacial region over which the electron 

transfer occurs. 

A typical cyclic voltammogram recorded for a reversible single electrode transfer 

reaction is shown below. The solution contains only a single electrochemical reactant 

 

Figure 3.4: A typical cyclic voltammogram for a reversible reaction. 

During this reversed potential scan the oxidized (or reduced) form of the 

electrochemically active species reacts and develops a cathodic (or anodic) peak. The 

cathodic (anodic) peak is located at a slightly lower (higher) potential than the anodic 

(cathodic) peak. The cathodic and anodic peaks are of equal height (or, more accurately, 

equal area), unless there are complications caused by some side chemical or 

electrochemical processes (Figure 3.4). 

Although cyclic voltammetry is very widely used for the initial redox characterization 

of a molecule (i.e., the redox potentials, and the stability of the different oxidations states) 

and for qualitative investigation of chemical reactions that accompany electron transfer, 

there are a number of disadvantages inherent in this technique: 

 The effects of slow heterogeneous electron transfer and chemical reactions cannot 

be separated. If both of these effects are present, then the rate constants for these 

processes can only be calculated using simulation methods. 
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 There is a background charging current throughout the experiment of magnitude 

vCdl (where vCdl is the capacitance of the interface at the working electrode). This 

restricts the detection limit to about 10
-5

 M. In addition, the ratio of the peak 

faradaic current to the charging current decreases with increasing n (since ip is 

proportional to v
1/2

), and this places an upper limit on the value of n that can be used 

In spite of these limitations, cyclic voltammetry is very well suited for a wide range 

of applications. Indeed, in some areas of research, cyclic voltammetry is one of the 

standard techniques used for characterization. 

3.3.5 Rotating disk electrode technique (RDE) 

Hydrodynamic devices use convection to enhance the rate of mass transport to the 

electrode and can offer advantages over techniques which operate in stagnant solution. 

The addition of convection to the cell usually results in increased current and sensitivity 

in comparison to voltammetric measurements performed in stagnant solution. Also the 

introduction of convection (usually in a manner that is predictable) helps to remove the 

small random contribution from natural convection which can complicate measurements 

performed in stagnant solution. Finally, it is possible to vary the rate of reaction at the 

electrode surface by altering the convection rate in the solution and this can be usefully 

exploited in mechanistic analysis and electroanalytical applications. In the discussion 

below a range of traditional and recent developments in the field of hydrodynamic 

techniques and their potential applications are outlined. 

In Figure 3.5 is depicted the rotating disk electrode equipment. In this arrangement 

solution is brought to the surface by a Teflon disc which rotates in solution. The working 

electrode (glassy carbon) is embedded in the top face of the Teflon shield. 
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Figure 3.5: Rotating disk electrode equipment. Reprinted from Ref.[7]. 

When operated at rotation speeds of around 60 Hz (cycles per second) the flow profile 

to the electrode is laminar and so can be predicted mathematically. The figure below 

(Fig.3.6) shows the type of flow profile that is developed when a circular object is rotated 

in solution and how this brings fresh reactant to the surface. 

 

Figure 3.6: Scheme of the flow on working electrode surface. Reprinted from Ref. [8]. 

A typical voltammetric measurement used with the rotating disc and other 

hydrodynamic systems is linear sweep voltammetry. The Figure 3.7 shows a set of current 

voltage curves recorded for a reversible on electron transfer reaction and different rotation 

speeds. The scan rate used was 1 mV s
-1

 (compared to perhaps 20 mV s
-1

 for conventional 

cyclic voltammetry) and as can be seen the total current flowing depends upon the 

rotation speed used.  
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Figure 3.7: Linear sweep voltammetric measurement with RDE. Reprinted from Ref.[8]. 

This can be understood by returning to the concept of the 'diffusion layer' thickness 

controlling the flux of material to the surface. As the rotation speed is increased the 

distance that material can diffuse from the surface before being removed by convection is 

decreased. This results in a higher flux of material to the surface at higher rotation speeds. 

The mass transport limited current arises from the fact that the system reaches a steady 

state and so the current reaches a plateau once the equilibrium at the surface is driven to 

the products side. 

3.3.6 Electro-kinetic analysis 

As it is well known, during a reaction the kinetic current density ( ki ) is a measure of 

the rate of charge transfer on the catalyst’s surface. More precisely, ki  describes the real 

kinetics of an electrocatalytic reaction and therefore is directly related to the activity of an 

electrocatalyst. To determine the catalytic activity of the electrocatalysts, we adopted the 

Koutecky–Levich analysis where the kinetic current is related to the rotational velocity of 

the RDE through the following equation:  

                                                  
1 1 1

k di i i
                                                                        (3.2) 
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where i is the measured current density, ik the kinetic current in the absence of mass 

transfer limitations and id the limiting diffusion current density. A plot of i
-1

 vs ω
− 1/2

 at 

different potentials should be yield straight and parallel lines with intercepts 

corresponding to the inverse of the real kinetic current. The id can be calculated according 

to the Levich equation: 

                                                    
2/3 1/6 1/20.62  di nFD C                                                                        (3.3) 

Where n is the overall electron transfer number, F the Faraday constant (95485 C/mol), D 

the diffusion coefficient of H2 in H2SO4 (3.7 × 10−
5
 cm

2
 s−

1
), v the kinematic viscosity of 

the electrolyte and C the H2 concentration in the electrolyte (7.14 × 10
−7

 mol cm
−3

).  

For RDE data analysis, three non-electrochemical kinetic parameters, such as the 

diffusion coefficient of H2, the kinematic viscosity of the electrolyte solution, and the 

solubility of H2 must be known accurately. These parameters are all temperature 

dependent. Their values are also slightly dependent on the electrolyte used. 

3.3.7 Chronoamperometry (CA) 

Chronoamperometry is an electrochemical technique in which the potential of the 

working electrode is stepped and the resulting current from faradic processes occurring at 

the electrode (caused by the potential step) is monitored as a function of time. The 

analysis of chronoamperometry (CA) data is based on the Cottrell equation, which defines 

the current-time dependence for linear diffusion control: 

                                                                                                                                      (3.4) 

where: n = number of electrons transferred/molecule 

F = Faraday's constant (96,500 C mol
-1

) 

A = electrode area (cm
2
) 

D = diffusion coefficient (cm
2 

s
-1

) 

C = concentration (mol cm
-3

) 
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At the beginning of the transient experiment the potential of the working electrode is 

held at Ei (Fig. 3.8a). At t=0 the potential is instantaneously changed to a new value E1, 

and corresponding current time response is recorded as shown in Fig. 3.8. 

  

Figure 3.8: The chronoamperometric experiment. a) The potential-time profile 

applied during experiment, Ei is initial value and E1 is the potential where no 

reduction of O occurs or some other potential of interest. b) The corresponding 

response of the current due to changes of the potential.  

 

It is important, that such an analysis has to be applied over a broad time interval in 

order to ensure the reliability of results. At short times the current consists of a large non 

faradaic component due to charging of the double-layer capacitance. Hence, the typical 

time range of chronoamperometric measurements lies normally in the range from 0.001 to 

10 s. However, there are a number of additional instrumental and experimental 

limitations. For example, current and voltage characteristics of a potentiostat can limit the 

current maximum and time resolution.  

Even though the chronoamperometry is relatively simple technique, there are a number 

of difficulties, which are related to the interpretation of the current-transient curve. Hence, 

it is very important to find the possibility of comparative analysis of the 

chronoamperometric results with the results of cyclic voltammetry and other techniques. 

This type of comparison will also help to understand the studied system more completely 

and with better precision. 

E
i

0 t

E
1

a
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3.4 Fuel cell system 

3.4.1 Experimental apparatus 

Figure 3.9 depicts the flowchart of the system of electrochemical measurements of an 

array anode / electrolyte / cathode. Hydrogen is fed to the anode and oxygen to the 

cathode. The flows supply controlled by digital mass flowmeters (Brooks Instruments). 

For safety reasons, shortly after leaving flowmeters hydrogen and oxygen two way valves 

on / off are mounted in order to control the flow. Thereafter the flows (hydrogen+oxygen) 

entering the saturator humidity, wherein reactant gases are enriched in water vapor and 

routed to the fuel cell (Figure 3.9). 
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Figure 3.9: Flow chart system 

Gaseous reactants need to be enriched in vapor before entering the fuel cell so that the 

membrane is hydtrate. From the output of the saturation until entering the anode and the 

cathode of fuel cell supply lines are heated. The temperature of the certain lines must not have 

large deviation (± 5°C) compared with the temperature of the fuel cell, otherwise large 

deviation can cause condensation of water vapor within the cell resulting flooding phenomena. 
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Between each analysis the MEA was allowed to rest for 30 minutes under the OC 

condition. At the end of this characterization sequence, the first cycle was considered 

concluded. The procedure was then repeated for a new cycle until almost steady state 

PEMFC performance was reached. The test was carried out at atmospheric pressure. 

It should be pointed out that during the electrochemical experiments, the cell was 

gradually activated. However, the obtained values from each experimental 

electrochemical technique give us a good idea about the performance history along the 

activation procedure.  

3.4.2 Polarization Curve  

A plot of cell potential against current density under a set of constant operating 

conditions, known as a polarization curve, is the standard electrochemical technique for 

characterizing the performance of fuel cells (both single cells and stacks). It yields 

information on the performance losses in the cell or stack under operating conditions [9]. 

A steady-state polarization curve can be obtained by recording the current as a function of 

cell potential or recording the cell potential as the cell current changes. A non-steady-state 

polarization curve can be obtained using a rapid current sweep. By measuring polarization 

curves, certain parameters such as the effects of the composition, flow rate, temperature, 

and RH of the reactant gases on cell performance can be characterized and compared 

systematically. A sample polarization curve is shown in Figure 3.10. Very often, 

polarization curves are converted to power density versus current density plots by 

multiplying the potential by the current density at each point of the curve, also seen in 

Figure 3.10. Polarization curves provide information on the performance of the cell or 

stack as a whole. While they are useful indicators of overall performance under specific 

operating conditions, they fail to produce much information about the performance of 

individual components within the cell. 
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Figure 3.10: A sample fuel cell polarization curve obtained from the diagnostic 

modeling PEM fuel cell. 

They cannot be obtained during normal operation of a fuel cell and take significant 

time. In addition, they fail to differentiate different mechanisms; for example, flooding 

and drying inside a fuel cell cannot be distinguished in a single polarization curve. They 

are also incapable of resolving time-dependent processes occurring in the fuel cell and the 

stack. For the latter purpose, current interrupt, EIS measurements, and other 

electrochemical approaches are preferred. These techniques will be introduced in the 

following sections. 

3.4.3 Voltage Loss 

The fuel cell voltage losses are classified into three categories: the activation loss 

(activation polarization), the ohmic loss (ohmic polarization), and the concentration loss 

(concentration polarization). Plots of voltage drops caused by each of the losses are 

shown in Figure 3.11. At low current densities (the region of activation polarization), the 

cell potential drops sharply and the majority of these losses are due to the sluggish 

kinetics of the ORR. At intermediate current densities (the region of ohmic polarization), 

the voltage loss caused by ohmic resistance becomes significant and results mainly from 

resistance to the flow of ions in the electrolyte and resistance to the flow of electrons 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



Chapter 3: Experimental apparatus & experimental techniques 

67 

through the electrode. In this region, the cell potential decreases nearly linearly with 

current density, while the activation overpotential reaches a relatively constant value. At 

high current densities (the region of concentration polarization), mass transport effects 

dominate due to the transport limit of the reactant gas through the pore structure of the 

GDLs and electrocatalyst layers, and cell performance drops drastically. 

 

Figure 3.11: Schematic of an ideal polarization curve with the corresponding regions 

and overpotentials. 

The output voltage of a single cell, Ecell, can be defined as follows: 

Ecell = EOCV -ΔEact -ΔEohmic ΔEcon 

where Ecell is the voltage for a certain operating condition, EOCV represents the fuel cell 

OCV, ΔEact is the voltage drop associated with the activation of the anode and of the 

cathode, ΔEohmic is the ohmic voltage drop associated with the conduction of protons and 

electrons, and ΔEcon is the voltage drop resulting from the decrease in the concentration of 

oxygen and hydrogen.  

3.4.4 Impedance spectroscopy 

Electrochemical Impedance spectroscopy (EIS) appears destined to play an important 

role in fundamental and applied electrochemistry and materials science in the coming 

years. In a number of respects it is the method of choice for characterizing the electrical 
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behavior of systems in which the overall system behavior is determined by a number of 

strongly coupled processes, each proceeding at a different rate [10].  

The classical electrochemical techniques present measurements of currents, electrical 

charges or electrode potentials as functions of time. In contrast, EIS presents the signal as a 

function of frequency at a constant potential. In spectroscopy, we used to think in terms of the 

frequency domain (wave number, frequency or some related functions as wavelength) [11]. 

The advantages of using EIS are numerous. First of all, it provides a lot of useful 

information that can be further analyzed. In practical applications of cyclic voltammetry, 

simple information about peak currents and potentials is measured. These parameters 

contain very little information about the whole process especially when hardware and 

software is able sampling the current-potential curve producing thousands of 

experimental points every fraction of mV. EIS contains analyzable information at each 

frequency [11]. 

3.4.5 Instrumentation and measurement basics 

During an impedance measurement, a frequency response analyzer (FRA) is used to 

impose a small amplitude AC signal to the fuel cell via the load (Figure 10). The AC 

voltage and current response of the fuel cell is analyzed by the FRA to determine the 

resistive, capacitive and inductive behavior - the impedance - of the cell at that particular 

frequency. Physicochemical processes occurring within the cell – electron & ion 

transport, gas & solid phase reactant transport, heterogeneous reactions, etc. – have 

different characteristic time-constants and therefore are exhibited at different AC 

frequencies. When conducted over a broad range of frequencies, impedance spectroscopy 

can be used to identify and quantify the impedance associated with these various 

processes [12]. 
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Figure 3.12: Instrumentation for EIS of fuel cells. 

Advantages of EIS:  

 Measurements can be made under real-world fuel cell operating conditions, e.g., 

open circuit voltage or under load (DC voltage or current).  

 Multiple parameters can be determined from a single experiment.  

 Relatively simple electrical measurement that can be automated.  

 Can verify reaction models, and characterize bulk and interfacial properties of the 

system, e.g., membrane resistance and electrocatalysts.  

 Measurement is non-intrusive – does not substantially remove or disturb the 

system from its operating condition.  

 A high precision measurement – the data signal can be averaged over time to 

improve the signal-to-noise ratio.  

3.4.6 Equivalent Circuit Modeling 

Equivalent circuit modeling of EIS data is used to extract physically meaningful 

properties of the electrochemical system by modeling the impedance data in terms of an 

electrical circuit composed of ideal resistors (R), capacitors (C), and inductors (L). 

Because we are dealing with real systems that do not necessarily behave ideally with 

processes that occur distributed in time and space, we often use specialized circuit 

elements. These include the generalized constant phase element (CPE) and Warburg 

element (ZW). The Warburg element is used to represent the diffusion or mass transport 

impedances of the cell. An example of a generalized equivalent circuit element for a 

single cell fuel cell is shown below. 
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Figure 3.13: Equivalent circuit element for a single cell fuel cell. 

In the equivalent circuit analog, resistors represent conductive pathways for ion and 

electron transfer. As such, they represent the bulk resistance of a material to charge 

transport such as the resistance of the electrolyte to ion transport or the resistance of a 

conductor to electron transport. Resistors are also used to represent the resistance to the 

charge-transfer process at the electrode surface. Capacitors and inductors are associated 

with space-charge polarization regions, such as the electrochemical double layer, and 

adsorption/desorption processes at an electrode, respectively. 

The defining relation and impedance for ideal bulk electrical elements are shown below.  

 

  Defining Relation Impedance 

Resistor 
 

      ZR=R 

Capacitor 

    
  

  
    

 

   
  

 

  
 

Inductor 
    

  

  
 

       

    

 

3.4.7 Representation of Impedance Data 

EIS data for electrochemical cells such as fuel cells are most often represented in 

Nyquist and Bode plots as shown in Figure 12. Bode plots refer to representation of the 

impedance magnitude (or the real or imaginary components of the impedance) and phase 

angle as a function of frequency. Because both the impedance and the frequency often 
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span orders of magnitude, they are frequently plotted on a logarithmic scale. Bode plots 

explicitly show the frequency-dependence of the impedance of the device under test. 

 

Figure 3.14: Impedance plots for the indicated simple RC circuit where Rohmic = 0.01 

Ω, Rct = 0.1 Ω and Cdl =0.02 F. 

The Nyquist plot is the most usual way of presenting the impedance spectrum. In the 

imaginary part of the impedance (mostly presented with the negative sign) is plotted 

against the real part. The plot normally contains of two or more semicircles in different 

frequency ranges. Although the Nyquist plot is the most common representation in the 

EIS measurement technique, Bode magnitude (magnitude vs. frequency) and phase 

(phase vs. frequency) plots have also been used in the past to extract information that 

cannot be readily obtained from the Nyquist plot. For instance, the local maximum values 

in the Bode phase plot show the characteristic frequencies which are proportional to the 

time constants of the processes [13].  
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Electrocatalytic Activity of Vulcan Supported Pd, Rh and PdxRhy towards 

HOR and ORR* 

Abstract 

Carbon-supported (Vulcan XC-72) Pd, Rh, and PdxRhy (20wt.%, x:y=1:1, 3:1, 1:3) 

electrocatalysts are prepared according a modified pulse-microwave assisted polyol 

synthesis method and their electrocatalytic activity towards hydrogen electrooxidation 

(HOR) and oxygen reduction (ORR) reactions is investigated.  

The as-prepared electrocatalysts are physicochemically characterized by Transmission 

Electron Microscopy (TEM) and X-ray diffraction (XRD). Their electrochemical 

characterization is carried out by the aid of Cyclic Voltammetry (CV), Rotating Disk 

Electrode (RDE) and Chronoamperometry (CA) techniques.  

It is found that among the as-prepared catalysts, PdRh3 exhibits the highest HOR (ik=7.6 

mA cm
-2

) and ORR (ik=5.20 mA cm
-2

) electrocatalytic activity.  

It is also found that the addition even of small amount of Rh (Pd3Rh-2.7μg cm
-2

) enhances 

both Pd’s HOR and ORR electrocatalytic activity by 33% and by 53%, respectively.  

For the as prepared electrocatalysts, the HOR activity order, in terms of kinetic current density, 

is found to be as follows: PdRh3 ≈ PdRh > Rh > Pd3Rh > Pd, while a similar trend was found 

for  ORR activity: PdRh3 > PdRh > Rh > Pd3Rh > Pd. 

*F. Tzorbatzoglou; A. Brouzgou; P.Tsiakaras,  Electrocatalytic Activity of Vulcan Supported Pd, Rh 

and PdxRhy towards HOR and ORR, submitted to Applied Catalysis B: Environmental 174 (2015) 

203–211. 
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4.1 Introduction 

Platinum based electrocatalysts, due to its excellent catalytic activity, still remains the 

most commonly used for both the hydrogen oxidation and oxygen reduction reactions. 

However, the high cost and the limited resources of platinum are among the main factors 

that still hinder the commercialization of fuel cells, increasing at the same time the 

interest of the scientific community towards the exploration of Pt-free electrocatalysts. 

The last decade, a severe number of research groups world-widely have focused on the 

investigation of electrocatalysts with small amount or without Pt, for both the hydrogen 

oxidation reaction (HOR) and the oxygen reduction reaction (ORR) [1-9].  

The aforementioned research and development has shot either to commonly-adopted 

materials, which provide enhanced Pt's utilization coefficient and consequently use of lower 

content of it, or to Pt-based electrocatalysts with ultra-low-Pt loading [10-12]. A great 

number of studies have also been devoted to the investigation of Pt combination with 

another metal such as Pd [13-17], Ru[18, 19], Sn [20], W [20], Au [21], Mo [22], etc. 

With the exception of Pt, it has been demonstrated that among pure metals, Pd exhibits 

relatively high electrocatalytic activity towards both HOR and ORR. This fact combined 

with the relatively low cost of Pd, makes it an attractive and alternative candidate for the 

aforementioned reactions [7, 23-28]. However, the use of pure Pd, mostly in terms of 

electrocatalytic activity, has not totally and successfully replaced the role of Pt [9].  

Consequently, to enhance HOR activity, various bi-metallic and tri-metallic Pd alloys 

such as Pd-Rh [29], Pd–Co [13, 30], Pd–Au [31-33],  Pd–Mo [34], Pd–Pt–Ru [15] and 

Pd-Pt-Rh [35] have been investigated. Nevertheless, the basic electrochemistry of Pd–Rh 

based electrocatalysts has not been sufficiently explored and only few reports are 

available in literature [29, 36-38].  
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According to literature [23] Pd presents higher activity, than any other noble metal and 

comparable to that of Pt, not only for HOR but also for ORR. Active palladium-based 

alloys for the ORR in acid medium were presented for first time by Ota et al. [39, 40], 

attracting, nevertheless, less attention than Pt due to its lower activity and stability. 

However, very recently, Kondo et al. [41] proved that the ORR activity of the Pd depends 

on the orientation of the index plane. More precisely, they proved that the Pd’s activity 

towards ORR has the following order: Pd(100)>>Pd(111)>Pd(110), with the Pd(100) 

exhibiting 14 times higher activity than Pt.  

Except for the pure Pd’s plane orientation, it has been shown that its activity can be 

enhanced by alloying it with a second or a third metal. Binary and ternary Pd–based 

alloys such as Pd-Ni [42-44], Pd-Cu [44, 45], Pd-Fe [44], Pd-Rh [46], Pd-Ti [47], Pd-Co-

Mo [48] and Pd-Co-Au [47] exhibited better electrocatalytic activity for the ORR than 

pure Pd and in some other cases better than that of pure Pt. Even so, PdRh bi-metallic 

electrocatalysts have not been studied sufficiently for the oxygen reduction reaction.  

