

2

3

Δπραξηζηίεο

Ύζηεξα από κία πνξεία πέληε εηώλ ζην Τκήκα Μεραληθώλ Η/Υ Τειεπηθνηλσληώλ

θαη Γηθηύσλ ηνπ Παλεπηζηεκίνπ Θεζζαιίαο, νινθιεξώλσ ηηο πξνπηπρηαθέο κνπ

ζπνπδέο κε ηελ εθπόλεζε ηεο παξνύζαο δηπισκαηηθήο εξγαζίαο

Θα ήζεια αξρηθά λα επραξηζηήζσ ζεξκά ηνλ θ. Κνξάθε Αζαλάζην, θαζεγεηή ηνπ

Τκήκαηνο Μεραληθώλ Η/Υ Τειεπηθνηλσληώλ θαη Γηθηύσλ, γηα ηελ απεξηόξηζηε

ππνζηήξημε πνπ κνπ πξνζέθεξε όιν απηό ην δηάζηεκα, θαζώο θαη γηα ηηο ρξήζηκεο

ζπκβνπιέο θαη ππνδείμεηο ηνπ θαηά ηελ εθπόλεζε ηεο δηπισκαηηθήο κνπ εξγαζίαο.

Δπραξηζηώ επίζεο ηνλ επηβιέπνληα ηεο εξγαζίαο κνπ απηήο, Καζεγεηή ηνπ

Τκήκαηνο Μεραληθώλ Η/Υ Τειεπηθνηλσληώλ θαη Γηθηύσλ, θ. Λέαλδξν Ταζηνύια

θαη ηνλ ζπλεπηβιέπνληα Λέθηνξα ηνπ Τκήκαηνο Μεραληθώλ Η/Υ

Τειεπηθνηλσληώλ θαη Γηθηύσλ θ. Αληώλην Αξγπξίνπ γηα ηελ πνιύηηκε

θαζνδήγεζή ηνπο.

Από θαξδηάο ζα ήζεια λα επραξηζηήζσ ηνλ θ. Ισάλλε Καδδαξίδε θαη ηνλ θ.

Φαξίιαν Νηαβή, κεηαπηπρηαθνύο θνηηεηέο ηνπ Τκήκαηνο Μεραληθώλ Η/Υ

Τειεπηθνηλσληώλ θαη Γηθηύσλ, ηνλ θ. Γεκήηξην Γηάηζην, ππνςήθην Γηδάθηνξα ηνπ

Τκήκαηνο Μεραληθώλ Η/Υ Τειεπηθνηλσληώλ θαη Γηθηύσλ θαη γεληθόηεξα όια ηα

παηδηά ηνπ NITLab γηα ηελ πνιύηηκε ζπλδξνκή ηνπο ζην λα θέξσ εηο πέξαο ηελ

δηπισκαηηθή κνπ εξγαζία.

Τέινο, επραξηζηώ ζεξκά από θαξδηάο ηελ νηθνγέλεηα κνπ γηα ηελ ακέξηζηε

ζπκπαξάζηαζε πνπ κνπ παξείρε όια απηά ηα ρξόληα γηα ηελ επηηπρεκέλε

νινθιήξσζε ησλ ζπνπδώλ κνπ.

