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Abstract

As computer systems become more pervasive in our everyday life and the number of
infrastructure that depends on them increases, simultaneously does the necessity of thor-
ough evaluation and verification of them before the manufacturing phase. For example,
a mission critical system (e.g. aviation or automotive braking control) needs to be first
well-defined and has its robustness verified through extensive simulations, otherwise a
possible error could result in a catastrophic failure. In addition, the necessity for solving
increasingly complex problems and coping with the demand of more resources, has led
to the implementation of parallel, non deterministic, distributed systems. In order to
ease the study and design of such systems, mathematical modeling languages have been
constructed. One such language that meets broad acceptance in the scientific community
and is widely used in research tools is Petri Nets. Petri Nets can be used for the sys-
tems’ evaluation through Model Checking ; the exhaustive analysis of a system for certain
properties and specifications.

In this diploma thesis we focus on the optimization of a performance modeling tool,
GreatSPN. GreatSPN was developed with the collaboration of two Departments : the
Electronic Department of the Technical University of Turin and the Department of In-
formatics of the University of Turin, in the early ’80s. In order to improve execution
time, diminish memory footprint, as well as reduce the number of the nodes of the Deci-
sion Diagram that is created through the generation of its reachability set, we exploit a
structural property of Petri Nets. Furthermore, since different input, results in different
complexity, it is of high importance to render the tool user-input independent. In that
direction we propose a new heuristic algorithm to approach an optimal solution in a cost
efficient manner. The proposed algorithm is evaluated by extending the existing source
base of GreatSPN and by studying the behavior of distributed systems per Petri Nets.
The systems are described in Non Stochastic Petri Nets. Likewise, the properties needed
to be evaluated are expressed in Computational Tree Logic (CTL), a compatible language
to the operation of the tool, for the verification of the necessary system’s specifications.
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Chapter 1

Petri Nets

1.1 Introduction

As the problems we try to solve become more complex and demand for more process-
ing power and resources, the computers that are used to solve them have evolved from
sequential computing machines to parallel, distributed, non-deterministic systems. Their
data flow depends entirely on the events that occur , synchronous or not, in order to
change their current state. Systems that depend on the condition of a state and on the
events that will change it are called Discrete Events Dynamic Systems (DEDS). Math-
ematical modeling languages have been introduced in order to ease the study of DEDS
systems; one such language [2] is Petri Nets. Petri Nets [14]can provide a precise descrip-
tion of complex systems and also by exploiting their structure, more information for the
behavior of the system is supplied, i.e. the existence of a deadlock. An additional advan-
tage is that the analysis techniques of Petri Nets depend on the user’s preferences and
skills. Petri Nets were first introduced by Carl Adam Petri on his Ph.D thesis[19], [20].
Different types of Petri Nets have been introduced to help with the analysis demands of
diverse systems. Stochastic Petri Nets [18] are Petri Nets where the delays of the firing
of the transitions are random variables according to a negative exponential probability
density function. Generalized Stochastic Petri Nets are similar to the Stochastic Petri
Nets with the addition of the existence of immediate transitions (transition with zero fir-
ing delay).Ordinary Petri Nets are characterized by the multiplicity of the input/output
arrows that can only be zero or one. Colored Petri Nets [18] permit the existence of dis-
tinguished tokens, the diversity of which is declared by a color; each color represents a
group of any kind of information. In this thesis we focus on the study of Non Stochastic
Petri Nets.

1.2 Petri Nets Definition

Petri Nets are based on a bipartite graph; a graph which consists of two disjoint sets
(P∩T = ∅) and each edge can connect an element from one set to an element from the
other set. Two elements from the same set can not be connected and odd circles are not
permitted. More formally a Petri Net is a six tuple { P, T, F, W, H } where :

� P symbolizes the places of a Petri Net;i.e the one of the disjoint sets and each place

6



Figure 1.1: Bipartite Graph

represents the condition of the system and are illustrated by circles

� T symbolizes the transitions of a Petri Net; i.e the second set. Each transition
represents the events that change the state of the system and are illustrated by
rectangles

� F ⊆ (P×T)∪(T×P) is the set of directed arcs that connect each place to a transition
and vice versa

� W the function that assigns to each arc an integer which declares the multiplicity or
the weight of each arc, W: F→ N, an arc without an assigned number is considered
as the multiplicity of the arc is 1

� H symbolizes the inhibitor arcs. Inhibitors are illustrated with an arc, at the end
of which there is a circle.

Figure 1.2: A Petri Net with an input inhibitor arc on transition T1

1.3 Petri Net System Definition

In order to describe the activities of the system on a Petri Net it is mandatory to
represent them in a graphical way too. Each activity is represented by a token, depicted

7



by a dot. The function that assigns in each place a positive number of tokens is called
Marking. Graphically the tokens are dots that are contained inside the circle that depicts
the place.

m : P → N+

A Petri Net with a fixed initial marking is called a Petri Net system [14]. Summing
the two definitions above, a Petri Net system is characterized by its static structure and
by its initial marking M0; the marking that is assigned on the initial state of the system.
So a more complete definition of a Petri Net is

{ P, T, F, W, H, M0 }

Figure 1.3: A Petri Net with its initial marking

1.4 Enabling and firing a transition

1.4.1 The enabling of a transition without an input inhibitor
arcs

In order to study the different states that a Petri Net can meet it is necessary to de-
fine the role of the transitions that cause the state changes. A transition is enabled if
and only if the number of tokens of the incoming places is equal or greater than the
weight/multiplicity of the incoming arcs,that is:

∀p∈P: M(p)≥W(p,t),where t∈T

1.4.2 The firing of a transition

The firing of a transition tends to change the state of a Petri Net. The firing causes the
removal of the number of tokens ,that is assigned at the input arc, from the input places
and adds the number of token assigned in the output arc of the transition in the output
place. There are two different types of transitions: the immediate transitions that fire
with zero delay and the timed transitions which on Stochastic Petri Net systems fire with
a negative exponential delay. The transitions are depicted as shown on Figures 1.5, 1.6.

8



Figure 1.4: a)Transition T1 is enable b)Transition T1 is not enable, both Petri Nets are
with no input inhibitor arcs in T1

Figure 1.5: a)An immediate transition b) A timed transition

1.4.3 The enabling of a transition with an input inhibitor arc

By default an inhibitor arc, as its name declares, searches for no tokens in a place, thus
the enabling of a transition with an input inhibitor arc has an additional rule. More
specifically, a transition is enabled if and only if the number of tokens of the incoming
places is equal to or greater than the weight/multiplicity of the incoming arcs, and the
number of tokens of the incoming place is less than the weight/multiplicity of the incoming
inhibitor arc in a transition , i.e.

∀p∈P: M(p)≥W(p,t),where t∈T AND M(p)�H(p,t)

The firing of a transition independently of the type of the input arcs evokes the exact
same movements of tokens. Since the behavior of a Petri Net is nondeterministic, multiple
different transitions may be enable at the same time, from which any one may fire. The
sequence of transitions that fire {σ} in order to approach all the reachable states is not
known a priori.

1.5 State space analysis techniques

There are numerous analysis techniques for Petri Nets,each one more suitable for systems
that comply with the definition of different type of Petri Nets. In this thesis we choose
to concentrate on reachability analysis techniques. Reachability analysis techniques are

9



Figure 1.6: a)The transition T1 is enable b)The transition T1 fires and causes the change
of the state of the Petri Net, M0[T1>M1

Figure 1.7: a)Transition T1 is enable b)Transition T1 is not enable, both Petri Nets are
with an inhibitor input arc in T1

based on the reachability set of a system and the information provided by the reachability
graph on both of which we will elaborate in the next paragraphs.This specific technique
is [14] considered strong since it provides the complete behavior of a system through the
reachability set and reachability graph.

1.5.1 Reachability Set and Reachability Graph

Reachability Set (RS) Given an initial marking of a Petri Net system, M0, the reach-
ability set is denoted as RS(M0) and it denotes the smallest set of markings on a given
Petri Nets system such that

M0∈RS(M0) M1 ∈ RS(M0) ∧ ∃t ∈ T : M1[t >M2 ⇒M2 ∈ RS(M0)
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The RS is built incrementally starting from M0, the initial marking, and after the firing of
a transition or a set of transitions a new marking M1 is added on the RS(M0). Iteratively
every new marking after the transitions’/transition’s firings is added on the RS, creating
the reachability set of the system. Once a marking Mi is already in RS it must not
be included in successive iterations. The reachability set contains no information about
the firing of the transitions that change the state of a system, which leads to the new
marking. The algorithm that builds the RS terminates if the RS is finite.

Reachability Graph (RG) The Reachability Graph as its name declares is a labeled
directed graph whose set of nodes is RS, and the set of arcs declares the transitions that
cause the change of state of a Petri Net system and lead to each new marking. More
formally the set of arcs denotes

A⊆RS×RS×T < Mi,Mj, t >⇔Mi[t>Mj

At each iteration and for each reachable marking the algorithm contracting the reacha-
bility graph adds one arc labeled with the transition, in the set A. When the reachability
set is finite, then the reachability graph is also finite. Figure 1.8 below, for K=2 and
initial marking M0={2p1+p5}, shows the reachability graph of the readers and writers
Petri Net system [6]. The nodes declare the reachability set, all reachable markings from
the initial marking M0, and the arcs are labeled with the transition that leads from one
marking to another.We borrow the two following Figures 1.8 and 1.9 from [14] so as to
show the reachability graph from a larger that a 5-place Petri Net system, which we have
not seen so far.