In the present work, carbon supported (Vulcan-XC-72R) PdxRhy (20wt%)  bimetallic 

catalysts with different atomic ratios (x:y) were prepared via a modified pulse-microwave 

assisted polyol method. The as-prepared electrocatalysts were physicochemically 

characterized using TEM and XRD techniques. Moreover, their electrocatalytic activity 

towards HOR and ORR was evaluated by the aid of RDE and CV methods and their 

stability by the chronoamperometric measurement. 

4.2 Experimental 

4.2.1 Electrocatalysts preparation 

The examined electrocatalysts were quickly and easily prepared via a modified pulse-

microwave assisted polyol synthesis. In a beaker, the starting precursors (PdCl2•2H2O and 
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RhCl3 provided by Strem Chemicals) were well mixed with ethylene glycol (EG) in an 

ultrasonic bath, and then XC-72R carbon black (Cabot Corporation) was added in the above 

mixture. After the adjustment of system’s pH value to 13, by the drop-wise addition of 1.0 

M NaOH/EG, a well-dispersed slurry was obtained with ultrasonic stirring for 60 min. 

Thereafter, the slurry was microwave-heated in the pulse form 10 s on/10 s off for several 

times. In order to promote the adsorption of the suspended metal nanoparticles onto the 

carbon support, hydrochloric acid was adopted as the sedimentation promoter and the 

solution was re-acidified to a pH value of about 2–4. The resulting black solid sample was 

filtered, washed and dried at 80°C for 10 h in a vacuum oven [49].  

4.2.2 Physicochemical characterization 

The X-ray Diffraction (XRD) measurements were carried out by the aid of a D/Max-

IIIA (Rigaku Co., Japan) employing Cu Kα (λ = 0.15406 nm) as the radiation source. The 

samples were scanned in the range of 10° ≤ 2θ ≤ 86°. Catalysts were also investigated by 

transmission electron microscopy (TEM) using a Philips CM12 microscope (resolution 0.2 

nm), provided with high resolution camera, at an accelerating voltage of 120 kV. Suitable 

specimens for TEM analyses were prepared by ultrasonic dispersion in i-propylic alcohol 

adding a drop of the resultant suspension onto a holey carbon supported copper grid. To 

prevent the agglomeration of carbon supports, the prepared catalyst was diluted in ethanol 

using ultrasonic water bath for some minutes and dried before TEM analysis. 

4.2.3 Electrochemical characterization 

All electrochemical measurements were conducted in an electrochemical workstation 

AMEL 5000 adopting a saturated calomel electrode (SCE) and a Pt wire as reference and 

counter electrodes, respectively. Cyclic Voltammetry (CV) and Rotating Disc Electrode 

(RDE) measurements carried out, on a thin film catalyst deposited on a glassy carbon (GC) 
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disc electrode (working electrode, Ø = 3.0 mm) mounted in an interchangeable RDE 

holder, into 0.5M H2SO4 solution (Carlo Erba, 99%) at room temperature. The 

electrocatalytic ink was prepared by mixing 1.95 mg of electrocatalyst, 1.8 mL ethanol and 

0.2 mL Nafion solution (5 wt%, IonPower, GmbH). Then, the as-prepared ink 

quantitatively (4 μL) was transferred onto the surface of the GC electrode and was dried to 

obtain a thin porous layer. For all measurements, the catalyst total loading was maintained 

at 11 μg cm
-2

. Before each measurement the solution was deaerated with helium stream 

for 20 min. Then, hydrogen (or oxygen) gas was supplied until a saturated solution was 

created. During the experiments the helium (or hydrogen or oxygen) stream was directed 

above the solution level in order to avoid contact with air as well as keep saturated the 

solution (inert in case of helium). Before the voltammograms being reproducible, several 

scans were obtained.   

4.3 Results and discussion 

4.2.1 Physicochemical measurements 

XRD patterns of the as-prepared electrocatalysts are shown in Fig. 4.1. The first peak at 

25° is associated with the Vulcan XC-72 support material for all the five samples. The four 

diffraction peaks appeared at ca. 40°, 48°, 68° and 83° belong to the face-centered cubic 

(fcc) crystalline Pd and Rh (1 1 1), (2 0 0), (2 2 0), (3 1 1), respectively. As it can be 

observed there is a peak shift toward higher 2θ values for higher Rh contents, revealing 

decreased lattice parameters and the high level of alloying. The (1 1 1), plane has the largest 

intensity among the others planes, which grows with respect to the corresponding peak of 

the Pd and Rh catalysts, indicating the effect of increased amounts of Rh in the PdxRhx. In 

Table 4.1 the average lattice parameters and crystallite size values are reported. The above-

two parameters were estimated according to Scherrer’s equation  [50].  

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



 

 

80 

As it can be seen, Pd/C has the highest lattice parameter (0.38615 nm) and crystallite 

size (3.0 nm), while the Rh/C the lowest one (lattice parameter: 0.38456 nm, crystallite 

size: 2.0 nm). The formed Pd-Rh alloys seem to present lattice parameter values between 

of the two pure metals, with the following order: PdRh(3:1)/C > PdRh(1:3)/C > 

PdRh(1:1)/C. Thus, the addition of Rh contracts the lattice parameter of Pd, decreasing 

also its crystallite size. This modification to the lattice parameter, may affect the hydrogen 

adsorption properties [35]. 

 

Figure 4.1: X-ray diffraction patterns of (a) Pd, (b) Rh, (c) PdRh(3:1), (d) PdRh(1:3) and (e) 

PdRh(1:1)  bimetallic catalysts prepared with polyol reduction. 

TEM images with the respective particle size distribution histogram of Pd/C, Rh/C and 

PdxRhy catalysts are shown in Fig. 4.2. A remarkably uniform and high dispersion of 

metal particles on the carbon surface is observed concerning all the examined samples. As 

it can also be seen (Table 4.1), the mean particle size was in the following order: Pd3Rh 

(4.8±0.3nm) > PdRh (4.4±0.3nm) > Pd (4.3±0.3) > PdRh3 (3.5±0.3nm) > Rh (3.3±0.3). 
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Figure 4.2: TEM images of (a) Pd, (b) Rh, (c) PdRh3, (d) PdRh, (e)Pd3Rh 

Table 4.1: Physicochemical analysis results. 

Electrode 

(20%wt metal loading) 

Lattice Parameter 

(nm) 

Crystallite Size 

(nm) 

Particles Size 

(nm) 

Pd/C 0.38615 3.0 4.3±0.3 

Rh/C 0.38456 2.0 3.3±0.3 

PdRh(3:1)/C 0.38794 ~3.0 4.8±0.3 

PdRh(1:1)/C 0.38474 3.5 4.4±0.3 

PdRh(1:3)/C 0.38516 2.0 3.5±0.3 

(a) (b) 

(c) (d) 

(e) 
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4.2.2 Electrochemical catalytic surface area 

The voltammetric profiles recorded for Pd, Rh, and PdxRhy alloys obtained in 0.5M 

H2SO4 solution and with a scan rate of 50 mV s
−1

, are schematically shown in Fig. 4.3. 

The electrochemical active surface area (ECSA) was estimated by the aid of the following 

equation [51] taking into account the reduction peak that is observed during the backward 

scanning: 

     [
  

 
]  

  

                        
  

,where QH =(Qads+Qdes)/2 (μC
2

Ptcm
) represents the average charge extracted from the 

integration of the adsorption/desorption hydrogen regions of the CV curves, QPd =420(μC

2

Pdcm
) and QRh=256(μC

2

Rhcm
) [52] are the specific amount of electricity corresponding to 

the full coverage of the Pd or Rh surface by one monolayer of oxygen and mPd(Rh) (mg

2

electrodecm
) is the palladium or rhodium loading on the working electrode’s surface. The 

results of the ECSA calculations, for the electrocatalysts used in the present investigation 

are reported in Table 4.2.  

Table 4.2: Cyclic voltammetry analysis. 

Electrode 

(20%wt metal loading) 

Pd loading 

(μg cm
-2

) 

Rh loading 

(μg cm
-2

) 

ECSA 

(m
2
 g

-1
metal) 

Pd/C 11 0 21.0 

PdRh(3:1)/C 8.3 2.7 22.5 

PdRh(1:1)/C 5.6 5.4 27.0 

PdRh(1:3)/C 2.8 8.2 29.5 

Rh/C 0 11 25.6 

 As it can be noticed, the electrochemical active surface area exhibits the following order: 

Pd < Pd3Rh < Rh/C < PdRh/C < PdRh3/C.  
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Figure 4.3: Cyclic voltammograms for (a) Pd, (b) Pd3Rh, c) PdRh and d) PdRh3 in 

0.5 M H2SO4, scan rate: 50 mV s
−1

. 

4.2.3 Hydrogen oxidation reaction kinetics  

The HOR polarization curves for the Pd, Rh and PdxRhy electrocatalysts are depicted 

in Fig. 4.4. As it can be distinguished, the oxidation of H2 over the PdxRhy/C alloys and 

pure Rh starts at potential values around to 0.01 V (onset potential), while over pure Pd 

electrocatalyst the HOR’s onset potential is higher, ca 0.1V. It can also be seen that, the 

current continues increasing sharply up to 0.1 V and 0.2 V for the PdxRhy, Rh and pure 

Pd, respectively. At more positive potentials, transition into the region of hydrogen mass 

transport controlled current densities starts at approximately 0.15 V. As it was expected, 

the limiting current increases with the increment of the rotational speed of the electrode 

[53]. Moreover, the electrochemical behavior of the as prepared PdxRhy electrocatalysts is 

similar to that of pure Rh. As it is well known, during a reaction the kinetic current 

density (ik) is a measure of the rate of charge transfer on the catalyst’s surface. 
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Figure 4.4: RDE curves in H2-saturated 0.5 M H2SO4, scan rate: 5 mV s
-1

. Insets: 

Koutecky-Levich plots. The insets are the corresponding Koutecky-Levich plots for the 

hydrogen oxidation reaction. 

More precisely, ki  describes the real kinetics of an electrocatalytic reaction and 

therefore is directly related to the activity of an electrocatalyst. To determine the catalytic 

activity of the electrocatalysts, we adopted the Koutecky–Levich analysis [54], where the 

kinetic current is related to the rotational velocity of the RDE through the following 

equation:  
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1 1 1

k di i i
                                                                        (4.1) 

Where i  represents the experimental value of the current, ki  the kinetic current in the 

absence of mass transfer limitations and di  the diffusion-limited current. The later can be 

calculated according to the Levich equation: 

                                                
2/3 1/6 1/20.62  di nFD C                                                (4.2) 

 

where n is the number of theoretically-transferred electrons (=2), F the Faraday constant 

(95485 C/mol), D the diffusion coefficient of H2 in the H2SO4, v the kinematic viscosity of 

the electrolyte and C the H2 concentration in the electrolyte. The kinetic current density was 

graphically determined (1/i vs. 1/ω
1/2

 - Koutecky-Levich plots).  

The insets of Fig. 4.4 provide the Koutecky-Levich plots for the examined PdxRhy, Pd 

and Rh electrocatalysts, from which the kinetic currents for HOR, at 0.1 V (vs SCE), were 

extracted. As follows from their analysis, the experimental points have a linear behaviour 

ensuring the accuracy of ki determination.  

Table 4.3: Kinetic analysis results for hydrogen oxidation reaction. 

Electrode 

(20%wt metal 

loading) 

Tafel slope 

(mV decade
-

1
) 

o
i  

(mA cm
-2

) 

k
i (@0.1V) 

(mA cm
-2

) 

Pd/C 80.0 0.32 3.0 

PdRh(3:1)/C 120.0 1.24 4.0 

PdRh(1:1)/C 230.0 2.56 7.3 

PdRh(1:3)/C 180.0 3.00 7.6 

Rh/C 210.0 2.58 6.0 
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Figure 4.5: Tafel plots for HOR. 

The kinetic current density (Fig. 4.5) values (at 0.05 V (vs SCE), 1200 rpm, Table 4.3) 

were calculated to be 6.0, 7.6, 7.3, 4.0 and 3.0 mA cm
-2

 for Rh, PdRh3, PdRh, Pd3Rh and 

Pd, respectively. It is obvious that, PdRh and PdRh3 exhibit the highest electrocatalytic 

activity towards hydrogen electrooxidation and comparable to that of Pt’s, as reported in 

literature (Fig. 4.6) [55, 56]. After that, the kinetic analysis the Tafel-Heyrovsky (mass 

transfer corrected) plots were also obtained (Fig. 4.5) after the measured currents were 

corrected for diffusion to obtain the kinetic current [57] 

.  

                                                    log( ) log( ) ( )
2.303

k o

anF
i i

RT
                                          (4.3) 

where 
d

k

d

i i
i

i i





, as being calculated from the Koutecky-Levich plots. 

The slope of Tafel plots (∂log jk/∂E), varies with the electrode potential, lacking an 

extended linear Tafel region. It is well known that, from the Tafel slope and intercept 

useful kinetic information can be obtained [58]: i) the exchange current density and ii) the 

charge transfer coefficient. 
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Figure 4.6: Comparison of kinetic current density @0.02V for HOR. 

From the kinetic analysis (Table 4.3) it is deduced that Rh’s activity predominates over 

other electrocatalysts, followed by the PdRh and PdRh3. Moreover, from the slope values 

and in accordance with the literature, the hydrogen oxidation reaction on the as prepared 

samples, follows the Tafel–Heyrovsky–Volmer mechanism, as with Pt-based 

electrocatalysts do [23]. Furthermore the exchange current density value measured for Pd 

is quite close to those reported in literature, 0.29 mA cm
-2

 by Shao et al [23] and 0.22 mA 

cm
-2

 by Pronkin et al. [58]. 

Additionally, from the values of the charge transfer coefficient (α), which all were 

calculated to be close to 0.25, maybe due to the increased overpotential [59]. The charge 

transfer coefficient represents the fraction of additional energy that goes toward the 

reaction at the electrode. Also the mass corrected Tafel slopes are calculated and reported 

in Table 4.3. According to literature [60-62] and the reported slopes the adsorption 

dissociation of hydrogen on the catalyst surface is the rate determining step (Volmer), 

taking into consideration the Tafel-Heyrovsky-Volmer mechanism for HOR: 

H2 ⇌2Had : Tafel 

H2 ⇌ Had + e
-
 + H

+
 : Heyrovsky 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



 

 

88 

Had⇌ H
+
 + e

-
 : Volmer 

In order to obtain a more thorough understanding about the effect of Rh loading to the 

activity (to the kinetic and exchange current) of the examined electrocatalysts, Fig.4.7 is 

given. From this figure it can be deduced that, the increase of the Rh loading strongly 

enhances the electrocatalytic activity of Pd towards HOR in terms of both exchange 

current and kinetic density. The increased electrocatalytic activity of PdRh bimetallic 

electrocatalysts could be attributed to their ability to adsorb more hydrogen than pure Pd, 

as it has been declared by Żurowski et al. [63]. On the other hand, according to Mallen et 

al. [64], the higher (than pure Pd) electrocatalytic activity was measured for pure Rh/C, 

could be attributed to the fact that Rh, has the same hydrogen binding energy with Pt. 
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Figure 4.7: Exchange current density and kinetic current density vs. rhodium metal 

loading for HOR. 

4.3.4 Chronoamperometric measurements  

The stability of the examined electrocatalysts for hydrogen electrooxidation in 0.5 M 

H2SO4 at 25°C for 1300s was investigated by chronoamperometric measurements, and the 

results are reported in Fig. 4.8. As can be seen in Fig. 4.8 the PdRh3/Vulcan XC-72 

catalyst appears to have the same current decay with PdRh after 200s, however, after 200s 

PdRh3 show better long term stability. That means that the addition of rhodium hinders 

pure palladium from leaching, giving higher stability to Pd’s electrocatalyst. Furthermore 
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the chronoamperometric measurements further confirmed pure Rh’s, PdRh and PdRh3 

enhanced catalytic activity towards hydrogen oxidation reaction. 

 

Figure 4.8: Chronoamperometry curves for HOR, in 0.5M H2SO4 for 1300 sec at 0.25V. 

4.3.5 Oxygen reduction reaction kinetics 

The tests for ORR activity of the electrocatalysts were conducted in oxygen-saturated 

0.5 M H2SO4 solution, from 0 to 0.90 V (vs SCE), at different rotation rates (from 500 to 

2500 rpm) and at constant sweep rate of 10 mV s
-1

.  
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Figure 4.9: RDE curves of (A) Pd, (B)Rh, (C) PdRh3,  (D) PdRh and (E) Pd3Rh electrodes 

in O2-saturated 0.5M H2SO4, scan rate: 10 mV s
-1
. 

As it is schematically shown in Fig. 4.9, well-defined limiting currents were observed 

increasing the rotation rate due to the increased availability of oxygen at the electrodes 

surface. In each polarization curve three different characteristic regions are displayed: The 

first region which is observed from 0.9 to 0.65V (vs SCE) is the kinetic one, where the 

kinetic current is independent of the rotation rate. The second one is the mixed control 

region and it is observed from 0.65 to 0.2 V (vs SCE). In this, the current is controlled by 

both kinetic as well as diffusion-limited processes. Finally in the third region, from 0.2 to 

0.0 V (vs SCE) the ORR curve is under mass transport control limited by the diffusion of 

the dissolved oxygen in the electrolyte [65]. In the last region the polarization curves do not 

catch a flat plateau; behaviour that can be explained from irreversible electrode processes 

[66]. Another possible explanation is that the film that was formed on the working electrode 
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was very thin, due to the low amount of catalytic ink (4µL) that was deposited on it in order 

to have very low catalyst loading. The onset potential for all the examined samples is 

observed to be the same, ca 0.7V (vs SCE) and the limiting diffusion currents 4.15, 4.70, 

4.79, 4.80 and 4.86 mA cm
-2

 (at 2500 rpm) for the Pd, Pd3Rh, PdRh, PdRh3 and Rh, 

respectively. 

Koutecky–Levich equation (eq.1) was adopted to determine the kinetic parameters of 

the electrocatalysts: i) the kinetic current density and ii) the number of electrons that take 

part into the reaction. More precisely, from the intercept of Koutecky-Levich plots (insets 

of Fig. 4.9) and using Levich equation (4.3), where n is the number of electrons involved 

in the reaction, F is the Faraday constant (96485 C/mol), D is the diffusion coefficient of 

O2 in the H2SO4 (1.4×10
-5

 cm
2 

s
-1

), v is the kinematic viscosity of the electrolyte (1.0×10
-2

 

cm
-2 

s
-1

), C is the O2 concentration in the electrolyte (1.1×10
-6

 mol cm
-3

), are calculated 

the kinetic current density values and from the slope, the total number of electrons 

involved in the reaction [67]. Then for further kinetic analysis the Tafel plots (Fig.4.10) 

were done, from which: i) the exchange current density and ii) Tafel slopes and charge 

transfer coefficients, are also calculated.  

 

Figure 4.10: Tafel plots for ORR. 
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The linearity and parallelism of the Koutecky-Levich plots show the first-order 

kinetics with respect to molecular oxygen (insets of Fig. 4.9). The kinetic current density 

is proportional to the intrinsic activity of the catalysts and the slopes of the straight lines 

allow us to estimate the number of electrons involved in the ORR [68]. Except for Pd 

where the total electrons involved in the reaction are two, for all the others examined 

electrocatalysts the total electrons are four. A widely accepted method to determine the 

ORR activity of an electrocatalyst is based on the half-wave potential, which is defined as 

the potential at which the magnitude of the current is half of the limiting current [65]. 

According to theory [59], ORR in aqueous solutions occurs mainly by two pathways: the 

direct 4-electron reduction pathway from O2 to H2O, and the 2-electron reduction 

pathway from O2 to hydrogen peroxide (H2O2). In the present case and from the kinetic 

analysis for all the examined electrocatalysts the total electrons that are transferred during 

the oxygen reduction reaction are four.  

From Fig. 4.11 it can be deduced that, the addition of the Rh loading to Pd enhances the 

electrocatalytic activity of Pd towards ORR in terms of both exchange current and kinetic 

density. The kinetic current density at half-wave potential (0.55 V) is higher for the PdRh3 

(5.20 mAcm
-2

), followed by PdRh and Pd (2.10 mAcm
-2

) and by pure Rh (1.89 mAcm
-2

) 

and finally by the Pd3Rh (0.89 mAcm
-2

). The addition of specific amount of Rh 

(>5.4µgcm 
-2

) to pure Pd increases the kinetic current density by 147%. As it is expected 

pure palladium and high palladium loading (Pd3Rh) do not enhance the oxygen reduction 

reaction in comparison with the other electrocatalysts (Rh, PdRh and PdRh3). This is also 

confirmed by their low reaction rate constant (Table 4.4). Additionally, the obtained Tafel 

slopes were calculated at a range of ~200mV and are reported in Table 4.4. 
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Table 4.4: Kinetic analysis results for oxygen reduction reaction. 

Electrode 

(20%wt metal 

loading) 

Tafel slope
  

(mV decade
-1

) 

o
i  

 (mA cm
-2

) 

k
i (@0.55V) 

(mA cm
-2

) 

Pd/C 131 0.03 0.58 

PdRh(3:1)/C 140 0.04 0.89 

PdRh(1:1)/C 149 0.21 2.10 

PdRh(1:3)/C 110 0.65 5.20 

Rh/C 111 0.1 1.87 

As it is well known from the theory, for T=298K, α=0.5 and n=1or 2, two slopes have 

been should be reported: 120mV/decade (n=1) and 60 mV/decade (n=2). From the 

calculated Tafel slopes (slope=2.303RT/αnF) the electrons, that are involved in the rate 

determining step, can be estimated [67].  