Σηελ νηθνγέλεηα κνπ

4

CONTENTS

Abstract…………………………………………………………………..…….7

1. Introduction……………………………………………………..............8

 1.1 The meaning of a testbed………………………………………8

 1.2 The concept of testbed federation……………………………9

 1.3 The NITOS Wireless Testbed…………………………………11

 1.4 cOntrol and Management Framework (OMF)……………14

2. NITOS CMC Service……………………………………………………16

 2.1 Chassis Manager Card (CM Card.)…..…………………..16

 2.2 NITOS CMC Service architecture.…...……………………18

 2.3 Running the NITOS CMC Service…..……………………..19

3. OMF sensor measurement service………..………………………..20

 3.1 Expanding the usage of CMC……..………………………..20

 3.2 OMF Measure Service Architecture….……………………22

 3.3 How to call the Service……………….……………………..24

4. Slice-based Federation Architecture (SFA)….……………………30

 4.1 SFA – A big step in federation………....………..….………30

 4.2 The role of SFA…………………………....……………………32

5

 4.3 Scheduler API……………………………………………………..33

 4.4 How SFA scheduler works………………………………………34

 4.5 The methods of the Scheduler API…………………….………35

 4.6 Scheduler API standardization………………………………..36

 4.7 Results of the Scheduler API until now….…………………..37

5. REFERENCES…………………………………………………………..38

6

ΠΕΡΙΛΗΨΗ

Η ζπγθεθξηκέλε Γηπισκαηηθή Eξγαζία αλαθέξεηαη ζηε ζρεδίαζε θαη αλάπηπμε

κεζόδσλ ζπλεξγαηηθόηεηαο γηα ηε δηαρείξηζε εξεπλεηηθώλ πεηξακαηηθώλ

δηαηάμεσλ. Τν project πεξηγξάθεηαη ζε ηέζζεξα (4) κέξε.

Τν πξώην κέξνο ηεο Γηπισκαηηθήο απνηειεί κία εηζαγσγή ζηε γεληθή ηδέα ηνπ ηη

είλαη έλα testbed. Σηε ζπλέρεηα γίλεηαη κηα αλαθνξά ζην ηη είλαη ην Federation

αλάκεζα ζηα testbeds θαη πνηά είλαη ε ρξεζηκόηεηά ηνπ. Έπεηηα αθνινπζεί κηα

ζύληνκε πεξηγξαθή ηνπ NITOS testbed ζην νπνίν έγηλε ην ζεκαληηθόηεξν θνκκάηη

ηεο δνπιεηάο κνπ. Δπηπιένλ ππάξρεη κηα κηθξή εηζαγσγή ζην Control and

Managment Framework (OMF).

Σην δεύηεξν κέξνο παξνπζηάδσ ην NITOS CMC Service, έλα OMF Service πνπ

δίλεη ηε δπλαηόηεηα λα αλνίγνπκε λα θιείλνπκε ή λα θάλνπκε reset έλαλ θόκβν.

Παξάιιεια πεξηγξάθσ ηε ρξήζε ησλ Chassis Manager Cards (CM cards).

Σην ηξίην κέξνο παξνπζηάδσ ην measure Service, έλα OMF Service πνπ

ζρεδηάζακε θαη πινπνηήζακε ώζηε λα παίξλνπκε πεξηβαιινληηθέο κεηξήζεηο από

ηνπο αηζζεηήξεο πνπ έρνπκε βάιεη ζηηο CM θάξηεο. Τν Service καο δίλεη αθόκα ηε

δπλαηόηεηα λα γλσξίδνπκε ηελ θαηάζηαζε ηνπ θόκβνπ (on/off) αιιά θαη ηελ

θαηαλάισζε ελέξγεηάο ηνπ.

Τέινο, ζην ηέηαξην κέξνο πεξηγξάθσ ην SFA γεληθά θαη ην Scheduler API πνπ

έρνπκε πινπνηήζεη. Τν SFA είλαη ην κεγαιύηεξν βήκα ζηνλ ηνκέα ηνπ federation

κεηαμύ ησλ testbeds κέρξη ζήκεξα. Τν Scheduler API πνπ πινπνηήζακε απνηειεί

ην κέζνλ ην νπνίν ζα ρξεζηκνπνηνύλ ηα testbed πνπ επηζπκνύλ λα είλαη ζπκβαηά

κε ην SFA πξνθεηκέλνπ λα κπνξεί λα γίλεη εμεξεύλεζε θαη δέζκεπζε ησλ

resources ηνπο.

7

ABSTRACT

The present Final Project Dissertation - Thesis deals with the design and

development of federation methods on networking testbeds. The project is

analyzed in four (4) parts.

The first part of the project consists of an introduction about the main idea of a

testbed. After that, there is a chapter that outlines the federation generally and its

necessity. Also I describe the NITOS testbed where I have done the most important

part of my work. Additional there is a sort introduction in Control and

Management Framework (OMF).

In the second part, I present the NITOS CMC Service, an OMF Service that is used

to set on, off or resets the nodes of the testbed. Also I describe the usage of Chassis

Manager Cards (CM cards).

At the third part, I present the measure Service, another OMF Service that is used

to take environmental measurements from the sensors attached on the CM cards.

The service is also used to take the node’s state (on/off) and to measure its power

consumption.

Finally, in the fourth part I describe generally the SFA and the Scheduler API we

have implemented. SFA is the biggest step in federation between testbeds until

now. The Scheduler API that we developed is the way that the testbed that want to

be SFA compatible, will use for browsing and reservation of their resources.