Figure 1.8: The read and writers Petri Net system

1.5.2 Explicit and Symbolic analysis techniques

The Explicit generation technique[9] of the reachability set of a system adds in
each step a new state. The disadvantage of this analysis technique is that the memory
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footprint increases linearly to the number of states. To avoid the linear increment of
memory footprint another more ”proper” technique is introduced,the symbolic generation
technique. Symbolic analysis adds set of states to the reachability set, and that is how
the word ”proper” is justified since the Petri Net systems we focus on the analysis of
the reachability set consist of sets of places in each marking. In this direction we will
introduce in detail Decision Diagrams, which are used to represent in a compact way the
reachability set for the study/examination of the systems.

Figure 1.9: The reachability graph of the read and writers Petri Net system

1.6 Properties of the Petri Net systems

Introduction Petri Nets offer a number of properties which are associated with con-
current, parallel systems. There are two type [16] of properties, the Behavioral Properties
and the Structural Properties. The first type of properties depend entirely on the initial
marking of the Petri Net, whilst the second ones depend only on the structure of the
Petri Net.

1.6.1 Behavioral Properties

There are some basic behavioral properties [16],[14] which aid in the analysis of the
system and the determination of its specifications. These are Reachability, Boundness,
Deadlock and Reversibility. A detailed description of each property follows.
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Reachability A marking Mi is said to be reachable by another marking Mi−1 after
the firing of a transition ti or after the firing of a sequence of transitions {σ}. The
reachable marking is denoted by Mi−1 [t >Mi and Mi[{σ} >Mi, respectively. The reachable
marking declares the new state of the system. We can use this properties to discover if
the Petri Net will ever be in a desired or undesired state. Let us take for example the
Petri Net in Figure 1.5a. In this case we only have one transition that can fire. The initial
marking of the system is M0 = { 2p1 + 2p2}and as we have already said the transition
is enabled so it may fire. After the firing of the transition T1 the system is transformed
to its new state that is shown in Figure 1.5b. The new reachable marking is M1 = { 1p1
+ 2p3 }; i.e. according to what we have already said M0 [ T1 >M1.

Boundness A Petri Net is said to be k-bounded if the number of tokens in all places
is less than or equal to the finite number denoted by k. For every arbitrary sequence of
transitions firings the number of tokens must not exceed the number k in all reachable
markings. A Petri Net that is 1-bounded is called a safe Petri Net. A k-bounded Petri
Net guarantees a finite reachability set which ease its study, since the new states of the
net are not infinite. In the present thesis we focus on the study of bounded Petri Nets.

Deadlock A Petri Net has a deadlock if and only if there is a subset of places Pi⊆P
that once they become unmarked, they stay unmarked for the rest of the execution time.
In particular, a deadlock is the subset of places such that the set of its input transitions
is a subset of the set of its output transitions. Figure 1.10 shows a Petri Net that has
deadlock. As we can see both transitions {T1,T2}, since they are enabled, fire, and the
input places {P2,P3} become unmarked. Thus, due to the structure of the system none
of the transitions will be enabled again and the Petri Net has a deadlock. It is clear that
the set of its input transitions (T1) is a subset of the set of its output transitions (T1,T2).

Reversibility A Petri Net is reversible if and only if from any marking, m∈RS(M0)
the initial marking is reachable from m. This means that from every reachable marking
we can always get back to the initial state of the Petri Net. A Petri Net is reversible if
and only if

Mi∈RS(M0) and M0∈RS(Mi).

1.6.2 Structural Properties

As was stated earlier a structural property depends only on the structure of a Petri
Net. Two basic structural properties are Place-invariant (P-invariant) and Transition-
invariant (T-invariant). As an invariant we denote an assertion that is true in all the
reachable states of a system.

Place-invariant A P-invariant is an independent variable that demonstrates a set
of places in which the sum of the tokens is stable independently of the firing sequence {σ
} of the transitions.
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Figure 1.10: A Petri Net with deadlock

Transition-invariant A T-invariant is a variable that demonstrates a set of the
transitions after the firing in which we end up on the initial marking/state of the system.

Structural properties will play a crucial role on this diploma thesis as will be demon-
strated below. Before we proceed on the work that was implemented on this thesis it is
necessary to make the reader familiar with some formal definitions that are useful for the
comprehension of our contribution.

1.7 Tool:GreatSPN

GreatSPN is a performance modeling tool that was built in Turin in the early ’80s.
The tool is the result of the collaboration of two Universities, the University of Turin and
the Technical University of Turin [18]. GreatSPN offers a wide variety of solvers for the
study of Petri Nets that we have already mentioned. In addition it offers a graphical user
interface (GUI) through which Petri Nets are built graphically. All the experiments that
are described later on were implemented solely on the GreatSPN tool.
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Chapter 2

Decision Diagrams

Introduction

Decision diagrams [11] are directed acyclic graphs which consist of two types of
nodes, terminal and non terminal nodes, and edges. A Decision Diagram encodes the
type of function

f : (S1 × S2 × ...× Sn) → {0.1}

The sets Sis are called Domains and are defined over state variables of the system
(x1,...,xn) , and each edge, labeled by a possible value, leads from one state of the system
to the other. Every non terminal node can have as many output edges as the range of
the values of the state variables, though the nodes can’t have duplicate outputs. The
terminal nodes can be numbered with {0,1}, which declares the value of the represented
function. Starting from the root of the diagram and following the edges to the terminal
nodes,through a path that the numerical input assert, we resolve the function to its final
result.

A Decision Diagram is referred to as a Binary Decision Diagram (BDD) if and only if
all the domains are equivalent S1 = S2=...=Sn and the ascertained number of its state
variables is x1=x2=...=xn={0,1}, accrediting to a digital function.

On the contrary, we refer to a Multi-valued Decision Diagram (MDD) when the max-
imum scope of each domain value is {0,1,...,n}. Note that in MDDs each domain may
conclude a different range of values. Hence, each domain is expressible by state variable
Si={xi} and each state variable assumes a finite number of values xi={0,1,...,k-1}. From
now on we will refer to the state variable of decision diagram as a node, in order to focus
on the physical structure of the diagram rather than the mathematical one.

2.1 Binary Decision Diagram (BDD)

2.1.1 Definition

Binary Decision Diagrams were first introduced by Aker [3].
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A Binary Decision Diagram:

� consists of two types of nodes, terminal and non terminal

� the range of the values for each node is 0,1

� the terminal nodes are in 0 level, and the non terminal are among
max level ≥ non terminal nodes level ≥ 1

� for each possible assigned value each node has an outgoing edge pointing to the
node’s child, in the next-lower level of the diagram.

� each node at a level encodes the Shannon expansion theorem [22]

F(x1,...,xi,...,xn) =x̄i*F(...,xi=0,...) + xi*F(...,xi=1,...)

the function assigns to each variable, recursively, both the valid values, in order to
obtain the function’s F(x1,...,xi,...,xn) numerical result.

Figure 2.1: Representation of F(x1,...,xi,...,xn) function into a BDD

In consideration of making the diagrams easier for the readers, instead of declaring
the value of each edge in the the diagram we will represent the 0 value with a dashed
arrow and the value 1 with a consecutive arrow.

2.1.2 Isomorphic trees, redundant nodes and variable ordering
on a Binary Decision Diagram

The number of the nodes of a BDD, i.e its size, representing a function F is growing
exponentially [3] with the number of the variables. In the worst case the diagram will
have 2n−1 nodes. From this point of view, the use of a BDD does not seem useful at all,
since for functions with more than 5 variables, the size of its representing diagram will
be large enough to be manipulated efficiently. For example, the function
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F(x1,...,x8) = (x1 ∧ x2) ∨(x3 ∧ x4)∨(x5 ∧ x6)∨(x7 ∧ x8) needs 28 − 1 = 255 nodes

A number which declares no significant difference to the size of a Karnaugh map or a
truth table representing the same function. Nevertheless, the size of a binary decision
diagram is changeable
alterable.By taking advantage of the isomorphic trees and the redundant nodes that
appear in the graphical representation we can create smaller decision diagrams. As well,
also variable order affects the size of the decision diagrams.

Isomorphic subtrees Two subtrees on a binary decision diagram are called iso-
morphic [11] if the set of nodes (S1,S2) in each tree encodes the same function, fS1 =fS2 .
Two isomorphic trees have exactly the same structure and end up in the same terminal
nodes. For this reason we can merge them into one subtree and traverse the edge from
the previous node of one isomorphic to the remaining one in the diagram.

As we can see in the Figure 2.2 on the left image four subtrees compose the binary
decision diagram that encodes a function f, two of which, the red ones are isomorphic
(fS1 =fS2). After their merging the final diagram we acquire is the one in the right side
of the image.A procedure that leads to a smaller BDD, a Merged BDD.

Figure 2.2: Merging of two isomorphic subtrees

Redundant nodes Redundant nodes [11] are called the non terminal ones that
their descriptive function doesn’t depend on the value of its variable and the value of
its descendant nodes. The output of the path that is led from a redundant node xi

is independent of the values of the nodes (xi+1,...,xn). The redundant nodes can be
eliminated since no new information is provided for the function’s interpretation.
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The Figure 2.3 shows the function that describes the AND gate,

f =x1 ∧x2

As we observe the output of the function if x1 =0 doesn’t depend on the value of x2. Any
value that can be assigned in the variable x2 doesn’t change the numerical result of f. In
this case we can eliminate the left x2 node and connect directly x1 to the terminal node
0, as it is shown on the example below.After the nodes’ elimination we manage to create
a smaller BDD, a Reduced BDD.

Figure 2.3: A reduced BDD representing the function f = ( x1 ∧ x2 )

Variable ordering The ordering of the variables,i.e. in which level of the decision
diagram each variable appears, is also crucial for the diagram’s size. We can observe that
different variable ordering can lead to a smaller or a bigger BDD. The Figure 2.4 shows
the BDD representation of the function

f1= (x1∧x2)∨(x3∧x4)∨(x5∧x6)

for two different variable orderings. It is noticeable that even though the function consists
of 6 variables, with random variable ordering we can accumulate a decision diagram with
14 nodes as the left image of the figure shows. Nonetheless, we can create a BDD with
less than a half of the nodes with a totally different ordering as the right image shows.