It should be noted that, in the current work, the estimated Tafel slopes (Table 4.4) are 

very high (in comparison with the value of 120 mVdecade
-1

), due to the high 

overpotential. The high overpotential may attributed to mass transport phenomena [69]. 
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Figure 4.11: Exchange current density and kinetic current density vs. rhodium metal 

loading for ORR. 
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4.4 Conclusions 

From the analysis of the obtained results the following conclusions can be drawn:  

Pd-based electrocatalysts could play a great role to whole or partially replace costly Pt in both 

anode and cathode compartments, at low temperature H2-PEMFCs. Pure Rh and Pd–Rh binary 

alloys show comparable or higher hydrogen oxidation and oxygen reduction activity than pure 

Pd. The HOR activity order, in terms of kinetic current density, is the following: PdRh3 (7.6 

mAcm
-2

) > PdRh (7.3 mAcm
-2

) > Rh (6.0 mAcm
-2

) > Pd3Rh (4.0 mAcm
-2
) > Pd (3.0 mAcm

-2
). 

Rhodium’s enhanced activity towards HOR may is attributed to its high (as Pt’s) hydrogen 

binding energy. However, the higher (than pure Pd) palladium-rhodium bimetallic 

electrocatalysts’ activity is probably due to their ability to adsorb more hydrogen. According to 

the chronoamperometric results, the addition of rhodium also increases the stability of pure 

palladium, since it hinders the last from leaching, due to the corrosive environment of the acidic 

medium. As the kinetic analysis shown, over all the samples the hydrogen oxidation reaction 

was charge transfer controlled. The ORR activity order at half wave potential, in terms of 

kinetic current density, is the following: PdRh3 (5.2mAcm
-2

) > PdRh≈Pd (2.10mAcm
-2

) > Rh 

(1.89mAcm
-2
) > Pd3Rh (0.89mAcm

-2
). Consequently, also the addition of a certain amount of 

rhodium (8.2µgcm
-2
) significantly enhances the activity of pure palladium. According to the 

kinetic analysis, all the examined electrocatalysts seem to follow the two-way pathway with 

four electrons total to be included in the oxygen reduction reaction process. 

Summarizing, the addition even of small amounts of Rh (2.7 µgRh cm
-2

) as a second metal to 

Pd (24.5%Rh) contributes to the activity increment towards both the hydrogen oxidation and 

oxygen reduction reaction by 132% and 80%, respectively. Finally, according to the as-reported 

results, also pure Rh could be a possible alternative for higher anodic and cathodic catalytic 

activity, however it’s very high cost do not make it appealing for further investigation. 
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Hydrogen oxidation and Oxygen reduction reactions over PdxIr y 
electrocatalysts for PEMFC application* 

 

Abstract 

In the present work, Vulcan XC-72 carbon supported Pd, Ir and PdxIry (with x:y atomic 

ratios 3:1, 1:1, 1:3) electrode materials are prepared by a modified pulse microwave-

assisted polyol method.  The as-prepared catalysts are characterized structurally by X-ray 

diffraction (XRD) and morphologically by Transmission Electron Microscopy (TEM). 

Their electrocatalytic properties toward the reactions of Hydrogen Oxidation and Oxygen 

Reduction (HOR & ORR) are evaluated by cyclic voltammetry (CV) and by rotating disk 

electrode (RDE) techniques. The electrocatalytic activity of the electrode materials is 

estimated from the kinetic parameters, such as exchange current and kinetic current density, 

which are calculated from the experimental results and they are discussed in detail. It is 

found that exchange and kinetic current densities of Pd toward both HOR and ORR are 

enhanced after the addition of even small amounts of Ir. According to the results the highest 

HOR and ORR electrocatalytic activity enhancement is exhibited by PdIr (~100%) and 

Pd3Ir (~350%) respectively. The order of electrocatalytic activity over the as prepared 

electrode materials is found to be PdIr > PdIr3 > Pd3Ir > Pd > Ir for HOR and Pd3Ir > PdIr > 

PdIr3 > Pd > Ir for ORR. The extent of alloying and d-band vacancies reveals new insights 

into the synergistic and antagonistic effects of the PdxIry electrode materials toward HOR 

and ORR electrocatalytic activity. 

*F. Tzorbatzoglou, A. Brouzgou, P. Tsiakaras, Hydrogen oxidation and Oxygen reduction 
reactions over PdxIry electrocatalysts for PEMFC application, submitted to Applied Catalysis B: 
Environmental. 
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5.1 Introduction 

Since 1999, the year in which Iceland announced its plan to become the first 

hydrogen-based economy in the next 30–40 years, governments and businesses have 

begun to seriously consider the hydrogen option. Hydrogen, is an attractive energy carrier 

and storage medium with high efficiency for developing a low-emission, environmentally 

benign, clean and sustainable energy system, to help solve the world’s energy security 

and environmental problems [1]. However, numerous technical and infrastructure 

challenges in the areas of production, distribution, storage and end use must be resolved 

for hydrogen to play a central role in earth’s energy and environment future [2]. One of 

the major energy conversion devices mainly in terms of efficiency are fuel cells, expected 

to play a great role in the integration of hydrogen into the economy. Fuel cells are 

electrochemical engines that directly convert chemical energy to electricity.  One of the 

most developed fuel cells are those based on proton exchange membrane (PEMFCs) 

electrolytes. However, their commercialization is still hindered because of their high cost, 

which is in part attributed to their electrocatalysts mostly based on the expensive platinum 

(Figure 1) extensively adopted because its high activity and high stability.  

 

Figure 5.1: The average price in Euro per gram in the last year 2014 [3]. 

Therefore, in order to improve the catalytic activity, reduce the cost and increase the 

durability of the catalysts, many attempts have been made to design novel platinum-based 
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and platinum-free electrocatalysts for hydrogen oxidation reaction (HOR) and oxygen 

reduction reaction (ORR). With the exception of Pt, the electrocatalytic activity of Pd is 

one of the highest among the pure metals for both HOR and ORR. This, combined with 

the fact that the cost of Pd is about the half of Pt (Figure 1), makes it an attractive 

alternative [4].  

It has been proved, that in acidic environment Pd-based electrocatalysts exhibit better 

activity than those based on Pt due to high solubility, permeability and selectivity for 

hydrogen, thus being a suitable membrane material for hydrogen separation [5-7]. Many 

attempts have been made to incorporate Pd with other elements in order to enhance the HOR 

activity of pure Pd. Various Pd-based catalysts with novel nanostructures, such as hollow, 

porous, core/shell, near-surface alloys etc. have been synthesized [8, 9]. Among them  were 

bimetallic, Pt–Pd [10-12], Pd–Ru [13], Pd–Ni [14] and tri-metallic Pd–Pt–Rh [15], Pd-Ru–

WOx [16] catalysts. 

The performance of catalysts used for the oxygen reduction reaction (ORR) is one of 

the most extensively studied subjects in fuel cell research. Meanwhile, between the 

studied nanocatalysts, Pd bimetallic nanostructures are among the most interesting as 

cathode materials because of their superior catalytic activity [17, 18]. It has been found 

that the catalytic activity and stability of Pd based alloys for the ORR is improved by the 

addition of other elements, which could modify its electronic structure into core–shell 

type catalyst [19, 20]. Bimetallic combinations such as Pd-Ni [21], Pd-Co [22, 23], Pd-Cu 

[24-27], Pd-Fe [28, 29] have demonstrated to be the most active catalysts among the 

investigated ones, because of their moderate interaction with oxygen in acidic media [18].  

Additionally, iridium is another metal which belongs to the platinum group (Figure 1) 

and according to theory [30] it should exhibit almost similar activity as platinum toward 

HOR and ORR. However, in literature very few studies have been devoted to palladium-

iridium bimetallic electrocatalysts for HOR and ORR [31-33].  
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In the present work the catalytic activity of different Vulcan XC-72 supported Pd, Ir 

and PdxIry (where x:y = 3:1, 1:1, 1:3) electrocatalysts was separately tested for the 

reactions of hydrogen oxidation and oxygen reduction. The examined electrocatalysts 

were prepared by a modified pulse-microwave assisted polyol synthesis method. Their 

corresponding physico-chemical characteristics were obtained by using transmission 

electron microscopy (TEM) and X-ray diffraction (XRD), while their electrocatalytic 

activity toward the reactions of hydrogen oxidation and oxygen reduction was measured 

in acidic environment by cyclic voltammetry (CV) and rotating disk electrode (RDE) 

techniques.  

5.2 Experimental  

5.2.1 Electrocatalysts preparation 

The 20 wt % PdxIry supported on Vulcan-XC 72 carbon electrocatalysts were prepared 

via a modified pulse-microwave assisted polyol synthesis procedure [34]. The primary 

steps of this synthesis process were: the starting precursors (PdCl2•2H2O and IrCl2 

provided by Strem Chemicals) were added in a beaker with ethylene glycol (EG) and 

were well mixed in an ultrasonic bath. Then, Vulcan XC-72 carbon black (Cabot 

Corporation) was added into the above mixture. Consequently, the pH value of the system 

was adjusted to 13 by the drop-wise addition of 1.0 M NaOH/EG and a well-dispersed 

slurry was obtained with ultrasonic stirring for 60 min. Thereafter, the slurry was 

microwave-heated in the pulse form 10 s on/10 s off, for several times. In order to 

promote the adsorption of the suspended metal nanoparticles onto the carbon support, 

hydrochloric acid was adopted as the sedimentation promoter and the solution was re-

acidified with a pH value of about 2–4. The obtained black solid sample was filtered, 
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washed and dried at 80°C for 10 h in a vacuum oven [35]. For the sake of comparison 20 

wt% Pd/Vulcan XC-72 and 20wt% Ir/Vulcan XC-72 was similarly prepared. 

5.2.2. Physicochemical characterization 

The X-ray Diffraction (XRD) measurements were carried out with the aid of a D/Max-

IIIA (Rigaku Co., Japan) employing Cu Kα (λ = 0.15406 nm) as the radiation source at 40 kV 

and 40 mA. Catalysts were investigated by TEM using a Philips CM12 microscope 

(resolution 0.2 nm), provided with high resolution camera, at an accelerating voltage of 120 

kV. Suitable specimens for TEM analyses were prepared by ultrasonic dispersion in i-

propylic alcohol adding a drop of the resultant suspension onto a holey carbon supported grid. 

5.2.3 Electrochemical characterization 

All the electrochemical measurements were carried out by the aid of an 

electrochemical workstation AMEL 5000, in a three-electrode model cell 497 (AMEL) 

with a mercury/mercury oxide (Hg/HgCl2) (0.098 V vs. SCE) and platinum wire as the 

reference electrode and counter electrode, respectively.  

A thin catalyst film was deposited onto a glassy carbon disk surface with a diameter of 

3.0 mm. More precisely, a mixture containing 1.95 mg of electrocatalyst, 1.8 mL ethanol 

and 0.2 mL Nafion solution (5 wt %, Dupont Company) was ultrasonicated for 40 min to 

obtain a well-dispersed ink. The catalyst ink was then quantitatively (4 µL) transferred by 

the aid of a microsyringe onto the surface of the glassy carbon electrode and dried under 

infrared lamp to obtain a catalyst thin film. All the experiments were conducted using an 

aqueous solution containing 0.5 mol L-1 H2SO4 (Carlo Erba, 96%) at 25°C.  

Before each experiment, the solution was bubbled for 30 min with high-purity N2 in 

order to remove the dissolved oxygen. Moreover, before each measurement, each catalyst 

was applied under continuous potential cycling until stable electrochemical signals were 
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received. Each measurement started after several scans were performed and until 

reproducible voltammograms were obtained. The scanning potential was ranging from 0.0 

to 1.2 V (vs. SCE) at a sweeping rate of 20 mVs-1. For the ORR experiment, the 

electrolyte was saturated with oxygen, with a potential range from 0.9 to 0 V (vs. SCE) 

and a scan rate of 10 mV s-1. For all measurements, the total catalyst loading was 

maintained at 11 µg cm-2, while before each measurement the glassy carbon electrode was 

carefully cleaned by firmly pressing and moving it on a papery vessel containing a 

viscous deionized water solution of alumina.  

5.3 Results and Discussion 

5.3.1 Physicochemical characterization 

In Fig. 5.2 the XRD patterns of the as prepared Pd, Ir and PdxIry catalysts are 

schematically shown. It can be distinguished that, except the characteristic peak of 

Vulcan XC-72 at 24.5◦, the 2θ values of four more peaks at 40.07◦, 46.53◦, 68.19◦ and 

82.02◦, that correspond to face-centered cubic (fcc) crystalline Pd (1 1 0), (1 1 1), (2 0 0), 

(2 2 0) and (3 1 1), respectively are also shown. The highest intensity of peak from (1 1 1) 

plane indicates that this is the most exposed face of the PdxIry/C nanoparticles. The peak 

position of (1 1 1) plane of PdxIry/C electrocatalysts is between the Pd/C’s and Ir/C’s 

peaks position. In addition, no characteristic peaks related to Ir were observed, further 

supporting that a Pd-Ir alloy has been formed via insertion of Ir into Pd lattice. When the 

atomic ratio of Ir is decreased, the 2θ values of four peaks of Pd are also decreased. For 

example, the 2θ values of the four peaks of Ir and PdIr3 catalysts are 40.06°, 46.91°, 

67.89° and 84.09°, respectively (Fig. 5.2, curve e and d) and they are 39.04°, 45.51°, 

66.55° and 82.00°, respectively, for the PdIr and Pd3Ir catalyst (Fig. 5.2, curve c, b) [36]. 

Table 1 lists the crystallite sizes and the corresponding lattice parameters calculated using 
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the Scherrer formula and Bragg equations, respectively [37]. All the examined catalysts 

have crystallite sizes ranged between~3.5-4.0 nm.  

 

Figure 5.2: XRD patterns of Vulcan XC-72 supported: (a) Pd, (b) Pd3Ir, (c) PdIr, (d) 
PdIr 3 and (e) Ir. 

Table 5.1: Results obtained from the physicochemical characterization 

Electrocatalyst 
Lattice 

Parameter (nm) 
Crystallite Size 

(nm) 

Internal 
distance 

(nm) 

Particles Size 
(±0.3nm) 

Pd 0.38615 3.00 0.18701 4.30 

Ir 0.38448 3.50 0.16655 5.70 

Pd3Ir 0.38843 3.50 0.16835 4.50 

PdIr 0.38810 3.00 0.16812 4.40 

PdIr 3 0.38503 4.00 0.16688 5.30 

The mean size of the nanoparticles and their structure were further evaluated by the aid of 

TEM. The TEM micrographs with the respective particle size distribution histogram of the 

as-examined electrocatalysts are depicted in Fig. 5.3. It can be observed that, for Pd, Pd3Ir and 

PdIr the metallic nanoparticles are homogenously dispersed on the carbon support with 

narrow size distribution in the supported catalyst. Ir and PdIr3 have non-spherical 

morphologies and some larger aggregates were observed, but the amount of particles is few. 

One hundred particles were randomly measured to obtain the particle size distribution. The 

average particle sizes of the as prepared catalysts are reported in Table 5.1.  
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Figure 5.3: TEM images and corresponding of (A) Pd/ Vulcan XC-72, (B) Ir/Vulcan 
XC-72, (C) Pd3Ir/Vulcan XC-72, (D) PdIr/Vulcan XC-72, (E) PdIr 3/Vulcan XC-72.  

5.3.2 Electrochemical characterization  

5.3.2.1 Cyclic voltammetry - Electrochemical active surface area 

The cyclic voltammograms of Vulcan (XC-72) supported Pd, Ir, and PdxIry catalysts in 

0.5M H2SO4 aqueous solution are depicted in Fig. 5.4. The broad peaks appearing 

between 0.0 and 0.2 V are due to the adsorption and desorption of atomic hydrogen at the 

surface of polycrystalline Pd in acidic media. As distinguished, for Ir and Pd3Ir 

electrocatalysts are shifted to more positive potential values (ca.0.4V) [38]. The 

differences in position and shape of hydrogen peaks may be caused by a weaker 

adsorption of hydrogen on Pd. 
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Figure 5.4: Cyclic voltammograms of the as prepared electrocatalysts in 0.5M H2SO4 
with a scan rate of 50 mV s-1. 

A first estimation of the electrochemical reaction effectiveness can be achieved by the 

aid of the electrochemical surface area (ECSA), according to the following equation [39]: 

            ���� ���

	 
 = �

�(�� �� ��)×��� �� ��×��                    (5.1) 

where QH (µCcm-2
Pd) is the integrated charge on the PdO peak, QPd (= 420 µCcm-2

Pd) and 

QIr (= 210 µC����
��) [40] are the specific amount of electricity corresponding to the full 

coverage of the Pd or Ir surface by one monolayer of oxygen (µCcm−2) and mPd(Ir) (mgcm-

2
electrode) is the palladium or iridium loading on the working electrode’s surface. In the case 

of Pd-based electrocatalysts the hydrogen adsorption/desorption on Pd is overlapped by 

hydrogen adsorption/dissolution, with the ECSA of the as-prepared catalysts to be 

calculated by the charge consumed during the reduction of PdOx at the backward scan. 

The consumed charge for a Pd monolayer oxide reduction is kept 0.420 mCcm-2
. The 

estimated ECSA are reported in Table 5.2.  

Table 5.2: Cyclic voltammetry analysis. 

Electrocatalyst 
 

Pd loading 
(µg cm-2) 

QH 

(mC cm-2) 
ECSA 

(m2 g-1)Pd 

Pd/ Vulcan XC-72 11 2.5 21.0 

Pd3Ir/ Vulcan XC-72 6.9 2.3 42.0 

PdIr/ Vulcan XC-72 3.9 1.4 38.0 

PdIr 3/ Vulcan XC-72 1.7 0.8 32.0 

Ir/ Vulcan XC-72 0 0.7 30.0 
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In this study, for Vulcan (XC-72) supported Pd it is found an ECSA of 21 m2gPd
−1, 

which is consistent with the value reported in literature [28]. According to the estimated 

ECSA values, as the Ir loading increases in the electrocatalyst, the number of surface 

active metal sites is decreased (consistent with larger particles). The specific ECSA of 

Pd3Ir is 42 m2g−1, which is the highest measured among the as-prepared electrocatalysts. 

This could be ascribed to the relatively small particle sizes of the electrocatalyst’s 

structure, as it can be distinguished from the TEM micrographs.  

5.3.2.2 Hydrogen oxidation reaction (HOR) 

Hydrogen oxidation reaction (HOR) has been extensively studied on Pt surfaces [41]. 

There are three elementary reaction steps for HOR on a Pt surface, based on the Tafel–

Heyrovsky–Volmer mechanism [42]:  

   
� ⇆ 
�� + 
��           Tafel reaction                  (1) 


� ⇆ 
�� + 
! + "�             Heyrovsky reaction         (2) 

 Had ⇄⇄⇄⇄ H+ + e−                 Volmer reaction             (3) 

The most accepted mechanism for the hydrogen oxidation reaction (HOR) on 

polycrystalline metals in acidic media includes two steps: the 1st step, which involves the 

adsorption of molecular hydrogen on a surface active metal site either by the dissociation 

of hydrogen molecules into adsorbed atoms (Tafel process) or by the dissociation into ion 

and adsorbed atom (Heyrovsky process) and the 2nd step, which includes charge transfer 

procedure (Volmer process) [43]. 

 Since the electronic properties of Pd are very similar to those of Pt, the HOR on Pd 

surfaces may follow the same pathways proposed for Pt [19]. The HOR polarization 

curves are depicted in Fig. 5.5.  As it can be distinguished, the oxidation of H2 over the 

PdxIry/C alloys and pure Ir/C starts at potential values around to 0.01 V (onset potential), 

while over pure Pd/C electrocatalyst the HOR’s onset potential is higher, ca 0.1 V. At 
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more positive potentials, transition into the region of hydrogen mass transport controlled 

current densities starts at approximately 0.15 V for the PdIr/C, PdIr3/C and Ir/C, while for 

the Pd/C and Pd3Ir/C starts at 0.2V. As it was expected, the limiting current increases 

with the increment of the rotational speed of the electrode [44]. 
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Figure 5.5: RDE curves in H2-saturated 0.5 M H2SO4 at 5 mVs-1 for the examined 
electrocatalysts. The insets are the corresponding Koutecky-Levich plots for the hydrogen 
oxidation reaction. 
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As known, the kinetic current density (ki ) is a measure of the rate of charge transfer 

on the catalyst’s surface, describing the real kinetics of an electrocatalytic reaction and 

therefore is directly related to the electrocatalyst’s activity. To determine the catalytic 

activity of the electrocatalysts, the Koutecky–Levich analysis [39, 45] has been adopted, 

where the kinetic current is related to the rotational velocity of the RDE through the 

following equation:  

                                                                

1 1 1

k di i i
= +

                                                                                       (5.2) 

In Eq. 5, i is the measured current density, ik the kinetic current in absence of mass 

transfer limitations and id the diffusion current density. The later (id) can be calculated 

according to the Levich equation: 

                                                         
2/3 1/6 1/20.62di nFD Cν ω−=                                                         (5.3) 

Where n represents the number of theoretically-transferred electrons (=2), F the Faraday 

constant (95485 C/mol), D the diffusion coefficient of H2 in H2SO4 (3.7 × 10−5 cm2 s−1), v the 

kinematic viscosity of the electrolyte and C the H2 concentration in the electrolyte 

(7.14 × 10−7 mol cm−3).  