8

1. Introduction

1.1 The meaning of a testbed

The last few years, the term of testbed is mentioned more and more. On the other

hand, many are the people who refer to testbeds as the future form of the Internet.

But exactly what is a testbed?

A testbed is a platform for experimentation of large development projects. It

consists of software, hardware and networking components that allow the

experimenter to design, execute and measure an experiment. Testbeds allow for

rigorous, transparent and replicable testing of scientific theories, computational

tools and also new technologies. The term is used across many disciplines to

describe a development environment that is shielded from the hazards of testing in

a live or production environment. It is a method of testing a particular module

(function, class, or library) in an isolated fashion. Also, a testbed is used as a proof

of concept or when a new module is tested apart from the program or the system it

will be added to later.

A testbed has many types of persons who engaged with it.

The first one is its owner. The owner of a testbed may be a single person, a

corporation or the State. The owner ensures the availability of the resources

(nodes, hardware, cables, the building etc.) that the testbed needs for a normal

operation.

In the other hand, there are the developers. A developer cares about the

appropriate usage of the testbed’s components. Also, develops new functionalities

and tools that experimenters may need, or according to the increasing of

technology, in order to make the testbed more and more powerful.

Finally, there are the testbed users. A user usually is an experimenter that wants to

use the testbed to simulate the true environment conditions under which, his

product will operate. In this way, he will confirm its right or wrong operation. A

user may be a student that works on a laboratory or a researcher.

10

Thanks to the state-of-the-art Slice Federation Architecture (SFA), testbeds are

now able to federate with PlanetLab-based testbeds, OMF-based testbeds and with

some SFA back-end programming testbeds based upon other technologies.

Summarizing therefore the main reasons for federation are:

 Develop and promote a testbed
The testbed will open to the thousands of registered users who are already

part of the global network, and gain access to the expertise of the

community.

 Offer new facilities to the users

Through federation the users will gain access to new testbeds. For example,

PlanetLab Europe's geographically distributed facility gives access to over

1000 machines located all over the world, while the NITOS wireless

testbed's rich features offer extensive resources to users, including mobile

nodes, cameras, sensors and software-radio boards. In addition, the

ETOMIC measurement infrastructure offers high-precision measurements -

synchronized active network measurements on the order of tens of

nanoseconds.

 Join a community of testbed developers
When a testbed is connected, anyone who uses it, is also connected to a

research community that includes some of the world's leading experts in

computer networking, publishing in the world's top conferences and

journals. Also, he will have the opportunity to participate in forums and

discussions that will shape the future of networking testbeds.

11

 1.3 The NITOS Wireless Testbed

The most important part of my work based on NITOS testbed. CERTH has

developed a wireless testbed called Network Implementation Testbed using Open

Source platforms (NITOS). NITOS is a testbed offered by NITLab and consists of

50 wireless nodes based on open source software. The testbed is outdoor and uses a

wireless layout of nodes which can be used for measurements and experiments in a

real time environment. That gives the opportunity to observe the results of an

experiment out of the “secured” environment of a simulation program and to take

conclusions in real dangers or problems that the final product maybe deal with.

24

 3.3 How to call the Service

There are three different ways to call and execute a measure service. The first one

is to be utilized by a testbed user directly by invoking it in a browser or using the

curl command. For example a user can send the following HTTP request

http://nitlab.inf.uth.gr:5054/measure/temperature?hrn=omf.nitos.node019

and the result will be like the figure bellow:

http://nitlab.inf.uth.gr:5054/measure/temperature?hrn=omf.nitos.node019

34

Certainly, all the actions above will be executing according to pre-agreed policies.

Moreover, it is a secured API. That means that only users that we have authorized

are able to use it. The authorization is carried out by providing a password key to

the user that we want to use our API.

The communication between Scheduler API and Generic SFA Wrapper effects

according to the XMLRPC protocol.

Scheduler API is an XMLRPC server that listens to a specific port and serves all

the possible requests from the Generic SFA Wrapper. On the other hand, except

from the Generic SFA Wrapper, any XMLRPC client could make calls to this API

and get responses, if it is allowed to.