In order to make the use of the BDDs efficient it is important to approach the best
variable ordering as far as the number of nodes that consists the diagram is concerned.
However, finding the optimal variable ordering is an NP-complete problem [7]. Hence,
it is important to approach the the best ordering through heuristic algorithms. As the
number of variables grows, so does the complexity for discovering a good variable order.

18



2.2 Multi-valued Decision Diagram (MDD)

2.2.1 Definition

Multi-valued Decision Diagrams are a natural extension of Binary Decision Diagrams.
The need for extending the structure and the rules that govern the Binary Decision Dia-
grams, is for describing more complex functions, where the scope of numeric assignment
on the variables or the set of variables is : {0,1,...,k-1}. MDD is a directed acyclic graph
[9] which encodes a function f : {0,1,...,k-1}L → {0,1}.

More precise:

� consists of two types of nodes, terminal and non terminal

� the range of the values for terminal nodes is 0,1

� non terminal nodes can be evaluated among 0,1,...,k-1

� the terminal nodes are in 0 level, and the non terminal are among
max level ≥ non terminal nodes level ≥ 1

� for each possible assigned value each node has an outgoing edge pointing to the
node’s child, in the next level of the diagram.

� each node at a level encodes the characteristic function υp, recursively

vp(x1, ..., xn) =

{
p level = 0
vp[xi(x1, ..., xn) level > 0

2.2.2 Isomorphic subtrees, Redundant nodes and Variable or-
dering on a Multi-valued Decision Diagram

Since MDDs are a natural extension of BDDs, MDDs inherit [11] the above properties
that were just described for binary decision diagrams. The only difference with the
BDDs is that we obtain smaller MDDs by exploiting the isomorphic trees and not by
exploiting the redundant nodes. It is proved [10] that by eliminating the nodes on this
type of decision diagrams it is not guaranteed that we will receive an MDD with a smaller
number of nodes. However, the merge of isomorphic subtrees guarantees a smaller MDD.
In Petri Nets, and specifically on GreatSPN [8],[18] tool we use the MDDs to encode the
reachability set of the Petri Net systems.

2.2.3 Encoding a set on an Multi-valued Desicion Diagram

In consideration of understanding the representation of a set into an MDD, it is oblig-
atory to do so with an example. We can assume that the set to be expressed in a decision
diagram is shown on the Figure 2.7. From the definition of the decision diagrams, it is
stated that the expression of the function is : S1 × ... × Sn. As we can observe in the
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Figure 2.4: Representation of F(S1,...,Si,...,Sn) function into an MDD

example given we have three domains where each one of them declares a state variable.
S1 = x1, S2 = x2 and finally S3 = x3. Each state variable is covered by a finite number
of values, x1={0,1,2}, x2={0,1,2} and x3={0,1}.

The order of the domain plays a crucial role on the size of the MDD. For the example
we consider the order x1¿x2¿x3. We create the MDD top-bottom. Starting for each value
of x1 we continue to the next domain’s valued, guided by the known states that the
function recognizes, and we recursively, apply the characteristic function, we formerly
presented, to built the decision diagram.Each output edge from a node connects the
whole next domain not only the node of the domain that the arrows are shown that they
are attached to.The set of states that the decision diagram in Figure 2.6 recognizes is
S={000 001 010 011 020 021 101 121 210 220}

Figure 2.6: MDD encodes the set S
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Figure 2.5: a)Represents the BDD of the function f1 for the valuable order
x1>x3>x5>x2>x4>x6 b) Encodes the BDD for the same function with the order
x1>x2>x3>x4>x5>x6.

Specifically, in the tool GreatSPN in order to observe the behavior of a Petri Net
we choose the symbolic state-space analysis as we have previously declared. We encode
the system’s reachability set into an L-level MDD. L declares the number of levels,i.e
the number of domains in the constructed MDD. Each domain on the MDD contains
all the possible reachable markings that the Petri Net meets. Each marking is a state
variable and the number of places that appear in the Petri Net declares the maximum
value of the state variables. The function that describes the {σ} sequence of transition
firing is also encoded on an MDD. Particularly, in a 2L-level MDD. The number of
levels needed to characterize the diagram is double due to the description of the Next-
state function that this diagram represents.It concludes all the reachable markings and
the next state/marking of each reachable one explaining the double size of the decision
diagram.
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Chapter 3

Verification of the systems

Introduction The field of verification; the evaluation of a product, a system or a
service whether they meet the required specifications for their manufacturing purposes.
The verification of the systems has met great acceptance and it is widely used, after
performance errors that occurred on systems which were already in the market, were
discovered. The drawback of an error found after the sell of the product is that costs
at each manufacturing company millions of dollars, an amount of money that no firm
would like to mislay. A very famous error example was the floating point unit on the
Intel P5 Pentium that was manufactured in 1994 [13]. The unit could calculate in the
wrong way 1 out of 9 billion actions, and the error was obvious only after the 4 decimal
numbers. Nevertheless, the 4 digital numbers that for the simple users are of no significant
importance, for bankers or researchers that had to deal with the accuracy of their results
(pharmacists, mathematicians) this kind of error is of great importance. For the history,
the error was found by the Professor Nicely [17].

3.1 Formal Verification

Introduction Formal Verification [15] is the procedure of proving whether a system is
correct or not, through mathematical methods. The correctness stands for the approving
of a system that does meet the specifications and functionality that was built for. Formal
verification is ” preferred” to simulations, considering that a mathematical proof provides
certainty on the evaluation of a system.This leads to the avoidance of any possible human
omission that could affect the assessment of a system. There are three formal verification
techniques : Equivalence checking, Model checking, Theorem proving.

3.1.1 Formal Verification Techniques

Equivalence checking [15] is used to assert whether two similar systems are equal or
not. It is the most appropriate technique for combinational circuits. The similarity of
the circuits is evaluated through boolean expressions, directing to the comparison of the
BDDs with interpreting the circuits. The second technique is Model checking [15] which
is used to analyze if a system meets certain properties and specifications. This method
is more suitable for transition systems and automata. And the last technique Theorem
Proving [15] asserts the definiteness of systems specifications through a theorem’s proof.
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The drawback of this method, though it is the most powerful, is that it needs very high
educated human resources.
We focus on the examination of the behavior of a Petri Net, a transition system, with
the use of the most efficient for our purpose technique, Model checking.

3.2 Model Checking - Verification Technique of Great-

SPN

For the reasons that we have already expressed GreatSPN uses the method of model
checking to evaluate the properties that the each system meets too. Two logics are used
to express the properties for evaluation:Linear Temporal Logic and Computational Tree
Logic.

3.2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic [21] is a logic time that dependents on the events of a system.
LTL encodes atomic formulas in order to determine if a possible event with eventually
happen in the future or eventually will not happen. Provided that the formula which is
to be checked is φ the operators of the linear temporal logic are

� Xφ, the formula will be true in the next time slot

� ψUφ, the formula φ will be definitely true in the future and surely before ψ

Any other formula with different notation in LTL can be expressed using the main
operators of the logic. Two additional operators that occur of the main ones are

� Fφ, the formula will be true some time slot in the future,Fφ = [TRUE U φ]

� Gφ, the formula will be true globally, in every single time slot, Gφ = F φ

The Linear Temporal Logic is also compatible with the use of all logical operators :
∧(and), ∨(or), and ¬(not). The encoding of the above LTL operators is shown in figure
below.

3.2.2 Computational Tree Logic (CTL)

Computational Tree Logic [24] is also a temporal logic, used to express the properties for
non deterministic system behavior. The logic’s structure is tree-like and it is used to check
the specifications as far as the flow information of the system described is concerned. The
tree-like structure determines the different path in the future which may or may not be
verified. Under this characteristics CTL is claimed to be the most suitable expressive
language for model checkers. The systems that model checkers study can have more than
one behavior for each time slot, thus the tree-like structure provides more information
for the property than the linear logic may provide. To form an expression in CTL also
the operators of LTL are required.
The main operators of CTL are:
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Figure 3.1: a)Xφ , b)Fφ, c)Gφ, d)ψUφ

� A (Xφ, Fφ, Gφ, ψUφ), the formula must be true along all (∀) paths on the tree
structure

� E (Xφ, Fφ, Gφ, ψUφ), the formula must be true in at least (∃) one path on the
tree structure

The formulas interpretations are shown on figure Figure 3.2 and 3.3. The red nodes
on the images represent the formula φ and the green ones the formula ψ.

Figure 3.2: a)AXφ , b)AFφ, c)AGφ, d)A(ψUφ)
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In GreatSPN tool systems are described via Petri Nets, i.e. transition system. The
most suitable formal verification method to evaluate properties encoded in Petri Nets is
model checking and specifically through the CTL expressions.