In the insets of Fig.5.5 the respective Koutecky-Levich plots are depicted at different 

potential values. The intercept of each line corresponds to the inverse of the intrinsic 

kinetic current value, ik (according to eq.5), while from the slope the number (n) of the 

transferred electrons can be calculated. More specifically, the Koutecky-Levich plots are 

provided for the examined PdxIry, Pd and Ir electrocatalysts. From the plots the kinetic 

currents for HOR, at different potential values (vs SCE), were extracted. As follows from 

their analysis, the experimental points exhibit a linear behaviour ensuring the accuracy of 

n and ik determination. In Table 5.3 the calculated kinetic current density values at 0.07V 
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are reported. According to them, for 1:1, Pd:Ir ratio the highest kinetic current density is 

exhibited, while for 3:1, the lowest one.  

Table 5.3: Kinetic parameters of the examined electrocatalysts for HOR 

Electrode 

(20%wt metal loading) 

Tafel slope 

(mV decade-1) 
oi  

(mA cm-2) 
ki  (@0.07V) 

(mA cm-2) 

Pd/ Vulcan XC-72 80.0 0.35 2.50 

Pd3Ir/Vulcan XC-72 95.0 0.70 2.80 

PdIr/ Vulcan XC-72 120 1.60 4.70 

PdIr 3/ Vulcan XC-72 50.0 1.00 3.50 

Ir/ Vulcan XC-72 71.0 0.20 1.40 

Once the kinetic currents for different potential and for all the examined catalysts were 

calculated, a more thorough kinetic analysis is performed by the aid of the Tafel equation 

[46] which describes the relationship between overpotential and current density: 

                                           log( ) log( ) ( )
2.303k o

anF
i i

RT
η= +                          (5.4) 

As known, from Tafel’s analysis (intercept and slope) useful kinetic information to 

measure the electrochemical activity of an electrode material can be obtained [47]: i) the 

exchange current density (io) and ii) the charge transfer coefficient. Exchange current 

density is analogous to the rate constant used in chemical kinetics, and a high io value 

often translates into a fast electrochemical reaction. On the other hand from the kinetic 

point of view a smaller Tafel slope is desirable (for smaller overpotential values). Moreover, 

according to literature [41], the slope values and the hydrogen oxidation reaction are well 

described by the Tafel–Heyrovsky–Volmer mechanism. In Fig. 5.6 the Tafel plots are 

depicted. It is obvious that, among the investigated samples, PdIr/C exhibits the highest 

electrocatalytic activity towards hydrogen electrooxidation. Furthermore, according to the 

theoretical prediction and the calculated Tafel slopes ( around and higher than 60 mVdecade-
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1, Table 5.3), the results are well described by the Tafel-Volmer mechanism Eqs (3) & (4), 

with the Volmer to be the rate determining step [48]).  
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Figure 5.6: Tafel plots for HOR.   

Τhe effect of Ir loading to Pd on the HOR electrocatalytic activity (on both kinetic and 

exchange current) of the examined electrodes materials is schematically shown in Fig. 

5.7. As it can be seen, the increase of the Ir loading enhances the electrocatalytic activity 

of Pd, towards HOR, exhibiting a maximum for the case of PdIr, for which the values of 

exchange and kinetic current density reaches 1.6 and 4.7 mA cm-2, respectively.  
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Figure 5.7: Exchange current density and kinetic current density vs iridium metal loading for 
HOR.  

As it has been reported in literature [49], the electrocatalytic hydrogen oxidation reaction 

over bimetallic palladium-iridium electrocatalysts is affected by the Pd/Ir ratio. More precisely, 

alloys HOR catalytic activity of the PdxIry catalysts is correlated to iridium’s d-band vacancy 
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exhibiting volcano type dependence between exchange current density and Pd percentage as 

well as between the exchange current density and d-band vacancy. This volcano type behavior 

is attributed to the fact that HOR activity is given by the strength of the Ir-H bond interaction, 

which depends on the position of the Ir d-band states relevant to the Fermi level. The “extent” 

of d-band vacancy could affect the “extent” of the electrocatalytic activity of the as prepared 

electrode materials [49]. The same volcano behavior is observed also for our samples (Fig. 5.7), 

with the sample contained 50%Pd (PdIr) to exhibit the highest exchange current density. 

Consequently, the decrement of activity for the PdIr3 it may can be attributed to the further 

“extent” of Ir’s d-band vacancy and to the higher binding of adsorbates.  

5.3.2.3. Oxygen reduction reaction kinetics  

The ORR activities of Pd/C, Ir/C and PdxIry/C electrocatalysts were tested in aqueous 

O2-saturated 0.5 M H2SO4 solution under different rotation rates (from 500 to 2500rpm) 

at a scan rate of 10 mV s−1 (Fig. 5.8).  
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Figure 5.8: Potential curves for ORR on examined electrocatalysts at different rotation rates, 
in 0.5 M H2SO4 electrolyte. Inset: Koutecky–Levich plots at various electrode potentials. 

As it can be seen from Fig. 5.8, the ORR curve can be distinguished in three regions: i) 

the kinetic region (0.6–0.8 V), ii) the mix-controlled region (0.2–0.6 V) and iii) the 

diffusion region (0.0–0.2 V). At approximately 0.7–0.8 V vs SCE, current values do not 

change with increasing rotation rate, suggesting the domination of the electron-transfer 

kinetics in this potential range. In the potential range of 0.0–0.2 V, the currents depend on 

the rotation rate and display well-defined limiting currents (plateau), indicating that the 

currents are controlled by the rate of O2 diffusion from the solution’s bulk to the catalyst-

electrode surface. In the potential range between 0.7 and 0.2 V, both molecular oxygen 

mass transfer (diffusion) and electron transfer kinetics contribute to the current. The 

improved ORR rate obtained with Pd3Ir was mainly attributed to Pd enrichment on the 
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surface and the result was consistent with its high ECSA and oxide reduction charge 

observed in the cyclic voltammogram for this catalyst. 

From the experimental results (Figs 5.8) and by the aid of Koutecky–Levich analysis 

(Eqs 5 & 6), as in the case of HOR reported above, have been determined the kinetic 

parameters of the electrocatalysts: i) the kinetic current density and ii) the number of 

electrons transferred during the reaction. More precisely, from the intercept of Koutecky-

Levich plots (straight lines in the insets of Figs 5.8), at electrode potentials of 0.25, 0.35 

and 0.45 V (vs. SCE), the kinetic current density values were calculated, while from their 

slope the number of electrons involved in the ORR has been identified. In Fig. 9 the 

transferred electron number (n), for all tested catalysts and for two different potential 

values are reported.  
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Figure 5.9: Electron transfer numbers (n) during the ORR on the prepared catalysts at 0.25 
and 0.55V.  

The ORR is a multi-electron reaction, consisting of elementary steps and different 

reaction intermediates. During ORR two main reactions usually occur on the catalyst 

surface, as it is described in equations (8) and (9): 

                            O2 + 2H+ + 2e → H2O2                                                                  (5.5) 

                              H2O2 + 2H+ + 2e → 2H2O                                 (5.6) 
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Hydrogen peroxide is the intermediate species when ORR proceeds via the two-

electron pathway [50]. The electron transfer number for the Pd/C catalyst is 1.8, therefore 

it could be said that hydrogen peroxide is the main product in Pd/C-catalyzed ORR. For 

the Pd3Ir catalyst the value of electron transfer number varies from 2.5 to 3, indicating 

that the ORR occurs following an approximate 4-electron pathway where O2 is directly 

reduced to H2O [51]. The direct ORR pathway via a 4-electron transfer is desirable rather 

than the 2-electron transfer pathway, which may negatively affect the stability of the 

catalysts [52]. Based on Tafel equation (eq.7) and the Tafel plots that are depicted in Fig. 

5.10: i) the exchange current density and ii) Tafel slopes are calculated (Table 5.4). For 

all the catalysts Tafel slopes are estimated at ~120 mVdecade-1 As it is known a Tafel 

slope value of 120 mV indicates that the first electro n transfer is the rate-determining 

step: O2 + e- ⇄ O2,ads[53].  
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Figure 5.10: Tafel plots for ORR. 

 As it can be seen, pure iridium exhibits a relatively low ORR electrocatalytic activity 

as compared with other electrocatalysts. Birss, V.I et al. [54] reported that despite the fact 

that pure Ir possesses low activity towards ORR, it owes a promoting action in alloys.  
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Table 5.4: Kinetic parameters of the examined electrocatalysts for ORR 

Electrode 
(20%wt metal loading) 

oi   
 (mA cm-2) 

Tafel slope 
(mV decade-1) 

ki
(@0.35V) 
(mA cm-2) 

Pd/ Vulcan XC-72 0.01 131 2.65 

Pd3Ir/Vulcan XC-72 0.1 140 11.50 

PdIr/ Vulcan XC-72 0.06                                                              110 4.40 

PdIr 3/ Vulcan XC-72 0.02 129 3.60 

Ir/ Vulcan XC-72 0.005 111 1.60 

 
A schematic representation of the effect of Ir loading on the exchange current density and 

the kinetic current is depicted in Fig. 5.11. It can be clearly seen that the addition of Ir to 

Pd, positively affects the values of both exchange current density and kinetic current 

density, exhibiting a volcano-type dependence on the Pd:Ir atomic ratio. 
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Figure 5.11: Exchange current density and kinetic current density vs iridium metal 
loading for ORR.  

As in similar cases reported in literature [31], the observed volcano behaviour could 

partly be attributed to electronic reasons. More precisely, the addition of Ir to Pd increase 

the extent of Pd’s d-vacancy, increasing in the oxygen π electrons donation to the surface 

of Pd, enhancing consequently  oxygen adsorption and weakening of the O-O bonds. 

Another reason could also be attributed to the fact that Ir atoms exposed to the catalyst 
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surface are likely to be covered by OHads at more negative potentials than Pd, because the 

onset potential of the OHads region for Ir is more negative than that for Pd (Fig.4). Thus, 

the Ir atoms could  predominantly be covered by OHads at the first stage of the OHads 

formation, leaving more Pd sites free for the ORR, which may partly lead to the enhanced 

kinetics of the Pd-Ir alloys [31].  

Therefore, according to the generally accepted four-electron transfer mechanism of 

oxygen reduction it seems that the O-O bond breaking and the O−H bond formation take 

easier place at lower Ir loading. It seems that this loading of Ir is enough for binding the 

oxygen strongly and the OH modestly so that OH removal from the catalyst surface by 

water elimination to be also reasonably facile [55].   

5.4 Conclusions 

Platinum free, Vulcan XC-72 carbon supported PdxIry, Pd and Ir catalysts with relatively 

high nanoparticles dispersion were successfully synthesized by the aid of a pulse-

microwave assisted polyol method. Based on the experimental results, it could be 

concluded that the use of the above synthesis method is an effective way to get carbon 

supported electrocatalysts with high dispersion in a short time and with low cost. 

According to the electrochemical results obtained in the present work, it seems that in all 

cases the addition of Ir enhances the electrocatalytic activity of Pd toward hydrogen 

oxidation and oxygen reduction reaction. In both cases a volcano-type exchange current 

density dependence on Ir-loading is observed. The maximum value: for HOR was 

measured over PdIr (1.6 mAcm-2), while for ORR was measured over Pd3Ir (0.1 mAcm-2). 

A similar behavior has been also observed for the kinetic current density vs Ir-loading. 

The lower values have been observed for pure iridium and pure palladium.  From the K–L 

plots, the ORR the electron transfer number ~2 and believed to occur mainly via 2-

electron transfer except for Pd3Ir which the electron transfer number ~4. 
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As it can be concluded from the exchange current density values, measured for the as 

prepared electrode materials and under the same experimental conditions, the hydrogen 

oxidation reaction is 1-3 magnitudes faster than the oxygen reduction reaction. It seem 

that both HOR & ORR electrocatalytic activity of the as prepared electrode materials 

could be attributed to the extent of d-band vacancy and the PdxIry interatomic distance. 

From the obtained results, it is believed that PdIr and Pd3Ir could be considered as 

promising (cheaper than Pt) anode and cathode electrocatalysts respectively for hydrogen 

fed PEM fuel cells. 
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An Investigation of WC Stability during the Preparation of 

Pt@WC/OMC via a Pulse Microwave Assisted Polyol Method* 

Abstract 

In the present work, the tungsten carbide (WC) stability during the preparation of Pt@WC/OMC 

(Ordered Mesoporous Carbon) electrocatalysts, via a pulse microwave-assisted polyol method, is 

investigated by the aid of X-ray diffraction and thermogravimetric method. More precisely, OMC 

self-supported Tungsten Carbide (WC/OMC) is successfully synthesized by combing the hydrothermal 

process with a hard template method and its stability is step by step checked during the preparation 

process of the Pt@WC/OMC electrocatalyst by the pulse microwave-assisted polyol method. It is found 

that the strong alkaline and acid environment has a relatively small but not serious effect on the stability 

of WC. It is also found that in absence of Pt precursor, microwave irradiation itself also has a small effect 

on the stability of WC, while once Pt precursor is introduced into the system more than half of the initial 

WC disappeared or is oxidized. To avoid this process, Pt@WC/OMC-MM is obtained by mechanically 

mixing (MM) of the as prepared WC/OMC and Pt@C. Moreover, the electrochemical results of 

methanol oxidation reaction how that the content of WC has an obvious effect on Pt’s activity towards 

MOR, with the best performance in the case of Pt20WC22/OMC-MM. 

 

*K. Wang, F. Tzorbatzoglou, Y. Zhang, Y. Wang, P. Tsiakaras, S. Song, An Investigation of WC Stability during the 

Preparation of Pt@WC/OMC via a Pulse Microwave Assisted Polyol Method, Applied Catalysis B: Environmental 

(2015) 224-230. 
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6.1 Introduction 

Tungsten carbide (WC), since Levy et al. [1] demonstrated its catalytic properties 

similar to Pt, has been proved to be a very promising alternative electrocatalyst [2-6] for 

fuel cell application. The special characteristics of tungsten carbide (WC) in 

electrocatalysis, such as the excellent tolerance to CO and H2S [7-9], the desirable 

synergetic effect on Pt’s activity towards the electrooxidation of both hydrogen [10] and 

methanol [11-14], as well as towards the oxygen reduction reaction [15-21], have already 

been recognized. These properties make WC an interesting and an attractive low-cost 

electrocatalyst alternative. Moreover, WC exhibits good stability in both acidic and 

alkaline media, under different electrochemical conditions [22-27].  

The corresponding investigations on WC stability in variable harsh conditions, such as 

strong base or acid environment [24], high temperature [23] and potential cycling [28], 

have been carried out. On the other hand, it is known that WC alone is inactive or less 

active to the electrochemical reactions [29]. For this reason, Pt-based particles are always 

deposited on WC or on carbon supported WC, leading to an increased electrochemical 

activity through the synergetic effect [4, 29]. Recently, Zheng et al. [3] reported that 

WC/OMC composites were active and exhibited very close performance to Pt for 

methanol electrooxidation reaction (MOR). Additionally, Lu et al. [2] indicated that WC 

not only played the role of support in Pt-based electrocatalysts, but also it constituted an 

active phase for MOR.   

In any case, during the supported catalyst preparation process, in order to deposit and 
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reduce the metal precursors, alkaline environment (or other deposition agents) and high 

temperature are always required [31-33]. Furthermore, in the colloid method for catalysts 

preparation, acid is needed to destroy the colloid and thus accelerate the deposition of 

metal particles [34, 35]. Obviously, the general catalysts preparation process always 

involves wild conditions, which could lead to the instability of WC, in the case that it is 

adopted as the supporting materials. The microwave-assisted polyol method is one of the 

most desirable techniques for preparing supported Pt-based catalysts, because of the fast 

(~2 min) and efficient reduction of the metal precursors to metal atoms [36-41].  

The main advantages of this method derive from the microwave heating itself, which 

include: i) speeding up (minutes instead of hours), ii) high efficiency, iii) high uniformity, 

and iv) precise temperature regulation and control. The as-referred typical preparation 

process, as shown in Fig. 6.1, involves strong alkaline environment for metal precursor 

deposition and strong acid environment for destroying the colloid, and thus promoting the 

metal particles to settle onto the supported materials.  

 

Figure 6.1: The schematic procedure for Pt@WC/OMC preparation through a pulse 

microwave assisted polyol method. 
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Additionally, in order for the metal ions to be completely reduced, high temperature 

(here in the form of pulse microwave irradiation) is required, especially in the case that 

ethylene glycol is used as the reducing agent.  

In the present investigation, the stability of the as-prepared (via the combination of a 

hydrothermal process and a hard template method) ordered mesoporous carbon 

self-supported tungsten carbide (WC/OMC) composites is step by step systematically 

studied during the preparation process of Pt@WC/OMC via a pulse microwave-assisted 

polyol method. 

6.2 Experimental  

6.2.1 Synthesis of WC/OMC composites 

WC/OMC sample was prepared by combing the hydrothermal reaction and the hard 

template method with ammonium metatungstate (AMT) as the tungsten precursor, glucose 

as the carbon source and the ordered mesoporous silica (SBA-15) as the hard template, 

respectively. The preparation details have been previously described [14]. 

6.2.2 Preparation of electrocatalysts 

The Pt@WC/OMC-MP (Microwave-Polyol method) catalyst with a Pt loading of 20 

wt.% was prepared by a pulse microwave-assisted polyol method [42]. The preparation 

procedure, as shown in Fig. 6.1, can be described in details as follows. The as-prepared 

WC/OMC as the supporting materials was well mixed with ethylene glycol (EG) in an 

ultrasonic bath and then an appropriate amount of H2PtCl6·6H2O dissolved in EG was 
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added into the mixture. After the pH value of the above mixture was adjusted to 13 by the 

dropwise addition of 1.0 mol L
-1

 NaOH/EG solution, the well-dispersed slurry was 

obtained with magnetic stirring for another 1 h. Thereafter, the slurry was 

microwave-heated in the pulse form of 10 s-ON/10 s-OFF for several times. After 

reaction, 1.0 mol L
-1

 HCl solution was added to accelerate the deposition process of metal 

particles. Finally, the resulting sample was filtered, washed with abundant hot water 

(≥90
o
C) until no chloride anion was detected by 1.0 mol L

-1
 AgNO3 solution in the filtrate 

and then dried at 80
o
C overnight in a vacuum oven.  

In order to control WC content in the catalyst and compare with the activity of 

Pt@WC/OMC-MP, mechanical mixing method was adopted to obtain Pt@WC/OMC-MM 

(Mechanical Mixing) with different WC content. Pt@C catalysts were prepared by a pulse 

microwave-assisted polyol method. Then, the as-prepared Pt@C catalysts were mixed with 

the as-prepared WC/OMC by grinding for 2 h and then stirring in EG for 24 h. Next, the 

resulting sample was filtered, washed and then dried at 80
o
C overnight in a vacuum oven. 

Finally, Pt20@WC17/OMC-MM, Pt20@WC22/OMC-MM and Pt20@WC27/OMC-MM were 

obtained (Ptx@WCy/OMC-MM, here the subscript is the weight percent and MM means the 

sample was obtained by mechanical mixing). 

6.2.3 Physico-chemical characterization of WC/OMC 

The low-angle and wide-angle X-ray diffraction (XRD) patterns were recorded on a 

D-MAX 2200 VPC diffractometer using Cu K radiation (30 kV, 30 mA). N2 

adsorption-desorption measurements were carried out using a Micromeritics ASAP 2010 
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analyzer at 77 K. The BET surface area (SBET) and the mesopores volume (Vmes) were 

determined by the BET theory and Barrett-Joyner-Halenda (BJH) method, respectively. 

The transmission electron microscopy (TEM) investigations were performed by a JEOL 

TEM-2010 (HR) operating at 120 kV. X-ray photoelectron spectroscopy (XPS) 

characterization was performed by an ESCALAB 250.  

6.2.4 Stability investigation of WC/OMC 

In order to check the stability of the as-prepared WC/OMC (WC/OMC-0), the 

corresponding WC/OMC samples were treated through the following process without (a) or 

with (b) Pt precursor: i) immersion in alkaline EG solution (pH=13.0) for 3 h (WC/OMC-1a 

and WC/OMC-1b ), ii) after immersion in alkaline EG solution, microwave irradiation in 

the pulse mode of 10 s-ON/ 10 s-OFF for 5 times (WC/OMC-2a and WC/OMC-2b), iii) 

after the above two steps, immersion in acidic solution (pH=2.0) for 3 h (WC/OMC-3a and 

WC/OMC-3b). For the sake of clarification, the above treatment process is illustrated in Fig. 

6.2. For the determination of WC content in the WC/OMC composite material, 

thermogravimetric (TG) experiments were carried out with a Netzsch TG-209 analyzer in air 

with a flow rate of 20 mL min
-1

 and a temperature ramp of 10°C min
-1

. 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



Chapter 6: An Investigation of WC Stability during the Preparation of Pt@WC/OMC via a Pulse Microwave Assisted 

Polyol Method

135 

 

Figure 6.2: The treated WC/OMC samples in the same procedure for the supported Pt 

catalyst preparation by the pulse microwave assisted polyol method. 