 4.4 How SFA scheduler works

The Generic SFA Wrapper will query the API about the availability of resources

and will make requests for resource allocation on slices, according to the requests

that an experiment done using the plugin of MySlice. Then, the API receives all

the above requests. Then it speaks with the database by sending appropriate SQL

queries.

However, it has some sophisticated components like policies and a conflict

resolution algorithm. For example, When two users want a resource at the same

time then, the scheduler should check who are these users and if they have equal

rights. If so, then a conflict resolution algorithm should give the resource to only

one user. Until now, as a first approach we should implement just a FIFO

reservation scheme. On the other hand, if a user wants a specific topology and

some of these nodes are already reserved, the API reserves the other available

nodes from the list.

35

 4.5 The methods of the Scheduler API

There are four (4) different types of methods

 Get methods – Give the oportunity to know all the available information of

the testbed

 Add methods – Add new information to the testbed

 Delete methods – Delete useless informations from the testbed

 Update methods – Update testbed’s current information

Analytically, the methods we have implemented are:

GET methods:

 getNodes

 getChannels

 getTestbedInfo

 getReservedNodes

 getReservedChannels

 getSlices

 getUsers

ADD methods:

 reserveNodes

 reserveChannels

 addUser

 addUserToSlice

 addUserKey

 addSlice

 addNodeaddChannel

36

DELETE methods:

 deleteKey

 deleteNode

 deleteUser

 deleteUserFromSlice

 deleteSlice

 deleteChannel

 releaseNodes

 releaseChannels

UPDATE methods:

 updateNode

 updateChannel

 updateUser

 updateSlice

 updateReservedNodes

 updateReservedChannels

 4.6 Scheduler API standardization

The Scheduler API that I described, we tried to make it as generic as we can. As

NITOS is the first wireless testbed that used the meaning of the scheduler and the

meaning of the slice, we had the experience required to make a generic API and we

achieved it. The Scheduler API will be standardized as the API that will be used

from all the testbeds that will be SFA compatible.

37

 4.7 Results of the Scheduler API until now

Generally, the meaning of SFA is very new. NITOS is the first OMF-SFA

compatible testbed.

Right now the Scheduler API is running in our server and anyone who has an

authorized XMLRPC client can use it to observe the available resources of NITOS,

to make a reservation and run an experiment.

The first results of its usage will be presented at the forthcoming review of the

OpenLab project in 15
th

 of October.

38

5. REFERENCES

[1] NITOS testbed:

http://www.nitlab.inf.uth.gr/NITlab/index.php/testbed

[2] OMF – A Control and Management Framework for Networking Testbed

http://www.omf.mytestbed.net/projects/omf/wiki/Introduction

[3] The Generic SFA Wrapper

http://www.sfawrap.info/deploying/docs

[4] “Slice (-based) Federation Architecture - SFA Tutorial v0.1” Panayotis

(Panos) Antoniadis Jordan Augé, Marco Bicudo, Timur Friedman (UPMC) Thierry

Parmentelat (INRIA), Tony Mack (Princeton)

[5] NITLab Chassis Manager Cards

http://www.nitlab.inf.uth.gr/NITlab/index.php/testbed/hardware/cm-card

[6] "Integrating sensor measurements through CM cards as an OMF service", in

the proceedings of TridentCom 2012, Thessaloniki, Greece, June 2012 V.

Maglogiannis, D. Giatsios, G. Kazdaridis, T. Korakis, I. Koutsopoulos and L.

Tassiulas.

http://nitlab.inf.uth.gr/NITlab/papers/Integrating%20sensor%20measurements%20t

hrough%20CM%20cards%20as%20an%20OMF%20service.pdf

[7] OMF : A Control and Management Framework for Networking Testbeds, T.

Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar. ACM SIGOPS Operating

Systems Review, Vol. 43, pp. 5459, 2010.

http://www.nitlab.inf.uth.gr/NITlab/index.php/testbed
http://www.omf.mytestbed.net/projects/omf/wiki/Introduction
http://www.sfawrap.info/deploying/docs
http://www.nitlab.inf.uth.gr/NITlab/index.php/testbed/hardware/cm-card
http://nitlab.inf.uth.gr/NITlab/papers/Integrating%20sensor%20measurements%20through%20CM%20cards%20as%20an%20OMF%20service.pdf
http://nitlab.inf.uth.gr/NITlab/papers/Integrating%20sensor%20measurements%20through%20CM%20cards%20as%20an%20OMF%20service.pdf