Figure 3.3: a)EXφ , b)EFφ, c)EGφ, d)E(ψUφ)
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Chapter 4

Exploiting P-invariants

4.1 Checking the competitiveness of the tool between

the old and the new version of GreatSPN

Our first target was to check the competitiveness of GreatSPN between the old and
the new version of the tool. The last update was done before February 2012 and its
correctness was not checked. To do so, we used three proposed Petri Net systems of the
MCC contest [1] and three proposed properties, to check the systems’ verification and
simultaneously the tool’s reliability. The three Petri Net systems we implemented were
1)The Kanban Model 2)The Flexible Manufacturing Model (FMS) 3)The MAPK model
and the properties to be evaluated were respectively 1)The non safety of the system 2)The
existence of Deadlock 3)The reversibility of the system

4.1.1 The comparison of the two different versions of the tool

The Kanban Model models a programming system that helps at deciding what product
should be manufactured, when and in what quantity should be produced. The Flexible
Manufacturing System is a fault tolerant system, that allows the system to react in case of
desirable and undesirable changes that may occur. And the last model MAPK describes
a biochemical reaction, Mitogen-Activated Protein Kinage. The graphical representation
of the model is described on the following three figures.
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Figure 4.1: The Kanban model

The description of the behavioral properties As it is already mentioned, the
properties that their correctness should be checked are expressed in the computational
tree logic as it is shown below

� Non safety property : ∀p ∈ P,AGm(p) > 1, i.e. all places cannot have more than
one token in each reachable marking

� Deadlock property : AFdeadlock,i.e. if there is a subset of places where once they
are unmarked they will always be unmarked

� Reversibility property : AGEF (M0), i.e. if from each reachable marking the initial
marking is recovered
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Figure 4.3: The MAPK model

4.1.2 The understanding of the results of the comparison be-
tween the two version

The results The experiments were implemented in GreatSPN and in bounded Petri
Net systems. Before we proceed it is important to declare that the order of the variables
is exactly the same in the both versions of the tool. GreatSPN is strongly attach to
the input, since the order of the places on the MDD is the same order that the user
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declares during the building of the Petri Net system via GUI. For this reason we build
the Petri Net systems on the exact same order. The maximum number of tokens each
time is equal to the largest multiplicity of a place on a Petri Net system.Starting from
the initial marking and adding each time 5 tokens up to 30-35 token for each model, we
study the behavior of the systems in both versions of the tool. We use bounded Petri
Net systems to create a finite RS which leads to a finite RG. Below, the table provides
in detail the discrepancy as far as time execution, time for the RS built,evaluation time
for each property, the number of nodes on the MDD and the memory footprint. In the
proceeding tables the variable Bound, declares the maximum number of tokens in each
reachable marking, RS Time Gen, declares the timed needed for the generation of the
reachability set and it is counted in seconds, as the Eval. Time which is the demanding
time for the evaluation of the CTL property. Pro. Eval. is the proprty’s evaluation, and
it can only be {TRUE, FALSE}, #Nodes is the number of nodes of the created MDD,
Mem. Use and Mem. All. is the memory used for each execution of the tool and the
memory allocation during each experiment, respectively. Both are calculated in bytes.

The Kanban model The initial marking for the Kanban model is : M0 = {5P1 +
5P2 + 5P3 + 5P4} . The tables that follow depict the numeric results between the two
versions of GreatSPN.

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0 2.55E+006 TRUE 0.01 1,460 4.08E+004 9.71E+004
10 0.01 1.01E+009 TRUE 0.03 3,705 1.30E+005 2.59E+005
15 0.04 4.70E+010 TRUE 0.04 7,000 2.97E+005 4.59E+005
20 0.09 8.05E+011 TRUE 0.1 11,353 5.67E+005 8.95E+005
25 0.17 7.68E+012 TRUE 0.16 16,740 9.59E+005 1.43E+006
30 0.27 4.99E+013 TRUE 0.23 23,193 1.50E+006 2.15E+006
35 0.43 2.46E+014 TRUE 0.33 30,680 2.21E+006 3.05E+006

Table 4.1: Non safety Property for Kanban Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.01 2.55E+006 TRUE 0.01 1.476 4.14E+004 9.71E+004
10 0.01 1.01E+009 TRUE 0.02 3.721 1.31E+005 2.59E+005
15 0.04 4.70E+010 TRUE 0.07 7.016 2.98E+005 4.59E+005
20 0.08 8.05E+011 TRUE 0.1 11.361 5.67E+005 8.95E+005
25 0.16 7.68E+012 TRUE 0.19 16.756 9.61E+005 1.43E+006
30 0.28 4.99E+013 TRUE 0.31 23.201 1.50E+006 2.15E+006
35 0.43 2.46E+014 TRUE 0.4 30.696 2.22E+006 3.05E+006

Table 4.2: Non safety Property for Kanban Model- Old version of the tool
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For the Kanban model and regarding the non safety property, we can mark that though
the time for RS generation is better in the old version of the tool, in the new one it
appears that we gain better time in the evaluation time of the property. Still the memory
allocation, the memory used and the number of nodes on the MDD is exactly the same
in both version of GreatSPN. In both versions the maximum number of tokens is 35.

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.01 2.55E+006 FALSE 0.01 471 1.31E+004 7.96E+004
10 0.01 1.01E+009 FALSE 0.01 1,588 5.50E+004 1.32E+005
15 0.04 4.70E+010 FALSE 0.04 3,264 1.37E+005 2.37E+005
20 0.08 8.05E+011 FALSE 0.09 5,397 2.66E+005 4.59E+005
25 0.17 7.68E+012 FALSE 0.12 6,888 3.83E+005 6.22E+005
30 0.27 4.99E+013 FALSE 0.22 11,887 7.66E+005 1.31E+006
35 0.44 2.46E+014 FALSE 0.35 14,108 9.93E+005 1.35E+006

Table 4.3: Deadlock Property for Kanban Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0 2.55E+006 FALSE 0.01 565 1.56E+004 8.17E+004
10 0.02 1.01E+009 FALSE 0.02 1.685 5.89E+004 1.42E+005
15 0.04 4.70E+010 FALSE 0.05 3.405 1.44E+005 2.37E+005
20 0.08 8.05E+011 FALSE 0.08 5.725 2.85E+005 4.59E+005
25 0.16 7.68E+012 FALSE 0.15 8.645 4.95E+005 7.48E+005
30 0.27 4.99E+013 FALSE 0.21 12.165 7.88E+005 1.31E+006
35 0.44 2.46E+014 FALSE 0.33 16.285 1.18E+006 1.82E+006

Table 4.4: Deadlock Property for Kanban Model- Old version of the tool

Observing the results for the deadlock property, it is apparent that there is no significant
difference neither in time nor or memory footprint. The two different versions of the tool
have the same behavior for the Kanban Model and the deadlock property. In both versions
the maximum number of tokens studied are 35.
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Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.01 2.55E+006 TRUE 0.2 18,039 5.11E+005 9.12E+005
10 0.01 1.01E+009 TRUE 2.33 107,863 3.87E+006 6.75E+006
15 0.04 4.70E+010 TRUE 9.14 385,143 1.67E+007 2.65E+007
20 0.07 8.05E+011 TRUE 30.45 807,172 4.03E+007 6.27E+007
25 0.17 7.68E+012 TRUE 70.09 1,611,212 9.31E+007 1.34E+008

Table 4.5: Reversibility Property for Kanban Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.01 2.55E+006 TRUE 0.2 22.846 6.45E+005 1.18E+006
10 0.01 1.01E+009 TRUE 3.98 223.798 7.90E+006 1.28E+007
15 0.03 4.70E+010 TRUE 76.51 1.815.202 6.80E+007 1.41E+008

Table 4.6: Reversibility Property for Kanban Model- Old version of the tool

In this property it is clear that the new version of the tool is more powerful since it can
perform the evaluation of the property in the Kanban model for a bound of 25 tokens,
instead of 15 tokens that can perform the old version of the tool. For 20 maximum tokens
the old version of the tool crashes.

The Flexible Manufacturing Model (FMS) The initial marking for the FMS
model is : M0 = {5P1 + 5P2 + 5P3 + 3M1 + 1M2} the behavior of the tool is shown on
the following tables

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.07 2.90E+006 TRUE 0.1 19,588 5.26E+005 1.00E+006
10 0.82 2.50E+009 TRUE 1.1 132,138 4.20E+006 6.67E+006
15 3.45 2.17E+011 TRUE 3.78 414,229 1.51E+007 2.50E+007
20 9.91 6.03E+012 TRUE 10.13 944,965 3.90E+007 5.81E+007
25 23.36 8.54E+013 TRUE 21.61 1,803,184 8.28E+007 1.30E+008
30 49.05 7.74E+014 TRUE 40.36 3,067,639 1.55E+008 2.38E+008
35 86.84 5.09E+015 TRUE 77.75 4,817,109 2.67E+008 3.78E+008

Table 4.7: Non Safety Property for FMS Model- New version of the tool
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Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.07 2.90E+006 TRUE 0.1 19.729 5.34E+005 9.92E+005
10 0.67 2.50E+009 TRUE 0.87 128.683 4.12E+06 6.53E+006
15 2.83 2.17E+011 TRUE 3.46 404.163 1.48E+07 2.46E+007
20 8.19 6.03E+012 TRUE 9.04 925.343 3.84E+07 5.72E+007
25 19.22 8.54E+013 TRUE 18.49 1.771.023 8.17E+07 1.29E+008
30 38.56 7.74E+014 TRUE 36.54 3.019.953 1.54E+08 2.36E+008
35 0.46 5.09E+015 TRUE 75.62 4.750.883 2.64E+08 3.74E+008

Table 4.8: Non Safety Property for FMS Model- Old version of the tool

Observing the results we notice that the old version of the tool offers better time results
in the generation of the RS and in memory use.