6.2.5 Electrochemical characterization  

All the electrochemical measurements were conducted on an AUT84480 instrument in a 

three-electrode cell with a saturated calomel electrode (SCE) and a Pt foil (1.0 cm×1.0 cm) as 

the reference and counter electrode, respectively. The thin catalyst film was prepared onto the 

glassy carbon disk surface with a diameter of 0.5 cm. Typically, a mixture containing 5.0 mg 

electrocatalyst, 1.80 mL ethanol and 0.20 mL Nafion solution (5 wt.%, density: 0.874 g 

mL
-1

@25
o
C, DuPont, USA) was ultrasonicated for 10 min and then stirred for 40 min to 

obtain a well-dispersed ink. The catalyst ink (10 μL) was then quantitatively transferred onto 

the surface of the glassy carbon disk electrode and dried under infrared lamp to obtain a 

catalyst thin film. The Pt loading was maintained to be 25.5 μgPtcm
-2

. It should be noted that 

all the potential was referred to the SCE without specification. 
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6.3 Results and discussion 

6.3.1 Physicochemical characterization  

The corresponding physico-chemical properties of the as-prepared WC/OMC are 

shown in Fig. 6.3. The respective diffraction peaks at 31.4
o
, 35.6

o
, and 48.4

o
 in the wide 

angle XRD correspond to (001), (100) and (101) facets of WC (Fig. 6.3A), indicating 

that WC has been successfully synthesized. As seen from the low-angle XRD patterns 

of WC/OMC (the inset of Fig. 6.3B), WC/OMC exhibits an intense diffraction peak 

(10), demonstrating the formation of a highly ordered 2D hexagonal mesostructure [43, 

44]. This can be further verified by the parallel arranged channels observed from the 

TEM image (the inset of Fig. 6.3B). Typical IV nitrogen adsorption/desorption 

isotherms with distinct hysteretic loop (Fig. 6.3B) indicate the mesoporous structure of 

WC/OMC. The BET surface area and mesopore volume of WC/OMC are 409 m
2
 g

-1
 and 

0.47 cm
3
 g

-1
, respectively. Obviously, the WC/OMC has a high enough specific surface 

area to load metal particles with high dispersion. The pore size distribution through the 

BJH method clearly displays a unimodal, narrow pore size distribution with a peak pore 

diameter at about 5.0 nm for WC/OMC. Based on the above results, it is obvious that 

the ordered mesoporous WC/OMC composites have been successfully synthesized 

through combing the hydrothermal reaction and the hard template method.  
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Figure 6.3: (A) XRD patterns of WC/OMC sample, and (B) its N2 

adsorption-desorption isotherms and the corresponding BJH pore size distribution and 

low-angle XRD patterns and TEM images of WC/OMC sample (inset of B). 

Thermogravimetric analysis has already been adopted to determine the Pt content in 

carbon and nitrogen doped carbon supported Pt catalysts by using the weight of the final 

products PtO2 [45, 46]. TG is also tentatively used to quantify WC content in the 

WC/OMC composite material in the present work. In order to achieve this purpose, it 

should be to know what the final product of WC/OMC is after TG measurement. For this 

issue, the as-prepared WC/OMC was heat-treated under air at a flow rate of 20 mL min
−1

, 

with temperature ramped from room temperature to 900 
o
C at 10 

o
C min

−1
, which were 

the same operation parameters as those of TG analysis. 

 The XRD results shown in Fig. 6.4A clearly indicate that the main products of the 

heat-treated WC/OMC under the same TG operation conditions are WO3, with little 

WO3-x. For the further check of the final state of the sample after TG operation, XPS for 

the products of the heat-treated WC/OMC under the same conditions of TG operation was 

also collected. As shown in Fig. 6.4B, the W4f  spectra can be deconvoluted into two 

pairs of doublets (W4f5/2 and W4f7/2). The strong peaks located at 35.91 ev and 38.06 eV 
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are corresponding to WO3 oxidation state, while the weak peaks located at 35.41 ev and 

37.56 eV are corresponding to WO2.5 oxidation state [13, 47-49].  

 

 

Figure 6.4: (A) XRD and XPS (B) of the heat-treated WC/OMC sample under the same 

operation conditions as those of TG test and (C) the thermogravimetric curves of the 

as-prepared WC/OMC for WC quantitative determination. 

 Considering the much bigger atomic weight of W (184) than that of O (16) and much 

lower content of WO3-x with respect to that of WO3, even if the WC content 

determination is just based on WO3 as the only residue in TG analysis, the measurement 

error can be neglected. As it can be seen from Fig. 6.4C, setting the weight of the 

anhydrous material to be 100 wt.%, with WO3 as the final product for the calculation 

basis, the content of WC in the as-prepared WC/OMC is 49.4 wt.%. Based on the above 

discussion, TG analysis can be used for the determination of WC content in the WC/OMC 
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composite material and then for its stability investigation during its supported Pt catalysts 

preparation through the pulse microwave assisted polyol method.  

6.3.2 Investigation of WC/OMC stability 

In order to investigate the stability of WC/OMC in the catalyst preparation process 

through the pulse microwave assisted polyol method, in each step which could affect the 

stability of WC (Fig. 6.2), the sample was filtered, washed, dried and then evaluated.  

 

   

Figure 6.5: (A, B) XRD and (A’, B’) TG thermogravimetric curves of the treated 

WC/OMC samples as shown in Fig. 6.2. 

The wide-angle XRD patterns of treated WC/OMC samples (Fig. 6.5A) reveal that the 

diffraction peaks of WC still maintain in the catalyst preparation process in the absence of 
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Pt precursor. While, in the presence of Pt precursor, the diffraction peak intensity of WC 

becomes obviously weaker after microwave irradiation (Fig. 6.5B). 

To further explore the possible reasons, TG was carried out to quantify WC content in 

the sample. As shown in Fig. 6.5A’,in the case of without Pt precursor, WC loss is almost 

similar, from the initial 49.4 wt.% to about 40 wt.%, even WC/OMC-0 was treated 

through all the catalyst preparation process. This phenomenon indicates not only alkaline 

or acidic environmental but also the microwave irradiation has a little effect on WC 

stability in absence of Pt precursor. While, in the presence of Pt precursor, before 

microwave irradiation, the WC loss is similar to the previous case. On the other hand, 

once microwave irradiation is provided, WC loss becomes significant, from 49.4 wt.% to 

less than 20 wt.% (Fig. 6.5B’). With the further treatment by acid, no further WC loss 

happens. This indicates that the existence of Pt can induce the dissolution or oxidation of 

WC in the microwave irradiation process. One can easily infer that the step of microwave 

irradiation in the presence of Pt precursor during the catalysts preparation process is the 

most serious parameter that leads to WC loss. Here it is worth noting that if the catalysts 

were prepared through the pulse microwave assisted polyol method, in the Pt@WC/OMC 

sample, W can be found in the form of WC and WO3, which could be seen from the XPS 

results shown in Fig. 6.6. Obviously, part of WC has been oxidized into WO3 during 

Pt@WC/OMC cattalyst preparation. So, based on TG method, the real WC content in 

Pt@WC/OMC should be less than the calculated value.   
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Figure 6.6: Deconvoluted W4f spectra in the Pt@WC/OMC sample prepared by the 

pulse microwave assisted polyol method. 

6.3.3 Electrochemical characterization: methanol electrooxidation 

reaction 

Considering the issue of WC loss in the catalyst preparation process and the contributing 

effect of WC on Pt’s electrocatalytic activity, in order to take good advantage of the 

synergetic effect of WC, the as-prepared WC/OMC-0 was mechanically mixed with the 

as-prepared Pt/C to obtain Pt20@WC22/OMC (denoted as Pt20@WC22/OMC-MM). 

Pt20@WC21/OMC-MP (here the subscript 21 is the calculated WC weight percent from TG 

results, while the real WC content should be less than 21 wt.% as discussed above) was 

prepared through the normal pulse microwave assisted polyol method as the counterpart. 

Both were tested for MOR and the results are shown in Fig. 6.7.  
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Figure 6.7: Cyclic voltammograms of methanol electrooxidation on 

Pt20@WC22/OMC-MM and Pt20@WC21OMC-MP in 0.5 mol L
-1

 H2SO4+1.0 mol L
-1

 

CH3OH solution. Scan rate: 50 mV s
-1

. 

Not only the onset potential but also the specific mass activity on Pt20@WC22/OMC-MM 

is superior to those on Pt20@WC21/OMC-MP. In more details, the peak value of the specific 

mass activity of the Pt20@WC22/OMC-MM is about 488 mA mgPt
-1

, much higher than the 

corresponding value (354 mA mgPt
-1

) of the Pt20@WC21/OMC-MP. Our present results 

have a comparable result to that (410 mA mgPt
-1

) on Pt supported on WO3/OMC [50]. This 

could be attributed to the decreased crystallization of WC due to part of WC dissolution and 

WO3 existence, produced from the oxidation of WC during the preparation of 

Pt20@WC21/OMC-MP. This can be clearly seen from the weaker diffraction peaks for WC 

in Pt20@WC21/OMC-MP with respect to those in Pt20@WC22/OMC-MM (Fig. 6.8). One 

might further conclude that the content of WC can affect the activity of Pt@WC/OMC to 

some extent. 
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Figure 6.8: XRD patterns of the Pt20@WC22/OMC-MM and Pt20@WC21/OMC-MP 

samples. 

For the further optimization of WC content in the catalysts, different 

Pt@WC/OMC-MM catalysts with the same Pt loading but different WC content 

(Pt20@WC17/OMC-MM, Pt20@WC22/OMC-MM and Pt20@WC27/OMC-MM) were 

prepared and evaluated for MOR. The CV results for MOR (Fig. 6.9A) clearly indicate that 

Pt20@WC22/OMC outperforms the other two samples, with a higher electrocatalytic peak 

current (488 mA mgPt
-1

). This behavior could be due to the bigger electrochemical surface 

area in the case of Pt20@WC22/OMC-MM. This can be clearly seen from the obviously 

bigger reduction peak of platinum oxide, shown in Fig. 6.9B. Moreover, the lower MOR 

performance on Pt20@WC27/OMC-MM could be due to the amount of WC which has low 

efficiency of synergistic effect [51]. Furthermore, in the case of high WC content, because 

of its high density, it is difficult to prepare the well-dispersed catalyst ink and the catalyst 

particles are accessible to settle. In this way, the catalyst thin film could be not so good 

compared with the others, and thus probably leading to the inferior performance.  
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Figure 6.9: (A) Cyclic voltammograms of methanol electrooxidation on 

Pt20@WC15OMC, Pt20@WC22/OMC and Pt20@WC27/OMC obtained through 

mechanically mixing WC/OMC and Pt@C in 0.5 mol L
-1

 H2SO4+1.0 mol L
-1

 CH3OH 

solution (Scan rate: 50 mV s
-1

) and (B) in 0.5 mol L
-1

 H2SO4 (Scan rate: 20 mV s
-1

). 

As far as the Pt20@WC17/OMC-MM is concerned, probably it has lower WC content, 

resulting in weaker synergistic effect on Pt, so its mass activity for MOR is lower than that 

on Pt20@WC22/OMC-MM. For all electrocatalysts, the backward specific mass peak current 

density presents the same value with the respective forward peak (Iforward/Ibackward≈1), 

indicating their good tolerance to the formed intermediates as well as good activity towards 

MOR [3, 52].    

6.4 Conclusions 

In the present work, the stability of WC during the WC/OMC supported Pt-based 

catalysts preparation process through a pulse microwave-assisted polyol method was 

investigated by XRD technique and TG method. In summary, the following conclusions 

can be drawn: Acidic or alkaline environment during the above-mentioned catalysts 

preparation process has a little impact on WC stability. Microwave irradiation in the 

presence of Pt precursor can significantly lower the stability of WC. This finding is of 

vital importance to realize that WC is seriously unstable during the specific catalysts 
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preparation process.  

The degree of crystallization and content of WC could obviously affect the activity of 

Pt towards methanol electrooxidation reaction. In order to maximize the synergistic effect 

of WC supported electrocatalysts, it is necessary and important to identify and then avoid 

or improve the operation parameters affecting WC stability not only during the 

application of WC but also during catalysts preparation process.  
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Carbon supported Ultra-low Pt (PdxPty) electrocatalysts 

preparation, characterization and H2-PEMFC performance 

 

Abstract 

In the present manuscript very low-platinum electrocatalysts, Pd97Pt3/C, Pd98Pt2/C, Pd99Pt1/C 

and pure Pd/C are prepared, physicochemically as well as electrochemically characterized 

and they are tested in a single hydrogen proton exchange membrane fuel cell. The 

electrocatalysts are prepared via a modified pulse-microwave assisted polyol method and they 

are physicochemically characterized with techniques of X-ray diffraction (XRD) and 

transmission electron microscopy (TEM). Moreover, the as prepared electrocatalysts are 

electrochemically characterized by the aid of the techniques of cyclic voltammetry (CV) and 

rotating disk electrode (RDE). According to the experimental results, all the as-prepared PdPt 

bimetallic electrocatalysts exhibit much higher activity towards HOR than pure Pd.  

Among the investigated electrocatalysts Pd98Pt2/C presented the highest electrocatalytic 

activity. Moreover, Pd97Pt3/C and Pd98Pt2/C electrocatalysts are examined as anode electrode 

in a single hydrogen proton exchange membrane fuel cell. As expected, along with the 

temperature increase from 30 to 80
o
C, the power density increases for the Pd98Pt2/C anode.  

However, for the Pd97Pt3/C a further increase in the temperature from 70 to 80
o
C results in a 

slight decay of power density. According to the electrochemical impedance measurements the 

decay of the power density may attributed to the decrement of membrane conductivity.  
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7.1 Introduction 

Today, after many years of research [1], Hydrogen Fueled Proton Exchange 

Membrane Fuel Cells (H2-PEMFCs) have achieved much progress for their wide 

potential commercial applications. H2-PEMFCs are the smallest and lightest of the 

designs at present, making them the choice mainly for transportation applications, like 

automobiles and trucks. H2-PEMFCs also, among the other fuel cells, have the lowest 

operating temperatures, and this means faster start-up time for the internal chemical 

reactions. On the other hand, they need pure hydrogen to operate and up-to-date, they run 

typically with only 30% efficiencies, having also a high cost [2]. Among the total cost the 

electrode represents 40%, with 1.7% due to  platinum as the active catalysts [3]. Reducing 

cost and improving durability are the most two significant challenges for the 

commercialization of H2-PEMFCs. Ongoing research has been focused on identifying and 

developing new materials that will reduce the cost and extend the life of fuel cell different 

components including membranes, electrocatalysts, bipolar plates and membrane 

electrode assemblies. More precisely, for electrocatalysts the most addressed technical 

barriers are to: 

 Reduce precious metal loading of electrocatalysts 

 Increase the specific and mass activities of electrocatalysts 

 Increase the durability and stability of electrocatalysts with cycling  

In addition, the U.S. Department of Energy (DOE) has set long-term goals for PEMFC 

performance in a 50 kW stack with the catalyst loading of 0.05 mg cm
−2

 or less at the 

cathode. Furthermore, the target includes less than 200 mg of Pttotal per kW (higher than 

5Mw μgPt
-1

) at cell voltages higher than 0.65 V. In our previous review work [1] we have 

identified that the most active electrocatalysts (>5 mWμgPt
-1

)
 
for hydrogen oxidation 

reaction (HOR) are bimetallic Pd-Pt ones. In an attempt to reduce the catalyst loading, the 
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international research community has identified Pd as the best non-platinum electrocatalyst, 

with comparable, but a little lower electrocatalytic activity than Pt. Meanwhile, doping Pd 

electrocatalyst with a very small amount of Pt has been proved to significantly enhance the 

electrocatalytic activity at pure Pd, indicating activity higher than pure Pt. Cho et al. [4] 

synthesized and tested PdPt catalyst with an atomic ratio of 19:1 and applied it in a H2-

PEMFC. The single PEMFC using PdPt/C as the anode electrocatalyst exhibited a high 

performance comparable to that with a commercial Pt/C anode electrocatalyst. This result 

indicates that Pd-based electrocatalysts can be used as an anode electrocatalyst in PEMFC 

with a very small amount of Pt (just about 5 at.%). Additionally, Antolini et al. [5] 

decreased Pt loading by adopting carbon supported Pd96Pt4 and Pt as anode and cathode 

catalysts, respectively. They found that the fuel cell performance was only slightly lower 

than the conventional PEMFC with Pt/C catalysts at both electrodes.  

In the present work, carbon (Vulcan XC-72®) supported Pd97Pt3, Pd98Pt2, Pd99Pt1 and 

pure Pd electrocatalysts are prepared via a modified-pulse microwave assisted polyol 

method and are examined for HOR. Additionally then Pd97Pt3/C and Pd98Pt2/C are also 

tested in a single H2-PEMFC as anode electrocatalyst with commercial Pt/C as cathode 

electrocatalyst.  

7.2 Experimental 

7.2.1 Materials 

Vulcan XC-72R (Cabot Corporation) carbon powder was used as the support material. 

PdCl2 and H2PtCl6•6H2O were the corresponding metal precursors. All aqueous solutions 

were prepared by ultrapure water (18.2 MΩ cm Millipore–MilliQ) during catalyst 

preparation. Ethanol (>99% purity) (Sigma Aldrich) and Nafion
®
 (5 wt.%, Dupont 

Company) were used for catalyst ink preparation. 
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7.2.2 Electrocatalysts preparation 

PdxPty (x:y=97:3, 98:2 and 99:1) with different Pd/Pt molar ratios supported on Vulcan-

XC72 carbon (the metal loading was kept at 20 wt.% for all the catalysts) were prepared by 

a modified pulse-microwave assisted polyol synthesis procedure [6]. Briefly, in a beaker, 

the starting metal precursors (PdCl2 and H2PtCl6•6H2O) were well mixed with ethylene 

glycol (EG) in an ultrasonic bath, and then XC-72 R carbon black (Cabot Corporation) was 

added into the above mixture. After the pH value of the system was adjusted to be more 

than 10 by the drop-wise addition of 1.0 M NaOH/EG, a well-dispersed slurry was obtained 

with ultrasonic stirring for 60 min. Thereafter, the slurry was microwave-heated in the pulse 

form of 10s-on/10-s-off for several times. In order to promote the adsorption of the 

suspended metal nanoparticles onto the carbon support, hydrochloric acid was adopted as 

the sedimentation promoter and the solution was re-acidified with a pH value of about 4. 

The resulting black solid sample was filtered, washed and dried at 80°C for 12 h in a 

vacuum oven. 

7.2.3 Fabrication of membrane electrode assembly (MEA) 

A Toray carbon paper (Toray TGP-H-060, Toray Industries Inc.) was used as the 

anode and cathode backing layer. Carbon black ink containing Vulcan XC-72R carbon 

black and polytetrafluoroethylene (PTFE, Aldrich) was painted onto the backing layer to 

form a microporous layer. The carbon black loading was about 1.0 mg cm
-2

 and the PTFE 

content in the microporous layer was 40 wt. %. To fabricate the anode catalyst layer, the 

PdxPty/C catalyst and Nafion
®
 solution was ultrasonically suspended in water and then 

brushed onto the microporous layer at 70 
o
C. The resulting loading of the PdxPty/C 

catalyst was 1.6 ± 0.1 mg cm
-2

 and the Nafion content was 10 wt. %. And then, a Nafion 

solution was sprayed onto the surface of the anode catalyst layer with a dry ionomer 

loading of about 0.5 mg cm
-2

. In all cases, an identical cathode catalyst layer was 
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prepared by the same procedure as that described above. The resulting Pt/C (40 wt%, 

Tanaka Kikinzoku Kogyo K. K.) loading was 1.6 ± 0.1 mg cm
-2

 and the Nafion content 

was the same as in the anode catalyst layer. Finally, the anode and cathode (2.5 cm × 2.5 

cm) were placed onto each side of a Nafion NRE-212 membrane (Aldrich) and hot-

pressed at 135 
o
C and 1 MPa for 3 min to form the MEA. The membrane is used as 

received without any treatment. 

7.2.4 Physicochemical characterization 

The X-ray diffraction (XRD) patterns were recorded on a D-MAX 2200 VPC 

diffractometer using Cu K radiation (30 kV, 30 mA). The transmission electron 

microscopy (TEM) investigations were carried out on a JEOL TEM-2010 (HR) at 120 kV 

to determine the size and surface morphology of the catalyst particles. Before the 

measurements, the catalysts were uniformly dispersed in ethanol solution using an 

ultrasonic water bath and then dried onto carbon coated copper grid.   

7.2.5 Electrochemical measurements 

Cyclic voltammetry (CV) and rotating disk electrode (RDE) studies were carried out to 

estimate the electrochemical active surface area and to characterize the activity of the as-

prepared electrocatalysts for the HOR and ORR. The performance of the electrocatalysts 

was also evaluated using a commercial fuel cell test system (Fuel Cell Technologies Inc.), 

with a single test rig of 5.0 cm
2
 active geometric area. Polarization studies were conducted 

at various cell temperatures with humidified hydrogen and oxygen gas reactants at an 

atmospheric pressure.  
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7.2.6 Cyclic voltammetry and rotating disk electrode measurements 

(HOR&ORR) 

All electrochemical measurements were conducted in an electrochemical workstation 

AMEL 7050 adopting a saturated calomel electrode (SCE) and a Pt wire as reference and 

counter electrodes, respectively. CV and RDE- measurements were carried out, on a thin 

film catalyst coated on a glassy carbon (GC) disk electrode (working electrode, d= 3.0 mm) 

mounted in an interchangeable RDE holder, in 0.5 mol L
-1

 H2SO4 aqueous solution (Carlo 

Erba, 99%) at room temperature. The electrocatalytic ink was prepared by mixing 2.0 mg of 

electrocatalyst, 1.8 mL ethanol and 0.2 mL Nafion solution (5 wt.%, IonPower, GmbH). 

Then, the as-prepared catalyst ink was quantitatively (4.0 μL) transferred onto the surface 

of the GC electrode and was dried to obtain a thin porous layer. For all measurements, the 

total catalyst loading was maintained at 11 μg cm
-2

. Before each measurement, the solution 

was bubbled with high-purity nitrogen for 30 min to remove the dissolved oxygen in the 

solution. For the activity evaluation for HOR, hydrogen gas was supplied to the electrolyte 

more than 30 min to obtain a H2-saturated solution. During the experiments the N2 (or 

hydrogen) stream was directed provided above the solution level in order to avoid contact 

with air as well as keep saturated the solution (inert in case of nitrogen). Before the 

voltammograms being reproducible, several scans were carried out. 

7.2.7 Single fuel cell test  

Initially, it should be pointed out that before the electrochemical experiments, the cell 

was activated with the method of cyclic voltammetry. During the activation process, the 

pipe temperatures for both the anode and cathode sides were at room temperature. 

Activation was carried out under reference conditions (λAir = 20cc, λH2=100cc) for 1000 

cycles, from 0 to 1V, at 150mV/sec scan rate [7]. 
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Then the CV was performed on a two-electrode MEA with a potentiostat (AMEL 7050) 

at 50 mV s
−1

 from 0 to 1.0 V in order to estimate the electrochemical active surface area of 

the MEA. In this configuration, the anode serves as both the counter and reference 

electrodes, while the cathode as the working electrode. The fuel cell cathode and anode 

were supplied with 20 mL min
−1

 H2 and 100 mL min
−1

 N2, respectively. The cell working 

temperature was controlled to be 25 
o
C. 

The single cell polarization experiments were carried out at different working 

temperatures of 30, 40, 50, 60, 70 and 80
o
C at an atmospheric pressure. Before entering the 

cell, the reactant gases, pure hydrogen (80 mL min
−1

) and oxygen (40 mL min
−1

 O2), were 

saturated with steam water contained in glassy humidifiers under controlled temperature 

(the same with the cell for relative humidity 100%).  

7.2.8 In situ electrochemical impedance spectroscopy (In situ-EIS) 

Electrochemical impedance spectroscopy (EIS) can evaluate the internal property of 

electrodes, such as ohmic resistance, charge transfer resistance and mass transfer resistance 

in the catalyst layer and constant phase element of the catalyst layer capacitance. 

Consequently, alternative impedance (AC) measurements were carried out using a 

MaterialsM 520 frequency response analyzer (AMEL) coupled to 7050 AMEL 

electrochemical station. The AC signal had an amplitude of 10 mV and the frequency range 

was from 1 mHz to 100 kHz, covered with 10 points per decade. Impedance spectra at 

different temperatures were recorded at 0.6 V and at open circuit voltage (OCV).  For the 

measurements at OCV conditions symmetrical feeding to anode and cathode H2/H2 (80 

mLmin
-1

) was used, while for the measurements at 0.6 V, H2 (80 mLmin
-1

) and O2 (40 

mLmin
-1

) was fed to the anode and the cathode respectively. Using the values of the high 

frequency resistance, cell potentials were corrected for the ohmic drop. 
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7.3 Results and Discussion 

7.3.1 Physicochemical characterization 

The diffraction peaks of PdxPty/C catalysts at about 40◦, 46◦, 68◦ and 81◦ are attributed 

to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes of the face center cubic (fcc) structure of 

the PdPt alloys.  

 

Figure 7.1: XRD results. Insets: crystallite size. 

From the XRD results the crystallite size is calculated (inset of Fig.7.1) 5.6, 5.2 and 

6.0nm for the Pd97Pt3/C, Pd98Pt2/C and Pd99Pt3/C, respectively. Moreover from the TEM 

images (Fig.7.2), the smallest nanoparticles and the most homogenously distributed are 

observed for the Pd98Pt2/C, ~5.0nm. Then the Pd97Pt3/C follows with ~5.5nm 

nanoparticles size and finally the Pd99Pt1/C with ~6.0nm nanoparticles size and 

inhomogeneous distribution.  
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Figure 7.2: TEM images of Pd97Pt3/Vulcan-XC72 (A), Pd98Pt2/Vulcan-XC72 (B), 

Pd99Pt1/Vulcan-XC72 (C).  

7.3.2 Electrochemical characterization 

7.3.2.1 Cyclic voltammetry and estimated electrochemical active surface area 

CVs were recorded at 50 mV s
−1

 in 0.5M aqueous H2SO4 solution for estimating the 

electrochemical active surface areas (ECSA) as it is shown in Fig. 7.3. As it is observed, 

when the concentration of one metal is increased relative to another, then the behavior of 

the surface begins to resemble the bulk features of the predominant metal [8]. 

Considering this issue, the estimation of the ECSA for Pd-rich catalysts is based on the 

reduction peak during the backward scanning in CV results. 
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Figure 7.3: Cyclic voltammetry measurements, in 0.5M H2SO4, at room temperature 

with scan rate 50 mVs
-1

. 

The ECSA values are calculated by determining the columbic charge (Q) for the 

reduction of palladium oxide peak for the indicated area with the cycle in Fig. 7.3. 

                                                        [
  

 
]  

  

           
                                             (7.1) 

where Qo represents the charge of reduction peak for palladium oxide, QPd =420 μC 2

Pdcm  is 

the specific columbic charge corresponding to the full coverage of the Pd surface by one 

monolayer of oxygen (μC cm
−2

), and mPd (mg 2

electrodecm ) is the Pd loading on the working 

electrode. For Pd97Pt3/C (10.4 μgPd cm
-2

), Pd98Pt2/C (10.6 μgPd cm
-2

) and Pd99Pt1/C (10.8 μgPd 

cm
-2

), their respective ECSA is estimated to be 38.6, 45.2 and 29.8 cm
2
 mg

-1
Pd, respectively. 

The electrochemical active surface area of pure Pd/C was estimated 21 cm
2
mg

-1
Pd.  

7.3.2.2 Electrocatalytic activity - HOR 

Typical RDE polarization curves for the examined electrocatalysts in H2-saturated 0.5M 

aqueous H2SO4 solution are plotted in Fig. 7.4. At Pd98Pt2/C and Pd99Pt1/C, a small 

shoulder for E<0.1 V is observed, which becomes more intense as the Pd loading increases 

(at Pd99Pt1/C). This formation of shoulder could be attributed to the current associated with 

the slow desorption of absorbed hydrogen, which in turn may can be attributed to the slow 

scan rate [9]. 
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Figure 7.4: RDE polarization curves for HOR in H2 saturated 0.5 M H2SO4 aqueous 

solution, at a scan rate of 10 mV s
-1

 at room temperature.  

The kinetic parameters can be analyzed on the basis of the Koutecky-Levich equation: 

                                                          
1/2

1 1 1 1 1
   

L K KJ J J B J
                                                                                       (7.2) 

, where
2/3 1/60.62 B nFD C , n is the number of theoretically-transferred electrons 

(n=2), F the Faraday constant (96485 C mo
-1

l), D the diffusion coefficient of H2 in the 

H2SO4 aqueous solution, v the kinematic viscosity of the electrolyte and C the H2 

concentration in the electrolyte. According to the Koutecky-Levich equation, the kinetic 

current density ( KJ ) for different potential values can be obtained from the intercepts of the 

Koutecky-Levich plots that are depicted in Fig. 7.5.  
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Figure 7.5: Koutecky-Levich plots for the Pd97Pt3/C (a), Pd98Pt2/C (b), Pd99Pt1/C (c), 

Tafel-Heyrovsky-Volmer plots for the as-examined electrocatalysts (d). 

The respective Tafel- Heyrovsky-Volmer plots are depicted for each catalyst separately 

in Fig. 7.5(d). To compare the catalytic activity of the electrocatalysts the exchange current 

density (Jo) as well as the charge transfer coefficient are calculated, according to the Tafel-

Heyrovsky-Volmer equation [10]: 

                                           log( ) log( ) ( )
2.303

 k o

anF
J J

RT
                                                               (7.3) 

,where kJ :the kinetic current density, calculated from the Koutecky-Levich plots, oJ : the 

exchange current density, a : the charge transfer coefficient, n: the electron number 

involved in the reaction (n=2), R: gas constant (R=8.314 J mol
-1

 K
-1

), T: the temperature in 

Kelvin (T=298 K), F: Faraday constant (F=96485 C mol
-1

), and   the overpotential.  
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As it is observed, non-zero intercepts indicate that the rate of electron transfer is 

sufficiently slow to act as a limiting factor [11]. To better compare the catalytic activity of 

the examined electrocatalysts, the kinetic and exchange current density values in terms of 

Pd loading are depicted in Fig. 7.6. In all potential values, a volcano behavior is obtained in 

the plots of current density for HOR and the degree of Pd loading, indicate that two factors 

(electronic effect and lattice effect) may underlie the alloying effect [12]. The addition of 

small amounts of Pt to pure Pd electrocatalyst significantly enhances the activity of Pd. 

This contributing effect becomes sounder at higher potential values. More precisely, at 0.45 

V, when the ratio Pd:Pt is 99:1, the kinetic current density is calculated ca. 8 mA cm
-2

. 

Increasing a little Pt loading (Pd98Pt2/C), an intense increment to ca. 14 mA cm
-2 

is 

observed. Similarly, Cho et al.[4] found that with the addition of a little amount (5 at.%) 

of Pt to the Pd electrocatalyst, the electrocatalytic activity towards HOR was enhanced. In 

the present work, with the addition of only 2 at.%, it is observed also a great enhancement 

of activity. 

10.4 10.5 10.6 10.7 10.8 10.9 11.0

0

2

4

6

8

10

12

14

16
 0.01 V

 0.05 V

 0.025 V

 0.15 V

 0.25 V

 0.45 V

 Jo

Pd loading (g cm
-2
)

J
k
(m

A
 c

m
-2
)

0

1

2

3

4

Pd/C

Pd
99

Pt
1
/C

Pd
98

Pt
2
/C

Pd
97

Pt
3
/C

J
o
(m

A
 c

m
-2
)

 

Figure 7.6: Dependence of exchange current density (J0) and kinetic current density 

(Jk) on Pd loading. 
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7.4 Single Fuel Cell Test  

7.4.1 Electrochemical Active Surface Area (ECSA)  

The electrochemical characterization of MEA was in-situ performed, with the anode to 

serve as both the counter and reference electrodes and the cathode as the working electrode. 

Before the measurements activation procedure of MEA took place. The main reason for a 

MEA activation procedure is to properly humidify both the Nafion electrolyte in the 

catalyst layer and the Nafion
®
 electrolyte membrane of the MEA that was dried during the 

assembly process. More precisely, it has been proved that the initial performance of a new 

MEA with Nafion electrolyte bonded electrodes usually could be improved after the 

activation, as the electrolyte contained in the electrodes needs hydration to ensure the 

passage of hydrogen ions. Moreover, the MEA activation has an advantageous effect on the 

catalyst, such as removal of impurities introduced during the fabrication process of MEA, 

activation of a catalyst that does not participate in the reaction, and creation of a transfer 

passage for reactants to the catalyst [13, 14]. The obvious increment in ECSA from 22 m
2
/g 

to 50 m
2
/g proves that MEA activation process could provide the catalyst layer with the 

more transfer passages for hydrogen ions, and thus with a bigger electrochemical active 

surface area.  

7.4.2 Effect of temperature 

The power density and polarization curves for single H2-O2 PEMFC with Pd97Pt3/C or 

Pd98Pt2/C as anodes at different temperatures from 30
o
C to 80

o
C are respectively shown 

in Figs. 7.7 (A) and (B). In the first case it is observed that the power density increases 

until 70
o
C, exhibiting 93 mW cm

-2
 (or 0.14 mW μg

-1
Pt), while at 80

o
C power density 

decays to 75 mW cm
-2

 (0.11 mW μg
-1

Pt). It is noted that the values are referred to the 

corrected cell potential. 
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Figure 7.7: Power density and polarization curves at different cell temperature from 30-

80
o
C for: Pd97Pt3/C//Nafion (NRE212)//Pt/C (A) and Pd98Pt2/C//Nafion(NRE212)//Pt/C (B). 

On the other hand, in the case of Pd98Pt2/C anode, the maximum power density is 

observed at 80
o
C, reaching 311mWcm

-2 
(or 0.44mWμg

-1
Pt,total, 697μgPt,totalcm

-2
). The 

exhibited value is far away from the target of 5mWμg
-1

Pt,total, meaning that further 

improvement on catalysts’ and MEA’s preparation method should be taken into future 

consideration. In order to evaluate the electrochemical behaviour of the as-examined 

electrocatalysts more thorough during H2-PEMFC operation, electrochemical impedance 

measurements were conducted as it is described in the next sub-section.  

7.4.3 Electrochemical impedance analysis  

In Scheme 1 a typical impedance plot (Nyquist plot) for a membrane electrode 

assembly is depicted. In a Nyquist plot (Scheme 1), the intersection of the impedance data 

with the real part of the axis at the high frequency end gives the ohmic (or high frequency 

or electrolyte) resistance (Rel). The ohmic resistance depends on the conductivity of the 

electrolyte and the geometry of the electrode. The ohmic resistance is the sum of the 

contributions from uncompensated contact resistance and the ohmic resistance of cell 

components such as the membrane, catalyst layer, backing layer and end plates. 
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Scheme 1. A typical impedance plot for a membrane electrode assembly. 

However, the dominating contribution is from the membrane proton resistance and so 

it is called electrolyte resistance [15]. Additionally, the intersection of the impedance data 

with the real part of the axis at the low frequency end gives the sum of the polarization 

(charge transfer) resistance (Rp) and the ohmic resistance (Rel) [16]. Thus, the diameter of 

the kinetic loop (semi-circle) corresponds to the charge transfer resistance for the 

hydrogen oxidation (the first arc) and oxygen reduction reactions (the second arc) 

(Scheme 1). Usually, at the very low frequencies there is a third arc which corresponds to 

mass transport process. 

Fig. 7.8 shows the Nyquist plots of the impedance data for H2/O2 (H2: 80 mL min
-1

, O2: 

40 mL min
-1

) feeding, 100% relative humidity,
 
at 0.6 V, at different temperatures from 30 

to 80
o
C, with Pd97Pt3/C as anode. More precisely, symbols are used to depict the 

experimental results and line to fit the experimental results according to the equivalent 

circuit depicted in Fig. 7.8 (B). 

According to our impedance results (Fig. 7.8(A)), all curves are characterized by a 

complete semi-circle typical of a kinetic control associated with the oxygen reduction 

reaction [17], without the anode semi-circle to be so evident. This can be explained by the 

fact that the anode reaction (hydrogen oxidation) is much faster than the cathode one 

(oxygen reduction). Moreover, as it is shown there are no observed mass transport 

limitations (semi-circles at very low frequencies).  
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Figure 7.8: MEA impedance plots with H2/O2 feeding (H2: 80 mLmin-1, O2: 40 

mLmin-1), from 1 mHz– 100 kHz . Ac:10mV at 0.6 V at different temperatures of 

30-80oC, at atmospheric pressure (A), Nyquist equivalent circuit (B). 

Analyzing the impedance data as summarized in Table 1, the electrolyte resistance 

decreases from 0.24 Ohm to ~0.06 Ohm, when the temperature increases from 30
o
C to 

80
o
C. The resistance decrement is reasonable since with the temperature increment proton 

conductivity increases. However, at 70
o
C an increment of electrolyte resistance at 0.12 

Ohm (Fig.7.8 and Table 1), it is observed.  

Consequently, explaining the polarization behavior of MEA; from Fig. 7.8(A) it is 

shown that as the temperature value increases, until 70
o
C, the ohmic losses are reduced, 

since with the temperature increment the proton conductivity is enhanced (Rp is reduced 

to 0.64Ohm). On the other hand the performance loss at 80
o
C, is mainly attributed to the 

low charge transfer due to the adsorbed molecules, as it will be discussed below.  

Table 7. 1: Electrochemical impedance analysis results for H2/O2 fuel cell at 0.6V.   

T (
o
C) Cdl(mF) Rel (Ohm) Rp (Ohm) 

30 184 0.24 2.49 

40 183 0.12 1.81 

50 214 0.10 1.05 

60 239 0.08 0.81 

70 242 0.12 0.64 

80 215 0.06 0.87 

 

From Table 7.1 it is shown that the polarization resistance from 30 to 70
o
C, decreases 

from 2.49 to 0.64 Ohm, indicating the convenience of the charge transfer as the 

Rel 

Cdl 

Rp 

(B) 
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temperature increases. More precisely, the charge transfer arc (kinetic loop or polarization 

resistance) decreases, as the temperature increases from 30 to 70
o
C, while at 80

o
C, the 

kinetic loop increases again. That means that the temperature increment up to 70
o
C 

accelerates charge transfer and when the temperature is 80
o
C, the charge transfer slows 

down. The results are consistent with the fuel cell performance at different temperature 

values (Fig.7.7). The lowest fuel cell’s performance can be mostly attributed to the slow 

charge transfer than to the proton conductivity, as it can be deduced from the results 

reported also in Table 7.2. 

EIS experimental data have to be interpreted by the aid of an equivalent electric circuit 

model. This is a combination of electric and electrochemical elements selected to simulate 

the response of the electrochemical system to the imposition of the excitation signal. 

Diffusive phenomena at the interface electrode/electrolyte are essential for the correct 

operation of a fuel cell, as they are part of the charge transfer reaction, and could give a 

contribution to the total impedance [18]. Anode, cathode and electrolyte should be 

considered as three electric circuits connected in series, however the polymeric membrane 

is generally treated as a resistor (electrolyte resistance, Rel), while being the anode 

reaction (hydrogen oxidation) very faster than the cathode (oxygen reduction), the electric 

circuit of the anode can be neglected and the elements Rct and Cdl are referred only to the 

cathode [19]. On the basis of the above considerations, and taking into account that no 

indication of mass transfer control is observed in EIS spectra, the quantitative analysis of 

experimental data reported in Fig. 7.8 was effected by the equivalent circuit shown in 

Scheme 1.  

The basic equivalent circuit that represents the fuel cell operation is the Randles circuit, 

where Cdl is the double layer capacitance of the catalyst surface, Rel describes the movement 

within a conducting media and illustrates the sum of contribution from contact resistance 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



 
 

Chapter 7: Carbon supported Ultra-low Pt (PdxPty) electrocatalysts preparation, characterization and 

 H2-PEMFC performance 

169

between components and high frequency resistance of the cell components, and Rp is the 

resistance that occurs when electrons transfer at the electrode/electrolyte interface [20]. The 

double layer capacitance is the highest (242 mF, Table 1) at 70
o
C, where it is observed the 

highest fuel cell performance and the lowest charge transfer resistance.   

Accordingly, identical gas feeds (H2/H2) (or symmetrical gas feeding, SYM) in both 

anode and cathode compartments, 80 mL min
-1

, from 30
o
C to 80

o
C was used to 

investigate more thoroughly characteristics of the anodic electrocatalyst (Pd97Pt3/C) [21]. 

This technique gives more kinetic information, providing a specified qualitative and 

quantitative analysis of the fuel cell system as well as leading to a better understanding on 

performance [17]. The reactions occurring in each electrode when the fuel cell is 

symmetrical fed with hydrogen are the following:  

    H22H
+
 + 2e

-
 (anodic reaction) 

2H
+
+ 2e

-
 H2 (cathodic reaction) 
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Figure 7.9:  Membrane electrode assembly impedance plots with H2/H2 feeding (H2: 

80 mLmin
-1

), from 1 mHz– 100 kHz. Ac:10mV at OCV from 30-80
o
C, at atmospheric 

pressure (A), Impedance plot of  30
 o
C (from Fig.(A)) at a higher magnification (B), 

comparison of impedance plots of H2/H2 and H2/O2 (from Fig.(A)) (C). 

Fig.7.9 (A) presents typical Nyquist impedance plots for a symmetrical feeding H2 fuel 

cell at OCV, at different temperatures from 30 to 80
o
C. Fig. 7.9 (B) gives a zoom option 

of the experimental impedance plot at 30
o
C from Fig.7.9(A), in order to form an opinion 

about the shape of the semi-circles. While Fig.7.9(C) compares the resistance of anode 

(H2/H2 feeding) with the total MEA resistance (attributed to cathode, H2/O2 feeding). In 

contrast to the H2/O2 feeding, in the case of H2/H2 feeding, two inter-overlapped semi-

circles are observed; one small at high frequencies and a larger at medium frequencies. At 

very low frequencies there is no observed loop.  

Table 7.2: Electrochemical impedance analysis at different temperature values. 

T (
o
C) Rel (Ohm) Rct (Ohm) Rads (Ohm) 

30 0.20 0.05 0.12 

40 0.17 0.02 0.10 

50 0.18 0.05 0.08 

60 0.25 0.03 0.01 

70 0.20 0.05 0.03 

80 0.13 0.02 0.05 
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As it can be observed from the data analysis (Table 7.2) at high frequency values, the 

electrolyte (membrane) resistance does not increase linearly with the temperature 

increment. The Rel is around 0.13-0.20 Ohm for all the temperature values. Comparing 

the results of the estimated Rel under H2/H2 and H2/O2 feeding from Table 1 and Table 2, 

respectively, it is obvious that when reaction takes place and there is production of water 

at cathode, the membrane is more hydrated and the Rel is much lower.  Except for 30
o
C, 

where the water production is not favored a lot due to the low temperature and so the 

electrolyte resistance is almost 0.20 Ohm in both cases (H2/H2 and H2/O2). As the 

temperature increases, the diameter of the charge transfer and adsorption species loops 

decreases.  

In Fig. 7.9 (C), where the H2/O2 (at 30
o
C) and H2/H2 (from 30 to 80

o
C) are given, it can 

be deduced that the anode contributes a little to the total impedance, at all temperature 

values. Consequently, the impedance from the H2/O2 operation is attributed totally to 

slow ORR at the cathode.  

7.5 Conclusions 

According to the experimental results and the kinetic analysis, the addition of a little 

amount of Pt to pure Pd electrocatalyst enhances electrocatalytic activity towards HOR 

and ORR. More precisely, the exchange current density for HOR was calculated to has 

the following order: Pd98Pt2/C(2.2 mA cm
-2

)>Pd97Pt3/C(1.3mA cm
-2

)>Pd99Pt1/C(1.16 mA 

cm
-2

)>Pd/C (0.62 mA cm
-2

), presenting a volcano-type dependence on Pd loading. 