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.08 2.90E+006 FALSE 0.09 10.808 2.93E+005 5.19E+005
10 0.8 2.50E+009 FALSE 0.89 64.367 2.06E+006 3.69E+006
15 3.45 2.17E+011 FALSE 3.56 203.271 7.53E+006 1.33E+007
20 9.91 6.03E+012 FALSE 9.53 437.929 1.83E+007 2.85E+007
25 23.87 8.54E+013 FALSE 21.55 817.226 3.87E+007 6.08E+007
30 49.28 7.74E+014 FALSE 42.22 1.604.184 8.19E+007 1.29E+008
35 87.06 5.09E+015 FALSE 70.91 2.414.959 1.35E+008 2.12E+008

Table 4.9: Deadlock Property for FMS Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.09 2.90E+006 FALSE 0.09 11.597 3.13E+005 5.31E+005
10 0.74 2.50E+009 FALSE 0.69 74.807 2.38E+006 4.06E+006
15 3.05 2.17E+011 FALSE 2.63 234.692 8.57E+006 1.39E+007
20 8.6 6.03E+012 FALSE 7.42 536.252 2.21E+007 3.46E+007
25 21.91 8.54E+013 FALSE 17.45 1.024.487 4.69E+007 7.33E+007
30 45.94 7.74E+014 FALSE 33.77 1.744.397 8.79E+007 1.33E+008
35 82.62 5.09E+015 FALSE 63.95 2.268.408 1.23E+008 1.88E+008

Table 4.10: Deadlock Property for FMS Model- New version of the tool

For the deadlock property on the same model the older version seems to have a better
reaction as time is concerned, either for the time needed for the RS generation or for
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the time needed for the property’s evaluation. The new version of the tool has a better
behavior in memory used and memory allocation for the property’s performance.

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.08 2.90E+006 FALSE 0.11 14,629 3.96E+005 7.24E+005
10 0.79 2.50E+009 FALSE 1.11 89,254 2.86E+006 5.11E+006
15 3.55 2.17E+011 FALSE 4.08 245,989 9.17E+006 1.58E+007
20 9.99 6.03E+012 FALSE 11.05 581,844 2.44E+007 3.77E+007
25 24.04 8.54E+013 FALSE 24.5 1,082,733 5.08E+007 8.12E+007
30 50.51 7.74E+014 FALSE 50.12 1,765,746 9.22E+007 1.48E+008
35 87.57 5.09E+015 FALSE 89.81 2,704,339 1.55E+008 2.47E+008

Table 4.11: Reversibility Property for FMS Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

5 0.08 2.90E+006 FALSE 0.49 46.034 1.29E+006 2.35E+006
10 0.72 2.50E+009 FALSE 58.49 2.301.029 7.11E+007 1.38E+008

Table 4.12: Reversibility Property for FMS Model- Old version of the tool

In the reversibility property the new version has a better execution since it performs
for all possible initial markings instead of the old version of the tool that crashes after
the initial marking has a bound of 10 tokens.

Mitogen Activated Protein Kinage model (MAPK) The initial marking for
the MAPK model is : M0 = {2RaGTP + 4MEK + 6Phase1 + 4Phase2 + 6Phase3 +
4MEK + 6ERK + 8Raf} .The behavior of the tool for the three properties is shown on
the following tables

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

8 0.21 1.93E+010 TRUE 0.01 3.622 1.34E+005 3.17E+005
13 0.99 3.98E+013 TRUE 0.05 11.835 5.54E+005 1.14E+006
18 2.52 6.71E+015 TRUE 0.11 29.809 1.69E+006 2.88E+006
23 5.91 3.36E+017 TRUE 0.21 53.49 3.62E+006 7.03E+006
28 10.98 7.99E+018 TRUE 0.36 114.298 8.87E+006 1.41E+007
33 20.88 1.15E+020 TRUE 0.55 169.238 1.46E+007 2.25E+007
38 35.85 1.15E+021 TRUE 0.83 274.762 2.68E+007 3.87E+007

Table 4.13: Non Safety Property for MAPK Model- New version of the tool
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Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

8 0.08 1.93E+010 TRUE 0.03 3.552 1.31E+005 3.01E+005
13 0.46 3.98E+013 TRUE 0.06 13.282 6.24E+005 1.09E+006
18 1.72 6.71E+015 TRUE 0.14 32.962 1.88E+006 3.14E+006
23 4.06 3.36E+017 TRUE 0.28 66.092 4.42E+006 7.11E+006
28 9.11 7.99E+018 TRUE 0.57 116.172 8.92E+006 1.41E+007
33 20.29 1.15E+020 TRUE 0.95 186.712 1.62E+007 2.25E+007
38 32.25 1.15E+021 TRUE 0.89 281.192 2.72E+007 4.34E+007

Table 4.14: Non Safety Property for MAPK Model- Old version of the tool

In this model the most observing differences appear on the time generation of the RS,
which is better in the old version and on the time of the property’s evaluation, that is
better on the new version.

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

8 0.23 1.93E+010 FALSE 0.01 3.622 1.34E+005 2.95E+005
13 0.98 3.98E+013 FALSE 0.07 11.835 5.54E+005 1.10E+006
18 2.56 6.71E+015 FALSE 0.17 29.809 1.69E+006 2.84E+006
23 5.81 3.36E+017 FALSE 0.34 53.491 3.62E+006 6.81E+006
28 10.84 7.99E+018 FALSE 0.59 114.298 8.87E+006 1.39E+007
33 20.84 1.15E+020 FALSE 1.01 169.238 1.46E+007 2.18E+007
38 35.04 1.15E+021 FALSE 1.5 274.762 2.68E+007 3.77E+007

Table 4.15: Deadlock Property for MAPK Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

8 0.09 1.93E+010 FALSE 0.03 3.552 1.31E+005 2.80E+005
13 0.45 3.98E+013 FALSE 0.07 13.282 6.24E+005 1.05E+006
18 1.76 6.71E+015 FALSE 0.21 32.962 1.88E+006 3.11E+006
23 4.62 3.36E+017 FALSE 0.31 66.092 4.42E+006 6.95E+006
28 9.13 7.99E+018 FALSE 0.78 116.172 8.92E+006 1.39E+007
33 19.99 1.15E+020 FALSE 0.91 186.712 1.62E+007 2.18E+007
38 37.4 1.15E+021 FALSE 1.75 281.192 2.72E+007 4.24E+007

Table 4.16: Deadlock Property for MAPK Model- Old version of the tool

The results in this case are mixed, in the sense that for an initial marking the time for
the evaluation of the property might be better in the old version, and for another might
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be better in the new version. The same is shown also for the memory mapping and the
memory allocation. The only different consistency is about the time generation of the
RS which much better in the older version of the tool.

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

8 0.23 1.93E+010 FALSE 10.59 351.199 1.41E+007 2.37E+007

Table 4.17: Reversibility Property for MAPK Model- New version of the tool

Bound RS
Time
Gen.

RS Size Prop.Eval. Eval.Time #Nodes Mem.Use Mem.All.

8 0.08 1.93E+010 FALSE 10.84 506.916 2.03E+007 3.29E+007
13 0.44 3.98E+013 FALSE 24.35 852.443 4.28E+007 6.19E+007

Table 4.18: Reversibility Property for MAPK Model- Old version of the tool

In the reversibility property the problem is that the tool crashes too quickly and we can
not have a clear idea for which version the results are better either on time calculation
or on memory footprint.

Driven by the inconsistency of the behavior of the tool, since for all the above Petri Net
systems the behavior was not stable for either one of the version, we decided to focus on
making the tool more efficient. Our first aim is to try to minimize the number of nodes
of the MDD used to describe the RS, which will lead to smaller memory footprint, which
might lead to better time results. Additionally, since the variable ordering on the MDD
is strongly connected to the user, we will aim at doing the tool user-input independent.As
stated before the problem of the optimal ordering of an MDD is an NP-complete problem
[7], thus we will try to approach the optimal solution proposing an heuristic algorithm.

4.2 Reordering of the Places

Based on [12], [10], [23] we decided to focus on the information provided by the func-
tional dependencies of the Petri Net systems to built smaller MDDs. Since merging the
nodes of an MDD guarantees smaller number of nodes, rather than eliminating them
[10], we will experiment on three small Petri Net systems to detect the impact that the
variable ordering has to the number of nodes of the decision diagrams. Precisely, the
center of our attraction will be on the P-invariants, since for the symbolic generation of
the RS exploiting the P-invariants offers better results [7], in sense that we will gain a
decision diagram with less nodes. Depending on P-invariants in advance, we gain a priori
relationships that hold for all reachable markings. It is important for exploiting the P-
invariants, that all places are covered; i.e. all places must be part of at least one invariant,
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otherwise we are not able to be aware of the total information needed. Experiments were
performed on the GreatSPN tool.

4.2.1 Reordering the places of the three model Petri Net Sys-
tems

First Petri Net System The first model we implemented ,consists of three indepen-
dent Petri Nets, that basically depicts three independent users.The results that are shown
in the table below, indicate that the order of the places according to the P-invariants are
more efficient for encoding the RS on MDD. The P-invariants obtained are:

P-invariant1 : P1, PQ, P2
P-invariant2 : S1, SQ, S2
P-invariant3 : R1, RQ, R2

Figure 4.4: Petri Net consisted of three independent Petri Nets

The results after reordering the places are shown in the table below:

Order of var RS Size Peak Nodes Final Nodes Peak Mem Used

R1, RQ, R2, P1, PQ, P2 , S1, SQ, S2 27 25 23 552
R1, P1, S1, RQ, PQ, SQ, R2, P2, S2 27 57 51 1.268
R1, R2, P1, P2, S1, S2, RQ, PQ, SQ 27 61 43 1.352
P1, PQ, P2, S1, SQ, S2, R1, RQ, R2 27 25 23 552
S1, SQ, S2, P1, PQ, P2, R1, RQ, R2 27 25 23 552
R1, RQ, R2, S1, SQ, S2, P1, PQ, P2 27 25 23 552

Table 4.19: First Model (Places = 9 & Bound = 1)
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The P-invariants obtained in this system are as we can see independent to each other;
i.e. each place is in only one P-invariant. As we can see the results are better when the
places are ordered according to the P-invariants. The last three lines of the above table
demonstrate that the order of the places is important but not the order of the appearance
of each invariant. For example, we gain the same results either for P1, PQ, P2, S1, SQ,
S2, R1, RQ, R2 or for S1, SQ, S2, P1, PQ, P2, R1, RQ, R2. It is of no importance
the order that each invariants appears (P-invariant1, P-invariant2, P-invariant3 or P-
invariant2,P-invariant1,P-invariant3) as long as the places that are contained in the same
P-invariant are not mixed as in the case that is shown on the second and third line of
the table above. In the ”mixed” case we get worst results in the number of nodes and in
memory footprint.

Second Petri Net System The second Petri Net that was implemented consists of 11
places, two of which are shared among three independent Petri Nets. The second Petri
Net depicts three users who require for access on the same serversource. The difference
is that the P-invariants in this net are not independent but there are common places in
more than one P-invariant.The P-invariants obtained are :

P1 : P1, PQ, P2
P2 : SQ, Q1, Q2, PQ, RQ

P3 : S1, SQ, S2
P4 : R1, RQ, R2

Figure 4.5: Petri Net which consists of two shared places

The obtained results after reordering the places are in the table below:
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Table 4.20: Second Model (Places = 11 & Bound = 3)

Order of var RS
Size

Peak
Nodes

Final
Nodes

Peak Mem Used

R1, RQ, R2, Q1, Q2, P1, PQ, P2, S1, SQ, S2 440 69 62 1.664
Q1, Q2, RQ, PQ, SQ, R1, R2, P1, P2, S1, S2 440 141 109 3.348
R1, R2, RQ, Q1, Q2, PQ, P1, P2, S1, S2, SQ 440 72 57 1.748
R1, P1, S1, R2, P2, S2, RQ, PQ, SQ, Q1, Q2 440 566 150 13.260
P1, PQ, P2, S1, SQ, S2, R1, RQ, R2, Q1, Q2 440 215 78 5.092
P1, PQ, P2, Q1, Q2, R1, RQ, R2, S1, SQ, S2 440 69 62 1.664
P1, PQ, P2, R1, RQ, R2, Q1, Q2, S1, SQ, S2 440 115 62 2.752

Table 4.21: Second Model (Places = 11 & Bound = 3)

In this system the influence of the P-invariants is not as clear as in the previous one,
due to the existence of the common places in P-invariants. In this system we observe
that the second P-invariant obtained can create a more complex situation, since the
other 3 P-invariant are in a way independent. The higher we keep the shared places,
common places appear before the non common in the order of the places,{Q1,Q2} the
more efficient results we take, since the MDD will not have to make ¡¡ big steps ¿¿ or
more formally create more states to reach every new reachable marking. For example if
we see the first and the last line of the table, the only difference is that the shared places
in the last line are not ordered in the first places so in order to built the reachability set
it will be necessary to create more nodes for the RS construction.

Third Petri Net The third Petri Net that we have implemented is a fork and join
model [5]. Also in this net there are places that are interfering with each other, in
different P-invariants.The P-invariants that are obtained are :

P1 : P1, P3, P4, P6
P2 : P1, P2, P5, P6
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Figure 4.6: Fork and join Petri Net

Order of var RS Size Peak Nodes Final Nodes Peak Mem Used

P1, P2, P3, P4, P5, P6 196 97 95 2.728
P1, P3, P4, P2, P5, P6 196 82 79 2.140
P6, P1, P2, P3, P5, P4 196 184 81 5.452
P1, P3, P4, P6, P2, P5 196 91 64 2.480
P1, P2, P5, P3, P4, P6 196 82 79 2.140
P2, P5, P1, P6, P3, P4 196 76 49 2.100
P3, P4, P1, P6, P2, P5 196 76 49 2.100

Table 4.22: Third Model (Places = 6 & Bound =5)

In this example the influence on the output of the P-invariant is still obvious. The last
two lines of the table demonstrate the best results in all different orderings provided to
the fact the sharedcommon places {P1, P2} are ordered close enough and between the
non common places of the P-invariants in which are concluded.

From the results provided in the former images, it is clear that the closer the common
places are kept in their ordering smaller mdds are obtained.

4.3 Proposing a new heuristic algorithm

By examining the results from the three small Petri Net systems, we propose a new
heuristic algorithm exploiting the P-invariant in order to gain better results in time
calculation and memory footprint. The main idea of the algorithm is to keep the
sharedcommon places in the P-invariants as close as possible. Starting from the maximum
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intersection among the first P-invariant and the rest of the P-invariants, max(P1∩Pi),
we first order the non common places of the P1, after the common places and finally the
rest places of the Pi. Then we continue the same procedure with the difference that for
the rest iterations, needed so as to take into account all the P-invariants, we take the
minimum intersection. The common places are fixed, it is not allowed to reorder them.
On the contrary, the places that are found in common after their first placement (previous
the were non common places), they must be reordered. The reason that we first take the
maximum intersection and after the minimum is that we want to avoid the continuous
moving of the places. The pseudo-code we propose is shown in Algo 1.

Hereafter, we report the data structure used in the algorithm:

� P = {p} the set of places in the PN;

� πi is a bag over P, which encodes a P-invariant;

� Π = {πi} is a set of P-invariants;

� L is a list of places. It is used to store the variable ordering. Observe that an
isomorphic is defined between places and MDD variables.

� C is a set of fixed common places among the P-invariants

Moreover, the following operators are needed:

� p intersection(πi, πj) = {p|πi(p) > 0 ∧ πj(p) > 0};

� π intersection(πi) = |{πj|p intersection(πi, πj) > 0}|;

� π places(πi) = {p|πi(p) > 0};

� insert at end(L,P) takes in input L a list of place and P a set of places and inserts
each place of P in L if it is not already present.

� remove and reorder places(L,P) takes in input L a list of place and P a set of places
and removes each places of P from L and reorders L by moving one place up or
more depending on the places that were removed : L[i− 1] = L[i]

� add places(C,P) takes an input C a set of places and P a set of places and adds
each place of P to C if it is not already present

We will examine the results obtained after the new static ordering of the variables-
places on the MDD. The new algorithm is implemented in C language.We focus on the
study of the FMS model, which behavior was most unstable. The tables that follow show
the difference in the time calculation and memory footprint among the new version of
the tool with and without the implementation of the new proposed heuristic algorithm.
The experiments were implemented in the GreatSPN tool and were performed with and
without CTL properties. In the columns of the preceding tables we have add the P-
invariant columns which declare that the ordering is according to the new algorithm if it
is ”Y” and the order is according to the user if is ”N”. Also the results of the two Petri
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Algorithm 1 A new variable ordering heuristic for efficient encoding RS on MDD

1: function Algo(Π)
2: L = ∅
3: C = {∅}
4: Take i|π intersection(πi) is minimum over all πi ∈ Π
5: Π = Π \ πi

6: curr=πi

7: while (Π 6= ∅) do
8: Take j|p intersection(curr, πj) is maximum over all πj ∈ Π
9: insert at end(L, π places(πi) \ C)

10: remove and reorder places(L, p intersection(L places(L), πj) \ C)
11: add places(C, p intersection(curr, πj))
12: insert at end(L, p intersection(curr, πj) \ C)
13: insert at end(L, π places(πj) \ C)
14: Π = Π \ πj

15: curr=πj

16: end while
17: end function

Net systems that were proposed by the MCC competition are provided, for the FMS
model and for the Kanban Model. The new algorithm can not be performed for MAPK
model since not all the places of the model are covered by the P-invariants.

The first row shows the output of the new version of the tool without the new proposed
heuristic algorithm and the second row, of each pair of lines, shows the results with the
implementation of the new heuristic algorithm.
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Bound P-inv RS
Time
Gen.

RS Size #Nodes Mem.Use Mem.All.

5 N 0.01 2.90E+06 3.184 8.56E+004 1.88E+005
5 Y 0.02 2.90E+06 861 2.20E+004 1.05E+005

10 N 1.0 2.50E+09 19.059 6.02E+005 1.08E+006
10 Y 0.07 2.50E+09 3.187 9.59E+004 2.07E+005

15 N 4.0 2.17E+11 58.182 2.10E+006 3.17E+006
15 Y 0.32 2.17E+11 7.731 2.67E+005 4.59E+005

20 N 10.0 6.03E+12 131.060 5.34E+006 8.49E+006
20 Y 0.74 6.03E+12 14.494 5.68E+005 9.82E+005

25 N 25.0 8.54E+13 248.184 1.12E+007 1.59E+007
25 Y 1.72 8.54E+13 28.342 1.27E+006 2.29E+006

30 N 52.0 7.74E+14 420.060 2.09E+007 3.05E+007
30 Y 3.12 7.74E+14 44.140 2.19E+006 3.41E+006

35 N 91.0 5.09E+15 657.185 3.57E+007 5.21E+007
35 Y 5.54 5.09E+15 63.165 3.43E+006 5.65E+006

Table 4.23: FMS model without the evaluation of a CTL property- New version of the
tool without and with the new heuristic algorithm

The first property for evaluation is A F deadlock, if starting from the initial marking in
all paths, some time in the future there is a deadlock. There is a subset of places where
if once they are empty (are without tokens) there will be always empty. The evaluation
of the property is FALSE, e.i. no deadlock is met in the FSM.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.08 2.90E+006 FALSE 0.09 10.808 2.93E+005 5.19E+005
5 Y 0.02 2.90E+006 FALSE 0.01 1.468 3.81E+004 1.20E+005