Among the examined electrocatalysts Pd98Pt2/C and Pd97Pt3/C exhibited better activity for 

HOR at room temperature. However, the increase of temperature favors electrooxidation 

reactions. For this reason in this work the Pd97Pt3/C and Pd98Pt2/C, tested as anode 

electrode in a single hydrogen fuel cells, using commercial Pt/C as cathode electrode. The 

total Pt loading was only 657 μgPt cm
-2

. Increasing the temperature value from 30
o
 to 70

o
C, 
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the power density increased from 75 to 98 mW cm
-2

. However, further temperature 

increment to 80
o
C had a negative effect on fuel cell performance, decreasing the power 

density at ca. 75 mWcm
-2

. According to electrochemical impedance measurements this 

decay can be attributed to the lower membrane conductivity as well as to the slow oxygen 

reduction reaction kinetics. Consequently, Pd can replace at the most percentage the 

platinum electrocatalyst.   
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Water Electrolysis: A Brief literature review 

& 

Electrocatalytic activity of Platinum free (Pd-based) 

electrocatalysts towards hydrogen evolution reaction (HER) 

 

Abstract 

The main subjects of this chapter are: 

A) A brief summary of the fundamentals of water electrolysis and the available 

electrolyzers’ technology. Moreover, the state-of-the-art for the PEM electrolysis 

technologies, establishing PEM electrolysis as a commercially viable hydrogen 

production solution. 

 B) The fabrication and investigation the electrochemical behavior of cathode catalysts 

appropriate for medium- temperature proton exchange membrane (PEM) water 

electrolysis (WE). The electrochemical characterizations were performed using cyclic 

voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance 

spectroscopy (EIS). The results show that incorporation of Ir and Rh in Pd as a binder in 

construction of the electrode, improve the electrocatalytic behavior of palladium for 

proton reduction.  
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8.1 Introduction 

Hydrogen must be produced by means of an energy input, and to date, hydrogen is 

mainly produced by steam reforming natural gas or other fossil fuels, such as propane, 

gasoline, diesel, methanol, or ethanol [1, 2]. This is achieved in a processing device called 

a reformer in which water vapor at high temperature (∼700−1100 °C) is reacted with a 

fossil fuel, in the presence of a metal-based catalyst (usually nickel). However, steam 

reforming of fossil fuels produces low purity hydrogen with a high concentration of 

carbonaceous species such as carbon monoxide. More importantly, steam reforming does 

not relieve dependencies on scarce fossil fuels or reduce their pollutants, ultimately, not 

contributing to the establishment of a “carbon-balanced” energy matrix. One of the 

promising approaches to produce high-quality hydrogen (≈100% hydrogen) is by splitting 

water using electricity (water electrolysis) [3]. 

Water electrolysis is one of the most promising methods for hydrogen production. 

Electrolysis technologies are developed and successfully integrated into renewable and 

hydrogen energy based system [4].  Electrolysis is less efficient than a direct chemical path 

but offers virtually no pollution or toxic byproducts if the electric current is generated using 

renewable energy (wind, solar, geothermal and hydropower) thus making it a very plausible 

option if the efficiency could be increased [3, 5]. The currently established technologies for 

producing hydrogen require significant improvements in their technical and economic 

performance (efficiency and costs) if hydrogen is to be produced for energy use. 

Electrolyzers dissociate water into hydrogen and oxygen gasses by passing an 

electrical current through the water. Electrolysis is not a renewable method because it 

depends on the source of the electricity used in the electrolysis. If electricity can be 

provided by any renewable energy source such as, geothermal, solar, wind energy 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



Chapter 8: Water Electrolysis: A brief literature review & Electrocatalytic activity of Pd-based electrocatalysts 

towards hydrogen evolution reaction (HER) 

179 

sources, the electrolysis generates renewable hydrogen and oxygen. The reaction with the 

thermodynamic energy values is described in Eq. (8.1): 

                                            
                            (8.1) 

 

There are two main distinct water electrolyzer technologies:  i) alkaline electrolysers 

(AE) and ii) acid water electrolyzers. Among acid electrolyzers, proton exchange 

membrane (PEM) electrolyzer being the solid acid membranes is mostly preferred due to 

ease of handling and safety. There are considerable fundamental differences between 

these electrolyzer technologies, but in each case the net chemical effect remains the same 

(i.e. dc electricity + H2O  2H2 + O2) and by definition a water electrolyzer always 

produces hydrogen at twice the volumetric rate as oxygen.  Table 8.1 provides a summary 

of their key attributes [6]. 

Table 8.1: Types of Electrolyzers 

Type Alkaline PEM 

Electrolyte Sodium or potassium 

hydroxide  

Solid polymer membrane 

(usually nafion) 

Transport mechanism Hydroxyl ion, OH
-
(aq) Hydrogen ion (proton) H

+ 

Electrode catalyst Nickel based Platinum/Iridium 

Working Temperature 40-90
o
 50-100

o
 

Cell voltage (V) 1.8–2.4 1.8–2.2 

Power density (mW cm
−2

) <1 <4.4 

Current density (mA cm
−2

) 0.2–0.4 0.6–2.0 

Electricity Heat 
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Alkaline electrolyzers are the most commonly used electrolyzers in the industry. By 

using alkaline electrolyzer 99% purity hydrogen can be obtained, but only with usage of 

another purification unit. This because of high electrolyte vapor alkaline electrolyzer 

suffers from corrosion and only 25-30% weight KOH solution issued as an electrolyte. 

The efficiency of hydrogen production reaches up to ~80%. Alkaline electrolyzer is the 

most effective on low current densities; i.e.ca. 0.3 Amp/cm
2
. On the other hand, the 

lifetime of the electrolyzer is short and is not durable at high temperatures due to highly 

corrosive electrolyte.  

Proton exchange membrane (PEM) water electrolysis is considered as an attractive process 

to accelerate the transition to the hydrogen economy and to develop a hydrogen infrastructure 

network (development of hydrogen re-filling stations for automotive applications using 

electric power stations at night hours and/or renewable energy sources) [7]. Compared to 

the more conventional alkaline process, PEM water electrolysis offers a number of 

significant technical advantages for the production of electrolytic-grade hydrogen: higher 

operating security offering the possibility of producing compressed gases (>200 bar) for 

direct storage with no compressor, higher gas purity (>99.99% for hydrogen) with no 

soda, and long time performance without maintenance. However, the main drawback of 

this technology, which still postpones applications in the industry, is its prohibitive cost, 

which comes mainly from the use of noble metals as electrocatalysts. Typically, platinum is 

used at cathodes for the hydrogen evolution reaction (HER) and iridium (metal or oxides) 

is used at anodes for the oxygen evolution reaction (OER). These noble metals are 

required (i) because they yield the best catalytic activity for the HER and the OER in 

acidic media (typical conversion efficiencies >80% are commonly obtained at 1 A cm
−2

) 

and (ii) because of the strong acidity of the solid electrolyte, which would cause the 

corrosion of non-noble metals. To reduce the cost of PEM cells, different approaches can 
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be followed: (i) a reduction in Pt and Ir loadings (in state-of-the-art electrolyzers, 2–5 

mgcm
-2

 black Pt and Ir are commonly used), (ii) the use of less expensive noble metals 

such as Pd and Rh or (iii) the development of alternative low-cost electrocatalysts based 

on non-noble metals and molecular chemistry [8].  

8.1.1 Proton Exchange Membrane (PEM) Electrolyzer 

The concept of PEM technology (a zero-gap cell using a proton-conducting solid 

polymer electrolyte) was proposed half a century ago, at the dawn of the US space 

program, when new energy management devices operating in a zero-gravity environment 

were needed. At that time, the concept was first used to develop H2/O2 fuel cells and later, 

water electrolyzers. Almost fifty years later, there are still a lot activities on this 

technology which is still considered as a key process for transforming zero-carbon 

electricity sources into the supply of zero-carbon hydrogen and oxygen for miscellaneous 

end-uses [5]. 

Basically water is a reactant and products are hydrogen and oxygen. PEM electrolyzer 

consists of membrane electrode assembly (MEA) which is composite material containing 

solid electrolyte coated with catalysts on each side (it is the medium where the 

electrolysis reaction occurs), gas diffusion layer and electric current collectors. 

The reaction medium is the surfaces of the MEA of the electrolyzer. The electrolyte of 

PEM is a solid perfluorinated membrane (Nafion membrane) which is the electrically 

nonconductive and also physical barrier to both hydrogen and oxygen gases but protons 

pass through the membrane. Both sides of the membrane are coated with noble metals. In 

water electrolysis liquid or gaseous water is fed to the anodic compartment where it is 

oxidized producing oxygen and protons, i.e.: 

                                              
                                                                (8.2) 
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Oxygen evolves in the gaseous phase, whereas the electrons circulate in the external 

circuit and protons cross-over the membrane, reaching the cathodic compartment where 

they are reduced by the electrons coming from the external circuit, thus producing 

hydrogen, as follows: 

                                                                                                                     (8.3) 

This corresponds to the overall decomposition of water into hydrogen and oxygen: 

                                                          
                                                            (8.4) 

with ΔH = 286 kJ and ΔG = 237 kJ under standard conditions. 

This reaction need external energy (ΔH > 0), coming from the external electrical power 

sources. The corresponding theoretical cell voltage can be calculated from ΔG, i.e. Ecell = 

ΔG/2F, giving Ecell = 1.23 V for water electrolysis. The schematic view of the PEM water 

electrolyzer is shown in figure 8.1. 

 
Figure 8.1: Schematic of the Operating Principle of a PEM Electrolyzer. 
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8.1.2 Thermodynamics and kinetics 

The minimum potential difference which must be applied between the two electrodes of an 

electrolyzer is thermodynamically defined in terms of change of the reaction Gibbs free 

energy (3) 

                                                       
  

  
                                                                  (8.5) 

Where                                                                                                                  (8.6) 

μ is chemical potential and ΔG is the Gibbs free energy at standard conditions (25◦C and 

atmospheric pressure) (3) from equations (4) and (5) (Nernst equation): 

                                  
   

  
 

  

  
    

      

    
                                                (8.7) 

Where n the number of electrons involved, F is Faraday’s number (F=96487 C/mol), P is 

partial pressure and α is the activity. E
rev 

measures the difference between the reversible 

potentials of the anode and the cathode (equilibrium cell voltage) which is the lowest 

potential that must be applied for the reaction to happen. Under standard conditions at 25
o
C 

and water in liquid form, ΔG
o
=237,178

  

     , the E
rev

 is calculated to be 1.229V. Equation 

(8.7) shows that E
rev

 is increased by an increase in partial pressure. Moreover, E
rev 

is 

decreased by increasing temperature therefore thermodynamics suggests that the best 

conditions for operating in case of saving energy would be at high temperatures and low 

pressures if water remains in liquid state since at very high temperature (steam water 

electrolysis) the benefit of E
rev

 is quite clear. 

The energy balance for the cell is to be referred to the enthalpy by the following equation [9]:  

                                             ΔG=ΔΗ- TΔS                                                                    (8.8) 
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where ΔH is the enthalpy a measure for the energy required to break and form molecular 

bonds and to bring reactants and products into their reference states and ΔS is the entropy of 

the reaction. The formation equation for ΔG at different temperatures can be expressed as: 

ΔG(T)= −295.6−0.033·T·lnT+2.81·10
−6

·T
2
−12.77·T

−1
+0.38·T (kJ/mole) 

8.2 Electrode reactions in PEM water electrolysis 

8.2.1 The hydrogen evolution reaction (HER) 

The hydrogen evolution reaction (HER) is the main reaction in the water electrolysis 

and has been widely studied on various metals, alloys and oxide films [10]. Noble metals 

are considered as the best candidates for the HER in acidic media [10, 11] due to their 

best catalytic activity and the low corrosion resistance of non-noble metals such as Ni, 

Co, Fe in acidic media. Among noble metals, platinum (Pt) is regarded as an ideal catalyst 

for electrochemical production of hydrogen, but its high cost and scarce resource 

definitely limit its extensive application in HER [12]. An approach to explain the 

particular role of platinum as an electrocatalyst for anodic hydrogen oxidation and 

cathodic hydrogen evolution is correlating by the catalytic activity of different metals for 

this reaction and the strength of the adsorption enthalpy of hydrogen on these metals in 

Figure 8.2 [13]. The electrochemical activity of the hydrogen evolution reaction (HER) 

on different metals can be compared using the energy of the chemisorbed H to the active 

sites. The standard potential of H2 is by definition zero. As a first approximation the 

electrochemical activity of HER on different metals can be compared by a so-called 

”Vulcano-plot”, where log(i0) is related to the bond energy for cathodic release of 

hydrogen H at a given overpotential (kcal/mole). A ”Vulcano-plot” as shown in Figure 

8.2 it can be seen that the metals of intermediate bond-strength energy is the most active 

towards the HER represented by the noble metals [13]. 
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Figure 8.2: Volcano type correlation of catalytic activity of different metals for 

hydrogen evolution reactions in acid solutions [14]. 

For the metals of low bond-strength on the left side of the curve discharge of H with 

lower bond strengths the interaction between adsorbate and metal is too low to allow for 

an effective activation of the H-H bond.  

In most of the early studies, researchers used platinum black as a standard catalyst on 

the cathode side (HER). Later on, due to the experience on the development of catalysts 

for PEM fuel cells, researchers started to use platinum nanoparticles supported on carbon 

black (Pt/C) from different manufacturers (ETEK/BASF, Tanaka, and Johnson & 

Matthey) as their standard catalysts for the HER. However, despite the lower platinum 

loadings compared to the anode side loading, the cathode catalyst still represents a 

considerable portion of the total system cost, especially if degradation or corrosion of the 

carbon support occurs. 

Today, loadings for the cathode side range between 0.5 and 1mg cm
-2

 and further 

reductions will always be desired, with the potential of reaching values below 0.2 mg cm
-

2
. Since 2005, few studies exist attempting to reduce the platinum loadings, improve 

catalysts utilization (homogeneity, particle size), and potentially substitute (creating the 

so-called platinum free catalysts). When studying the cathode catalyst, due to the 
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dominance of the OER, experimentation is usually done in a liquid electrolyte half-cell or 

three electrode apparatus to isolate the contribution of only the cathode. 

8.2.2. The oxygen evolution reaction (OER) 

Among the two half-reactions of water electrolysis, the OER is the most demanding [15]. 

The OER involves the formation of a double O-O bond from two water molecules with the 

simultaneous release of four protons and four electrons [16]. The four protons and four 

electrons are then combined in the overall two-electron, two-proton process of the HER. 

Since it is generally accepted that electron transfers at the interface occur one electron at a 

time, the OER is more kinetically demanding in as much as four (vs two for the HER) charge 

equivalents must be stored and cumulatively discharged toward a productive O-O bond 

forming reaction. In addition, the OER is the first step of water splitting. For these reasons, 

the OER is viewed by consensus to be the key to water splitting.  

Iridium and ruthenium based oxides have been preferred as anode catalysts [17, 18] 

because of their low anodic overvoltage for the oxygen-evolution reaction (OER) at high 

current densities and in the case of iridium oxide long term stability. Although iridium 

oxide is a very good choice of catalyst in terms of stability and overpotential, this material 

poses a significant cost challenge on a large-scale deployment of water electrolysis. For 

PEM electrolysis cells a decrease in the precious metal IrO2 or RuO2 catalyst loading to 

ultra-low levels by the development and processing of improved electrochemically active 

and durable electrocatalysts would significantly decrease the overall capital costs. So 

other metal oxides such as Co-based oxide, Ni-based oxide, Ni-Co oxide and Mn-based 

oxide have been developed [19-22].  

To summarize, the reaction rate of oxygen evolution is determined by the material 

properties of the surface species at the electrode. The volcano plot in figure 8.3 compares the 
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catalytic activity of different oxides. Here, the electrocatalytic activity (measured as anodic 

overpotential) is related to the enthalpy for the oxides to form a higher oxidation state from a 

lower oxidation state. This could be directly related to the M-O bond strength [23]. 

 

Figure 8.3: Volcano-plot of electrocalalytic activity of different oxides in acidic (open 

spheres) and alkaline (filled spheres) solutions.  

The reaction will most likely happen at a surface defect, or an active site, so the 

reaction rate will also depend on the number of available sites. The number of active sites 

is given by the surface area of the catalyst. To get a larger area with the same amount of 

noble metal, the particle size should to be small. 

As previously discussed, Ir (IrO2) is generally recognized as the state-of-the-art for the 

OER in PEM electrolysis. Ru (RuO2) is more active than Ir (IrO2), but the problems 

related to instability (corrosion) limit its use. Until the early 1990s PEM electrolysis 

publications concentrated mainly on the use and understanding of Ru and Ir catalysts, and 

their alloys, for the OER. With the aim of improving efficiency, stability, and reducing 

the costs, researchers in the following years began trying different catalyst alternatives for 

the OER. The first approaches were concentrated on mixing IrO2 with a cheaper “diluent” 

forming a solid solution with less expensive and more durable materials that could be 

easily manufactured. This would considerably reduce the capital costs. In 1995, De Pauli 

and Trasatti [24] prepared mixed oxide layers of SnO2 and IrO2 which were 
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electrochemically characterized in a liquid acidic regime. They found that with only 10% 

Ir, the surface of the SnO2 was almost fully saturated with Ir. 

Currently, Kunta et al. successfully identifies nanostructured fluorine doped IrO2 thin 

film (IrO2:F) as a  promising anode electrocatalyst with the ability to significantly 

improve the electrocatalytic performance and electrochemical stability [25]. It has been 

reported [26-28] that mixed oxides obtained by the addition of cheaper oxides such as 

SnO2, Ta2O5, Nb2O5, TiO2 to active electrocatalyst IrO2 and/or RuO2 (e.g. IrO2–SnO2, 

RuO2–SnO2, IrO2–Ta2O5, IrO2–SnO2–Nb2O5 etc.) would reduce the cost of the noble 

metal loading while maintaining the catalytic activity and electronic conductivity similar 

to the pure noble metal oxide and improve the corrosion property of noble metal oxide 

electrocatalysts. The IrO2-Ta2O5 system is one of the most promising catalysts in different 

electrochemical industries where O2 evolution is the main anodic reaction. Ta2O5 is mixed 

with IrO2 mainly to improve the service life of the latter, which is the active catalyst and 

most expensive component [29]. 

Comparison with base SnO2 and binary SnO2 + IrO2 materials evidences the superior 

properties of the ternary mixtures and the key role of tantalum (even at low molar 

fraction) expanding the surface area, improving the electronic conductivity, increasing the 

charge storage capacitance and promoting the surface enrichment of iridium [30]. 
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8.3 Electrocatalytic activity of Pd-based electrocatalysts 

towards hydrogen evolution reaction (HER) 

8.3.1 Introduction 

Platinum-based catalysts are effective and stable for both hydrogen oxidation reaction 

(HOR) and hydrogen evolution reaction (HER) under acidic conditions as it is found in a 

polymer electrolyte fuel cell or electrolyzer. While platinum is the most extensively used 

noble metal for catalysis at different areas, its high price is a major restriction factor on its 

utility as an electrocatalyst [31]. Much effort has been devoted to minimize the Pt loading 

and to achieve optimum performance [32-37].  

Palladium (Pd), which resembles Pt in many respects, seems to be the most obvious 

substitute for Pt as HER catalyst due to its excellent catalytic capabilities and a relatively 

abundant resource [38]. Palladium and its alloys are classical materials that received 

significant interest in the recent years [39] due to their superior catalytic performance 

towards various chemical and electrochemical reactions such as catalysis, hydrogen 

storage [40] and sensors [41]. Pd-based alloys, on the other hand, offer a class of 

attractive materials for studying metal hydrides because of the high solubility and 

permeability of hydrogen compared to pure Pd as well as the reduced cost if cheaper 

metals are added [42]. Surface modification and alloying are applicable for improvement 

of electrocatalytic performance of Pd catalysts towards HER [43, 44]. Pd alloying with 

other metals could change the electronic structure (electronic effect), crystal lattice 

dimensions (geometric effect), and elastic properties of pure Pd. Pd based has already 

been widely used as the catalyst for HER in alkaline media [45-48], but in acid media 

there are few reports.  
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In this paper, the electrocatalytic activity of different PdRh and PdIr nanostructures 

prepared via a modified pulse-microwave assisted polyol method, was studied toward 

hydrogen evolution reaction in acid solution and compared with pure Pd. The 

electrochemical and catalytic behaviors were investigated using cyclic voltammetry (CV), 

linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS).  

8.3.2 Electrocatalysts preparation 

The examined electrocatalysts were quickly and easily prepared via a modified pulse-

microwave assisted polyol synthesis. In a beaker, the starting precursors (PdCl2•2H2O and 

RhCl3 provided by Strem Chemicals) were well mixed with ethylene glycol (EG) in an 

ultrasonic bath, and then XC-72R carbon black (Cabot Corporation) was added in the 

above mixture. After the adjustment of system’s pH value to 13, by the drop-wise 

addition of 1.0 M NaOH/EG, a well-dispersed slurry was obtained with ultrasonic stirring 

for 60 min. Thereafter, the slurry was microwave-heated in the pulse form 10 s on/10 s 

off for several times. In order to promote the adsorption of the suspended metal 

nanoparticles onto the carbon support, hydrochloric acid was adopted as the 

sedimentation promoter and the solution was re-acidified to a pH value of about 2–4. The 

resulting black solid sample was filtered, washed and dried at 80°C for 10 h in a vacuum 

oven [49]. For the sake of comparison 20 wt% Pd/Vulcan XC-72, 20wt% Rh/Vulcan XC-

72 and 20wt% Ir/Vulcan XC-72 was similarly prepared. 

The thin catalyst film was deposited onto a glassy carbon disk surface with a 

diameter of 3.0 mm. More precisely, a mixture containing 1.95 mg electrocatalyst, 1.8 mL 

ethanol and 0.2 mL Nafion solution (5 wt. %, Dupont Company) was ultrasonicated for 

40 min to obtain a well-dispersed ink. The catalyst ink was then quantitatively (4 μL) 

transferred onto the surface of the glassy carbon electrode and dried under infrared lamp 

to obtain a catalyst thin film.  
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8.3.3 Physicochemical measurements 

All of the prepared electrodes were analyzed by XRD and the resultant diffraction 

patterns were shown in Fig. 8.4. 

 

Figure 8.4: The XRD patterns of (A) PdxIry, (B) PdxRhy catalysts 

In Fig. 8.4 the XRD patterns of the as prepared Pd, Ir, Rh, PdxIry and PdxRhy catalysts 

are schematically presented. As it can be seen except the characteristic peak of Vulcan 

XC-72 at 24.5◦, the 2θ values of four more peaks at 40.07◦, 46.53◦, 68.19◦ and 82.02◦, 

that correspond to face-centered cubic (fcc) crystalline Pd (1 1 0), (1 1 1), (2 0 0), (2 2 0) 

and (3 1 1), respectively are shown. The highest intensity of peak from (1 1 1) plane 

indicates that this is the most exposed face of the PdxIry/C nanoparticles. The peak 

position from (1 1 1) plane of PdxIry/C binary electrocatalysts is between the Pd/C and 

Ir/Cs’ peaks position. In addition, no characteristic peaks related to Ir were observed, 

further supporting that Pd-Ir alloy has been formed via insertion of Ir into Pd lattice. 

Moreover, it is observed that the peaks of the Pd planes in the binary PdxIry/C catalysts are 

higher and sharper than that of the Pd and the Pd(1 1 0) has been disappeared, indicating the 

formation of alloy. Table 8.2 lists the crystallite sizes and the corresponding lattice 

parameters calculated using the Scherrer formula and Bragg equations, respectively [50]. 

All the examined catalysts have almost the same crystallite size (~3.5-4.0nm). 
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Furthermore, the insertion of iridium to palladium seems to contract the crystal, since the 

internal distance of the PdxIry binary electrocatalysts is smaller than pure Pd’s. 

Table 8.2: Physicochemical analysis results. 
Electrode 

(20%wt metal loading) 

Lattice Parameter 

(nm) 

Crystallite Size 

(nm) 

Particles Size 

(nm) 

Pd 0.38615 3.0 4.3±0.3 

Rh/C 0.38456 2.0 3.3±0.3 

PdRh(3:1) 0.38794 ~3.0 4.8±0.3 

PdRh(1:1) 0.38474 3.5 4.4±0.3 

PdRh(1:3) 0.38516 2.0 3.5±0.3 

Ir 0.38448 3.5 5.7±0.3 

PdIr(3:1) 0.38843 3.5 4.5±0.3 

PdIr(1:1) 0.38810 3.0 4.4±0.3 

PdIr(1:3) 0.38503 4.0 5.3±0.3 

The (1 1 1), plane has the largest intensity among the others planes, which grows with 

respect to the corresponding peak of the Pd and Rh catalysts, indicating the effect of 

increased amounts of Rh in the PdxRhy. As it can be seen from Table 8.2, Pd/C has the 

highest lattice parameter (0.38615 nm) and crystallite size (3.0 nm), while the Rh/C the 

lowest one (lattice parameter: 0.38456 nm, crystallite size: 2.0 nm). The formed Pd-Rh 

alloys seem to present lattice parameter values between of the two pure metals, with the 

following order: PdRh(3:1)/C > PdRh(1:3)/C >PdRh(1:1)/C. Thus, the addition of Rh 

contracts the lattice parameter of Pd, decreasing its crystallite size. 

TEM images with the respective particle size distribution histogram of Pd/C, Rh/C and 

PdxRhy catalysts are shown in Fig. 8.5. A remarkably uniform and high dispersion of 

metal particles on the carbon surface is observed concerning all the examined samples. As 

it can also be seen (Table 8.2), the mean particle size was in the following order: Pd3Rh 

(4.8±0.3nm) > PdRh (4.4±0.3nm) > Pd (4.3±0.3) > PdRh3 (3.5±0.3nm) > Rh (3.3±0.3). 
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Figure 8.5: TEM images of (a) Pd, (b) Rh, (c) PdRh3, (d) PdRh, (e)Pd3Rh 

From Fig.8.6 it can be observed that, for Pd, Pd3Ir and PdIr the metallic nanoparticles are 

homogenously dispersed on the carbon support with narrow size distribution in the supported 

catalyst. Ir and PdIr3 have non-spherical morphologies and some larger aggregates were 

observed, but the amount of particles is few. One hundred particles were randomly measured 

to obtain the particle size distribution.  
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Figure 8.6: TEM images and corresponding of (A) Pd/ Vulcan XC-72, (B) Ir/Vulcan 

XC-72, (C) Pd3Ir/Vulcan XC-72, (D) PdIr/Vulcan XC-72, (E) PdIr3/Vulcan XC-72 

8.3.4 Electrochemical characterization 

All electrodes were characterized by cyclic voltammetry (CV) tests. CV curves were 

recorded in the potential range of -400 to +800 mV in Helium purged electrolyte (Fig.1). 

In the cathodic scan, as the high current caused by hydrogen absorption dominates and 

covers the adsorption processes [51]. In the anodic scan, a broad peak due to the 

desorption of hydrogen appears between -300 and 0.0mV on the Pd alloys electrodes. 
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When the Ir, Rh content of the alloy was increased from (3:1) to (1:3) the integrated peak 

intensity for the hydrogen desorption/oxidation (i.e. the discharge) significantly increased. 
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Figure 8.7: Cyclic voltammograms recorded for different compositions in 0.5M 

H2SO4 solution at a scan rate of 50 mV s
-1

. 

For pure Pd the amount of hydrogen desorption decreased. A similar behavior was 

observed for the desorption of hydrogen of Ir, appeared between -300 and 400 mV which is 

also decreased and for Rh which is no hydrogen desorption and absorption. For HER in 

acidic media, there are three major pathways reported in literature. These include the Volmer 

(electrochemical hydrogen adsorption) mechanism where hydronium ion (H3O
+
) is reduced to 

an adsorbed hydrogen atom atom H (ads) Eq. (10) (which later generates molecular hydrogen 

gas). The Heyrovsky mechanism (electrochemical hydrogen desorption) in which the 

hydronium is reduced along with adsorbed hydrogen atoms to generate molecular hydrogen 

directly Eq. (11) and the Tafel mechanism (chemical desorption) in which adsorbed atoms 

(already reduced) form molecular hydrogen Eq. (12) [52]: 

               
                                                                     (8.9)   

                    
                                                         (8.10) 

                                                                                              (8.11) 

The linear potential sweep curves for HER are illustrated in Figure 8.8. This is a 

systematic and effective method to investigate the electrochemical activity of 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228

http://www.sciencedirect.com/science/article/pii/S2211285514200620#eq0005
http://www.sciencedirect.com/science/article/pii/S2211285514200620#eq0010


Chapter 8: Water Electrolysis: A brief literature review & Electrocatalytic activity of Pd-based electrocatalysts 

towards hydrogen evolution reaction (HER) 

196 

electrocatalysts [53]. These curves were recorded from 0.2 to -0.8 Vs. SCE at sweep rate 

of 1mV s
-1

 in 0.5M H2SO4. In the linear potential sweep curves, the cathodic peak current 

that appears from -0.2 V is due to the reduction of adsorbed hydrogen which is then 

followed by absorption and hydrogen evolution currents [54]. It should be noted that at a 

higher scan rate (50 mV s
−1

) absorption current dominates and overlaps with the 

adsorption current [51] (Figure 8.5). However, at the scan rate of 1 mV s
−1

 the adsorption 

peak was separated because absorption current was not so high to cover the adsorption 

current. 
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Figure 8.8: Linear potential sweep curves recorded for different compositions in 

0.5M H2SO4 solution at a scan rate of 1 mV s
-1

. 

As clearly represented in Figure 8.6A the Pd nanoparticles are more inactive towards 

the HER and the Ir nanoparticles show a higher HER activity than the Pd nanoparticles. 

When PdIr alloys are used, the overpotential for the HER shifts to the more positive 

values than when pure Pd is present. The overpotential for the HER for the PdIr (1:1) 

shifts to the more positive values compared to all other cases and exhibits the best HER 

performance. Ir is active toward the HER and needs overpotential of 640 mV to afford 

current density of 10 mA cm
−2

. However, the extent of the positive shift was decreased 

with increasing the Ir content to PdIr(1:3). Similar processes were observed for current of 

adsorption peak for Rh (Figure 8.8B). Rh nanoparticles are more inactive than Pd towards 

the HER, however PdRh alloys shifts to more positive values than pure Pd and pure Rh. 
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In all cases of PdRh alloys need overpotential of 440mV to afford current density of 4 

mA cm
−2

. These results indicate that the presence of both Ir and Rh improves the 

electrocatalytic activity of the Pd nanoparticles towards the HER. 

Fundamental understanding of these special activities is still not well established. 

Nevertheless, it is believed that the change of the lattice constant and electronic structure 

of Pd with the addition of Ir or Rh, improves the electrocatalytic activity of Pd 

nanoparticles towards hydrogen adsorption [54]. 

In order to investigate the electrocatalytic activity of the prepared catalytic coatings, 

Tafel linear polarization measurements were made, and the corresponding 

electrochemical parameters (Tafel slope, transfer coefficient, exchange current density) 

were derived from the recorded curves [55]. Fig. 8.9 shows the Tafel curves recorded in 

0.5M H2SO4 on all the coatings investigated and the calculated kinetic parameters for the 

HER are listed in Table 8.3. 
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Figure 8.9: Tafel plots for HER 

The inherent measure of activity for the HER is the Tafel slope and a lower Tafel slope 

implies fast kinetics. The Tafel curve recorded on Fig. 8.9 described using the Tafel 

equation: 

                                                  ( 
   

       
)                                                        (8.12) 
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where η(V) represents the applied overpotential, i (A cm
−2

) the resulting (measured) 

current, F the Faraday constant (95485 C/mol), R is the gas constant (8.31451 J mol
-1

 K
-1

), 

1-α the cathodic transfer coefficient [56] and the exchange current density 
o

i (A cm
−2

) 

from the intersection point of Tafel plots with the abscissa (log 
o

i ). 

The transfer coefficient 1–α was calculated using the Butler-Volmer equation for the 

limiting case of high overpotential, from the Tafel slope b. According to the Butler – 

Volmer equation, a low charge transfer coefficient 1–α is unfavorable for HER kinetics, 

but as it will be seen below this effect may be offset and exceeded by the consistent 

increase of the exchange current density
o

i . The geometrical interpretation of the transfer 

coefficient led to the idea that 1-a represents a measure of the activated complex 

coordinate in the electric field of the metal-solution interface. 

L.A. Khanova and L.I. Krishtalik have proved that on gold, in sulphuric acid solution, 

Tafel plots present two distinct slopes. The smaller, obtained at low overpotential, 

corresponds to the HER controlled by desorption of the hydrogen atoms, while the larger 

one is due to the mechanism in which the charge transfer is slow step of the cathodic 

process [57]. Therefore, in order to determine kinetic parameters that characterize the 

charge transfer, Tafel slopes were plotted for a limiting domain of high overpotentials. 

The observed Tafel slopes for different PdxIry and PdxRhy electrodes are ranging from 

97 to 209 mV/dec (Table 1). The estimated Tafel slopes are more than the expected 

theoretical value for the HER with the Volmer step (120 mV/dec) as the rate determing 

step (rds) except the Rh catalyst [58]. It should be noticed that obtained Tafel slopes are 

higher in comparison with theoretical value, probably due to the fact that electrode 

surface is covered with thin film of oxides, which causes additional potential drop [59].  
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Table 8.3: Kinetic analysis results for hydrogen evolution reaction 

Electrode 

(20%wt metal loading) 

Tafel slope b 

(mV decade
-1

) 

o
i  

(mA cm
-2

) 
1-a 

Pd/C 148.0 0.01 0.58 

PdIr(3:1)/C 173.0 0.01 0.60 

PdIr(1:1)/C 209.0 0.10 0.68 

PdIr(1:3)/C 179.0 0.03 0.60 

Ir/C 163.0 0.02 0.56 

PdRh(3:1)/C 148.0 0.01 0.58 

 PdRh(1:1)/C 179.0 0.03 0.60 

PdRh(1:3)/C 201.0 0.05 0.66 

 Rh/C 97.0 0.005 0.42 

8.3.5 Electrochemical impedance analysis 

In order to investigate the effect of reduction treatment, we carried out electrochemical 

impedance spectroscopy (EIS) in 0.5M H2SO4. The electrochemical impedance 

spectroscopy (EIS) is a powerful technique to study the electrode/electrolyte interface and 

frequently employed to investigate the HER. Nyquist plots (Z ″ imaginary versus Z ′ real 

part of the impedance), measured at an overpotential of −250 mV on the PdRh and PdIr 

electrodes are shown in Fig. 8.10. Two semicircles were observed in Nyquist for most of 

the catalysts in Figure 8.10A, B.  

The semicircle at high frequencies is attributed to the hydrogen adsorption on the 

electrode surface (hydrogen adsorption resistance - Rad) while the second semicircle at 

low frequencies represents the HER kinetic (charge transfer process) [58]. Fig. 8.10C, 

presents the equivalent circuit compatible with the experimental impedance 

measurements. In this electrical equivalent circuit Rs is the solution resistance, Rct and 

Rad are the charge transfer resistance for HER and hydrogen adsorption resistance. CPE 

is constant phase element. The electrical parameters provided are presented in Table 8.4. 
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Figure 8.10: Nyquist plots for different alloys at 0.35 V in 0.5M H2SO4. 

The constant phase elements (CPE) in the scheme represent the capacitances due to 

hydrogen adsorption and charge transfer processes. The electrical parameters provided by 

CNLS fitting are presented in Table 8.4. It can be seen that for both PdIr and PdRh alloys 

hydrogen adsorption resistance (Rad) decreased with increasing the Ir and Rh content, 

respectively. 

Table 8.4: Equivalent circuit parameters obtained by fitting EIS experimental data 

for PdxRhy and PdxIry alloys. 

Electrode 

(20%wt metal 

loading) 

Rs 

(Ohm cm
-2

) 

Rct 

(Ohm cm
-2

) 

Rad 

(Ohm cm
-2

) 

CPE1 CPE2 

Pd 2.4 5 8.6 0.00080 0.0318 

PdIr(3:1) 4.0 10.9 3.0 0.00046 0.0231 

PdIr(1:1) 1.0 0.3 1.7 0.26601 33.4901 

PdIr(1:3) 4.0 1.4 0.2 0.01431 0.22693 

Ir 1.0 2.4 1.2   

PdRh(3:1) 2.7 1.8 0.8   

PdRh(1:1) 4.6 4.3 2.1 0.00370 0.0586 

PdRh(1:3) 2.9 27.5 1.2 0.00035 0.2797 

Rh 1.0 105.8 0.6 0.00362 0.4560 
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8.4 Conclusion 

The results show that the incorporation of Rh and Ir in Pd, improve the electrocatalytic 

behavior of pure palladium. The linear polarization curves obtained in diluted sulfuric 

acid solution have shown a marked depolarization for the HER in the increased addition 

of Ir and Rh content of the alloy. These results were ascribed to a catalytic effect of Rh 

and Ir content in Pd on the HER. The catalytic effect of the examined electrocatalysts on 

HER was compared using the kinetic parameters that characterize the electrode process. 

Exchange current density 
o

i  and charge transfer coefficient 1–α were determined by the 

Tafel slope method. Among the different tested compositions of PdRh and PdIr, PdIr 

(1:1) and PdRh(1:3) showed the best electrocatalytic behavior toward HER. 

The electrochemical impedance data confirmed the catalytic effect of incorporation of 

Rh and Ir in Pd on the HER, as indicated by the decrease of the charge transfer resistance. 

The lowest charge transfer resistances have been obtained for PdIr(1:1), which are in 

good agreement with the highest values of the exchange current densities. Analyzing the 

values of the exchange current density it can be concluded, that addition of Ir enhances 

noticeably the electrocatalytic activity of Pd, towards HER. More precisely, toward HER 

following the order: PdRh3 ≈ PdRh > Rh > Pd3Rh > Pd exhibiting for the case of PdIr 

exchange current density 0.65mA cm
-2

. 

Based on the results obtained in this study we considered that PdIr codeposits is 

promising electrocatalyst for hydrogen generation which is a prerequisite for further 

investigation as cathodes in PEM.  
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Conclusions and Future Work 

 

This very last part summarizes the results of the research done in the framework of the 

present PhD dissertation. At the same time some outlooks for further continuation of this 

research are provided. 

Fuel cells, which directly convert a fuel’s chemical energy into electricity by 

electrochemical reactions, are a key enabling technology for the transition to a hydrogen-

based economy. Of several different types under development, a polymer electrolyte fuel 

cell (PEMFC) is generally recognized as a future power source for zero-emission 

vehicles. To become commercially viable, however, PEFCs must address several 

technological and economic challenges. The high cost of catalysts due to the exclusive 

use of platinum and platinum-based catalysts in fuel cell electrodes is one such challenge.  

With the exception of Pt, it has been demonstrated that among pure metals, Pd exhibits 

relatively high electrocatalytic activity towards both HOR and ORR. Preparation method 

is also a very important parameter for catalysts’ preparation as it affects their properties 

(lattice parameter, diameter of nanoparticles, catalysts dispersion on the support). In the 

present PhD dissertation was chosen a modified microwave assisted polyol method. 

The metal content in the catalysts is a very important parameter for comparing their 

activity. Consequently, carbon-supported (Vulcan XC-72) Pd, Rh, and PdxRhy (20wt.%, 

x:y=1:1, 3:1, 1:3) electrocatalysts are prepared according a modified pulse-microwave 
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assisted polyol synthesis method and their electrocatalytic activity towards hydrogen 

electrooxidation (HOR) and oxygen reduction (ORR) reactions is investigated. 

Physicochemical characterizations were carried out with the XRD and TEM 

measurements. When a second metal is adopted with palladium a further decrease in the 

particle size of the catalysts could give higher activity, and this part of work is under 

investigation. In general the mean particle size such as extracted from XRD and TEM 

results of the prepared electrocatalysts is ~3nm. Furthermore, according to the 

electrochemical results the addition of Rh can increase the activity of Pd towards 

hydrogen oxidation and oxygen reduction in acid medium with PdRh3/C to exhibit the 

highest activity. Finally, by chronoamperometric measurements, it was found rhodium 

hinders pure palladium from leaching, giving higher stability to Pd’s electrocatalyst. 

The results for the PdxIry (with x:y atomic ratios 3:1, 1:1, 1:3)  showed that the optimum 

for hydrogen electrooxidation exhibited for PdIr and for oxygen reduction for Pd3Ir. HOR 

electrocatalytic activity of Pd-Ir alloy electrodes showed volcano type dependence on 

exchange current density, and the dependence on alloy composition revealed the principal 

role of the electronic effect of Ir–Pd alloys in HOR and ORR. The results imply that the 

high activity of the PdxIry catalysts in HOR and ORR, relies heavily on the electronic 

structure of Ir, which is made favorable by Pd spontaneously adsorbed hydrogen gas in 

the electrocatalytic process. More important and from a practical perspective, we showed 

that it is possible to design electrocatalysts that does not contain platinum but can surpass 

the activity of pure platinum. 

The study of Pd97Pt3/C, Pd98Pt2/C, Pd99Pt1/C and pure Pd/C for the hydrogen oxidation 

(HOR) with the rotating electrode technique showed a volcano-type dependence on Pd 

loading with the exchange current density following the order: Pd98Pt2/C (2.2 mA cm
-2

) 

>Pd97Pt3/C(1.3mA cm
-2

)>Pd99Pt1/C(1.16 mA cm
-2

)>Pd/C (0.62 mA cm
-2

). Among the 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:13:24 EEST - 3.17.174.228



208 

examined electrocatalysts Pd98Pt2/C and Pd97Pt3/C are tested in a single hydrogen proton 

exchange membrane fuel cell as anodes electrodes using commercial Pt/C as cathode 

electrode. The single cell polarization experiments were carried out at different working 

temperatures of 30, 40, 50, 60, 70 and 80
o
C at an atmospheric pressure. The total Pt 

loading was only 657 μgPt cm
-2

. Increasing the temperature value from 30
o
 to 70

o
C, the 

power density increased from 75 to 98 mW cm
-2

. However, further temperature increment 

to 80
o
C had a negative effect on fuel cell performance, decreasing the power density at 

ca. 75 mWcm
-2

. 

The water electrolysis is one of the large-scale industrial methods for hydrogen 

production. The hydrogen evolution reaction (HER) is the main reaction in the water 

electrolysis and has been widely studied on various metals, alloys and oxide films. The 

objective of the present work is to bring down the high materials’ cost of the electrolysis 

system using different compositions of Pd based catalysts. The results demonstrated that 

the incorporation of Rh and Ir in Pd towards the HER improves the electrocatalytic 

behavior of pure palladium. Among the different tested compositions of PdRh and PdIr, 

PdIr (1:1) showed the best electrocatalytic behavior toward HER. 

The results of the present study have been published in refereed journals and 

international conferences, providing some more information about hydrogen 

electrooxidation reaction in acid media over Pd-based electrocatalysts. The recognition of 

some efficient anode and cathode electrocatalysts which constitutes the first step of 

design and development of a fuel cell has been accomplished. However, the following 

issues must be taken into account in the future: i) optimization of the preparation method 

for forming nanoparticles with lower diameter, for hydrogen PEM fuel cells. 
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