10 N 0.84 2.50E+009 FALSE 0.92 64.367 2.06E+006 3.69E+006
10 Y 0.09 2.50E+009 FALSE 0.03 4.348 1.33E+005 2.90E+005

15 N 4.14 2.17E+011 FALSE 3.8 203.271 7.53E+006 1.33E+007
15 Y 0.32 2.17E+011 FALSE 0.07 9.301 3.27E+005 7.07E+005

20 N 11.55 6.03E+012 FALSE 9.85 434.929 1.83E+007 2.85E+007
20 Y 0.71 6.03E+012 FALSE 0.14 15.798 6.38E+005 1.32E+006

25 N 27.35 8.54E+013 FALSE 21.38 817.226 3.87E+007 6.08E+007
25 Y 1.62 8.54E+013 FALSE 0.22 28.342 1.27E+006 2.58E+006

30 N 57.82 7.74E+014 FALSE 43.54 1.604.184 8.19E+007 1.29E+008
30 Y 2.98 7.74E+014 FALSE 0.4 44.140 2.19E+006 3.80E+006

35 N 101.13 5.09E+015 FALSE 70.64 2.414.959 1.35E+008 2.12E+008
35 Y 5.3 5.09E+015 FALSE 0.52 63.165 3.43E+006 6.27E+006

Table 4.24: FMS model evaluating the property- AF deadlock- New version of the tool
without and with the new heuristic algorithm

The second property for verification is AG(M1=0→(P1wM1)<N), if in all paths from
the initial marking, exists globally that once the place M1=0, the machine 1 stops working
(is with no tokens), implies that the place P1wM1 has less products than the upper bound
of the system, i.e. the upper bound declares the products asked to be produced.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.09 2.90E+006 TRUE 0.02 5.588 1.53E+005 3.08E+005
5 Y 0.02 2.90E+006 TRUE 0.01 861 2.20E+004 1.05E+005

10 N 0.89 2.50E+009 TRUE 0.15 35.302 1.14E+006 1.90E+006
10 Y 0.07 2.50E+009 TRUE 0.01 3.187 9.59E+004 2.07E+005

15 N 4.07 2.17E+011 TRUE 0.62 108.617 4.05E+006 6.76E+006
15 Y 0.01 2.17E+011 TRUE 0.01 7.731 2.67E+005 4.59E+005

20 N 11.42 6.03E+012 TRUE 1.58 245.032 1.04E+007 1.60E+007
20 Y 0.73 6.03E+012 TRUE 0.01 14.494 5.68E+005 9.82E+005

25 N 29.75 8.54E+013 TRUE 3.85 464.047 2.19E+007 3.54E+007
25 Y 1.6 8.54E+013 TRUE 0.02 28.342 1.27E+006 2.29E+006

30 N 55.97 7.74E+014 TRUE 6.41 785.162 4.10E+007 6.53E+007
30 Y 2.99 7.74E+014 TRUE 0.02 44.140 2.19E+006 3.41E+006

35 N 99.17 5.09E+015 TRUE 10.85 1.227.877 7.03E+007 1.03E+008
35 Y 5.27 5.09E+015 TRUE 0.03 63.165 3.43E+006 5.65E+006

Table 4.25: FMS model evaluating the property- AG(M1=0→(P1wM1)<N) - New version
of the tool without and with the new heuristic algorithm

The third property is AG(M2=0→(P3M2+P2wM2)<7), if in all paths starting from the
initial marking, exists globally, that when M2=0,the machine number 2 is empty (stops
working), the sum of the products that are produced in the places P3M2 + P2wM2 is
less that 7. Which is FALSE since the maximum number of the products starts from 5
and is increased.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.1 2.90E+006 FALSE 1.1 79.686 2.20E+006 3.93E+006
5 Y 0.02 2.90E+006 FALSE 0.48 49.679 1.29E+006 2.37E+006

10 N 0.92 2.50E+009 FALSE 8.43 434.114 1.40E+007 2.29E+007
10 Y 0.13 2.50E+009 FALSE 3.54 206.675 6.39E+006 1.09E+007

15 N 4.03 2.17E+011 FALSE 36.88 1.471.135 5.42E+007 8.84E+007
15 Y 0.32 2.17E+011 FALSE 9.6 473.861 1.68E+007 2.88E+007

20 N 11.24 6.03E+012 FALSE 101.85 3.183.822 1.07E+008 2.10E+008
20 Y 0.93 6.03E+012 FALSE 19.02 845.651 3.38E+007 5.67E+007

25 N X X X X X X X
25 Y 1.94 8.54E+013 FALSE 32.13 1.430.459 6.38E+007 9.51E+007

30 N X X X X X X X
30 Y 3.35 7.74E+014 FALSE 46.85 1.951.288 9.48E+007 1.47E+008

35 N X X X X X X X
35 Y 6.33 5.09E+015 FALSE 66.33 2.771.764 1.48E+008 2.17E+008

Table 4.26: FMS model evaluating the property- AG(M2=0→(P3M2+P2wM2)<7) - New
version of the tool without and with the new heuristic algorithm

The next property is EF(M1!=0 and not en(tM1)), and checks if there exists at least
one path where some time in the future while the machine 1 (M1) is not empty (is
working) and the transition tM1, in which the place M1 is the input place, isn’t enabled.
The property is TRUE.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.09 2.90E+006 TRUE 0.48 47.029 1.34E+006 2.41E+006
5 Y 0.02 2.90E+006 TRUE 0.03 5.045 1.37E+005 2.54E+005

10 N 0.85 2.50E+009 TRUE 9.6 520.605 1.81E+007 3.05E+007
10 Y 0.09 2.50E+009 TRUE 0.04 6.330 1.93E+005 3.71E+005

15 N 4.21 2.17E+011 TRUE 6.29 362.078 1.37E+007 2.20E+007
15 Y 0.43 2.17E+011 TRUE 1.04 64.712 2.65E+006 4.43E+006

20 N X X X X X X X
20 Y 0.83 6.03E+012 TRUE 0.23 25.993 1.04E+006 1.64E+006

25 N X X X X X X X
25 Y 1.84 8.54E+013 TRUE 5.66 257.104 1.39E+007 2.36E+007

30 N X X X X X X X
30 Y 3.74 7.74E+014 TRUE 9.5 454.870 2.86E+007 4.36E+007

35 N X X X X X X X
35 Y 6.62 5.09E+015 TRUE 21.15 771.689 5.13E+007 7.42E+007

Table 4.27: FMS model evaluating the property- EF(M1!=0 and not en(tM1)) - New
version of the tool without and with the new heuristic algorithm

The property number 5 is EG not (P1s=N and P2s=N and P3s=N), if there is at least
one path where globally the number of products in the places P1s, P2s and P3s is not
equivalent to the maximum number of them. This property is evaluated as TRUE.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.1 2.90E+006 TRUE 0.09 11.151 3.01E+005 5.38E+005
5 Y 0.02 2.90E+006 TRUE 0.01 1.758 4.58E+004 1.32E+005

10 N 0.93 2.50E+009 TRUE 0.94 65.323 2.09E+006 3.70E+006
10 Y 0.09 2.50E+009 TRUE 0.03 4.720 1.45E+005 3.00E+005

15 N 4.06 2.17E+011 TRUE 3.8 205.265 7.59E+006 1.35E+007
15 Y 0.36 2.17E+011 TRUE 0.12 10.156 3.61E+005 7.07E+005

20 N 11.72 6.03E+012 TRUE 9.73 441.287 1.84E+007 2.85E+007
20 Y 0.93 6.03E+012 TRUE 0.18 16.613 6.63E+005 1.33E+006

25 N 27.38 8.54E+013 TRUE 21.8 822.723 3.89E+007 6.14E+007
25 Y 2.3 8.54E+013 TRUE 0.39 28.342 1.27E+006 2.58E+006

30 N 56.08 7.74E+014 TRUE 41.89 1.612.401 8.22E+007 1.29E+008
30 Y 3.86 7.74E+014 TRUE 0.67 44.140 2.19E+006 3.83E+006

35 N 99.48 5.09E+015 TRUE 70.3 2.423.899 1.35E+008 2.12E+008
35 Y 6.86 5.09E+015 TRUE 0.8 63.156 3.43E+006 6.27E+006

Table 4.28: FMS model evaluating the property- EG not (P1s=N and P2s=N and P3s=N)
- New version of the tool without and with the new heuristic algorithm

And the last property for evaluation is E[(M1>0)U(P1s=N and P2s=N and P3s=N)],
if exists at least one path from the initial marking that the machine 1 (M1) works until
the products in the places P1s, P2s, P3s are created. The property is TRUE.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.08 2.90E+006 TRUE 4.17 278.913 7.38E+006 1.27E+007
5 Y 0.01 2.90E+006 TRUE 0.76 64.163 1.69E+006 3.08E+006

10 N 0.87 2.50E+009 TRUE 96.59 4.155.299 1.11E+008 2.28E+008
10 Y 0.12 2.50E+009 TRUE 9.5 502.213 1.53E+007 2.66E+007

15 N X X X X X X X
15 Y 0.42 2.17E+011 TRUE 43.61 1.899.377 6.48E+007 1.06E+008

20 N X X X X X X X
20 Y 0.85 6.03E+012 TRUE 153.44 5.469.485 2.07E+008 3.44E+008

Table 4.29: FMS model evaluating the property- E[(M1>0)U(P1s=N and P2s=N and
P3s=N)]-New version of the tool without and with the new heuristic algorithm

The results for the models and the properties proposed by the MCC competition are
given below.

The following tables show the results for the FMS model for all the proposed properties
by the MCC.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.07 2.90E+006 TRUE 0.1 19,588 5.26E+005 1.00E+006
5 Y 0.01 2.90E+006 TRUE 0.02 3,570 9.41E+004 2.16E+005

10 N 0.82 2.50E+009 TRUE 1.1 132,138 4.20E+006 6.67E+006
10 Y 0.08 2.50E+009 TRUE 0.06 9,814 3.10E+005 5.58E+005

15 N 3.45 2.17E+011 TRUE 3.78 414,229 1.51E+007 2.50E+007
15 Y 0.28 2.17E+011 TRUE 0.11 18,433 6.76E+005 1.18E+006

20 N 9.91 6.03E+012 TRUE 10.13 944,965 3.90E+007 5.81E+007
20 Y 0.7 6.03E+012 TRUE 0.22 29,751 1.24E+006 2.02E+006

25 N 23.36 8.54E+013 TRUE 21.61 1,803,184 8.28E+007 1.30E+008
25 Y 1.61 8.54E+013 TRUE 0.37 43,753 2.03E+006 3.46E+006

30 N 49.05 7.74E+014 TRUE 40.36 3,067,639 1.55E+008 2.38E+008
30 Y 2.92 7.74E+014 TRUE 0.6 60,472 3.09E+006 5.11E+006

35 N 86.84 5.09E+015 TRUE 77.75 4,817,109 2.67E+008 3.78E+008
35 Y 5.34 5.09E+015 TRUE 0.86 79,873 4.45E+006 7.07E+006

Table 4.30: FMS model evaluating the non safety property - New version of the tool
without and with the new heuristic algorithm
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.08 2.90E+006 FALSE 0.09 10,808 2.93E+005 5.19E+005
5 Y 0.02 2.90E+006 FALSE 0.01 1,468 3.81E+004 1.20E+005

10 N 0.8 2.50E+009 FALSE 0.89 64,367 2.06E+006 3.69E+006
10 Y 0.1 2.50E+009 FALSE 0.04 4,348 1.33E+005 2.90E+005

15 N 3.45 2.17E+011 FALSE 3.56 203,271 7.53E+006 1.33E+007
15 Y 0.3 2.17E+011 FALSE 0.07 9,301 3.27E+005 7.07E+005

20 N 9.91 6.03E+012 FALSE 9.53 437,929 1.83E+007 2.85E+007
20 Y 0.7 6.03E+012 FALSE 0.16 15,798 6.38E+005 1.32E+006

25 N 23.87 8.54E+013 FALSE 21.55 817,226 3.87E+007 6.08E+007
25 Y 1.62 8.54E+013 FALSE 0.25 28,342 1.27E+006 2.58E+006

30 N 49.28 7.74E+014 FALSE 42.22 1,604,184 8.19E+007 1.29E+008
30 Y 2.95 7.74E+014 FALSE 0.41 44,140 2.19E+006 3.80E+006

35 N 87.06 5.09E+015 FALSE 70.91 2,414,959 1.35E+008 2.12E+008
35 Y 5.27 5.09E+015 FALSE 0.55 63,165 3.43E+006 6.27E+006

Table 4.31: FMS model evaluating the deadlock property - New version of the tool
without and with the new heuristic algorithm
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.08 2.90E+006 FALSE 0.11 14,629 3.96E+005 7.24E+005
5 Y 0.01 2.90E+006 FALSE 0.01 1,776 4.63E+004 1.33E+005

10 N 0.79 2.50E+009 FALSE 1.11 89,254 2.86E+006 5.11E+006
10 Y 0.08 2.50E+009 FALSE 0.04 4,744 1.46E+005 3.03E+005

15 N 3.55 2.17E+011 FALSE 4.08 245,989 9.17E+006 1.58E+007
15 Y 0.29 2.17E+011 FALSE 0.09 10,525 3.76E+005 7.07E+005

20 N 9.99 6.03E+012 FALSE 11.05 581,844 2.44E+007 3.77E+007
20 Y 0.72 6.03E+012 FALSE 0.21 17,180 6.90E+005 1.33E+006

25 N 24.04 8.54E+013 FALSE 24.5 1,082,733 5.08E+007 8.12E+007
25 Y 1.67 8.54E+013 FALSE 0.35 28,342 1.27E+006 2.58E+006

30 N 50.51 7.74E+014 FALSE 50.12 1,765,746 9.22E+007 1.48E+008
30 Y 3.02 7.74E+014 FALSE 0.5 44,140 2.19E+006 3.83E+006

35 N 87.57 5.09E+015 FALSE 89.81 2,704,339 1.55E+008 2.47E+008
35 Y 5.23 5.09E+015 FALSE 0.83 63,165 3.43E+006 6.27E+006

Table 4.32: FMS model evaluating the reversibility property - New version of the tool
without and with the new heuristic algorithm

The results for the Kanban model and the properties that were proposed by the MCC
competition.
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.01 2.55E+006 TRUE 0.01 1,460 4.08E+004 9.71E+004
5 Y 0.01 2.55E+006 TRUE 0.01 1,268 3.39E+004 8.99E+004

10 N 0.01 1.01E+009 TRUE 0.03 3,705 1.30E+005 2.59E+005
10 Y 0.01 1.01E+009 TRUE 0.03 3,015 9.45E+004 1.85E+005

15 N 0.04 4.70E+010 TRUE 0.04 7,000 2.97E+005 4.59E+005
15 Y 0.02 4.70E+010 TRUE 0.04 5,498 1.95E+005 3.51E+005

20 N 0.09 8.05E+011 TRUE 0.1 11,353 5.67E+005 8.95E+005
20 Y 0.04 8.05E+011 TRUE 0.07 8,738 3.46E+005 6.12E+005

25 N 0.17 7.68E+012 TRUE 0.16 16,740 9.59E+005 1.43E+006
25 Y 0.06 7.68E+012 TRUE 0.08 12,728 5.56E+005 8.94E+005

30 N 0.27 4.99E+013 TRUE 0.23 23,193 1.50E+006 2.15E+006
30 Y 0.09 4.99E+013 TRUE 0.14 17,468 8.31E+005 1.23E+006

35 N 0.43 2.46E+014 TRUE 0.33 30,680 2.21E+006 3.05E+006
35 Y 0.15 2.46E+014 TRUE 0.21 22,967 1.18E+006 1.76E+006

Table 4.33: Kanban model evaluating the non safety property - New version of the tool
without and with the new heuristic algorithm
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.01 2.55E+006 FALSE 0.01 471 1.31E+004 7.96E+004
5 Y 0.01 2.55E+006 FALSE 0.01 385 9.92E+003 7.96E+004

10 N 0.01 1.01E+009 FALSE 0.01 1,588 5.50E+004 1.32E+005
10 Y 0.01 1.01E+009 FALSE 0.01 1,086 3.22E+004 9.81E+004

15 N 0.04 4.70E+010 FALSE 0.04 3,264 1.37E+005 2.37E+005
15 Y 0.02 4.70E+010 FALSE 0.02 2,079 6.92E+004 1.43E+005

20 N 0.08 8.05E+011 FALSE 0.09 5,397 2.66E+005 4.59E+005
20 Y 0.04 8.05E+011 FALSE 0.04 3,294 1.22E+005 2.12E+005

25 N 0.17 7.68E+012 FALSE 0.12 6,888 3.83E+005 6.22E+005
25 Y 0.08 7.68E+012 FALSE 0.07 4,249 1.75E+005 3.09E+005

30 N 0.27 4.99E+013 FALSE 0.22 11,887 7.66E+005 1.31E+006
30 Y 0.09 4.99E+013 FALSE 0.07 6,910 3.05E+005 4.77E+005

35 N 0.44 2.46E+014 FALSE 0.35 14,108 9.93E+00 1.35E+006
35 Y 0.17 2.46E+014 FALSE 0.12 8,460 4.01E+005 6.61E+005

Table 4.34: Kanban model evaluating the deadlock property - New version of the tool
without and with the new heuristic algorithm
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Bound P-inv RS
Time
Gen.

RS Size Prop.Eval. Time
Eval.

#Nodes Mem.Use Mem.All.

5 N 0.01 2.55E+006 TRUE 0.2 18,039 5.11E+005 9.12E+005
5 Y 0.01 2.55E+006 TRUE 0.14 14,030 3.66E+005 7.05E+005

10 N 0.01 1.01E+009 TRUE 2.33 107,863 3.87E+006 6.75E+006
10 Y 0.01 1.01E+009 TRUE 1.22 87,319 2.69E+006 4.45E+006

15 N 0.04 4.70E+010 TRUE 9.14 385,143 1.67E+007 2.65E+007
15 Y 0.03 4.70E+010 TRUE 4.85 231,756 8.04E+006 1.42E+007

20 N 0.07 8.05E+011 TRUE 30.45 807,172 4.03E+007 6.27E+007
20 Y 0.03 8.05E+011 TRUE 12.64 533,923 2.06E+007 3.22E+007

25 N 0.17 7.68E+012 TRUE 70.09 1,611,212 9.31E+007 1.34E+008
25 Y 0.07 7.68E+012 TRUE 26.84 974,320 4.12E+007 5.92E+007

30 X X X X X X X X
30 Y 0.1 4.99E+013 TRUE 52.59 1,799,068 8.13E+007 1.27E+008

35 N X X X X X X X
35 Y 0.15 2.46E+014 TRUE 93.92 2,498,388 1.20E+008 1.85E+008

Table 4.35: Kanban model evaluating the reversibility property - New version of the tool
without and with the new heuristic algorithm

From the results that we have obtained it is obvious that with the introduction of the
new heuristic algorithm and the ordering of the variablesplaces based on the P-invariants
we are guaranteed better results in total (time and memory footprint)
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Chapter 5

Future work

By exploiting the P-invariants we observed that we can approach a better solution to
the MDD ordering, i.e. smaller number of nodes, resulting to smaller memory footprint
and better time execution. The next step is to examing the behavior of all different types
of Petri Nets systems (Stochastic Petri Nets, Generalized Stochastic Petri Nets, Colored
Petri Nets, due to the fact that in this diploma thesis we focused on the study of the Non
Stochastic Petri Nets. The disadvantage of this particular algorithm is that it can not
be performed on Petri Net systems that are not all places covered by the P-invariants.
Likewise, our next step is to propose an new heuristic algorithm in order to approach the
optimal ordering of the MDDs for Petri Net systems that does not provide us with the
information of the P-invariants.
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