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Avéivon Broroyik®v Agdopévov: Mia mpocséyyion pe Lovleta Aiktoa

Iepiinyn

H avédvon tov Zovhetov AKTOmV XL GNUELOGEL GNUAVTIKT ovATTLEN KaTd T ddpKeLla
g tehevtaiog dexkoetiog, KaODG HEYEAOG OYKOG TANPOPOPLOV TOV APOPOVY TOIKIAiL
ovvhetov diktowv &ywve gupémg dwabéouoc. TIpog avty v katevbuven, ToAAG cOvOeTa
GLOTNHOTO PTOPOVV Vo TEPLYpo@ovy cav ocvvBeta SikTua, OTOL Ol GUVIGTMGES TOVG
OVOTOPIOTOVIOL ®OC KOPLEEC KOl Ol OLVOECELG TOVG ®C OKUEC Metald dllwv, 1
avamopacTact He ovuvleta diktvo £xsl Ppel peydio aplBud epoppoydv oe media OmmG
BromAnpogopikn, ontikomoinon YpAe®V, KOW®VIOAoYiol KOl GTNV ovAALGT KOTOVEUNUEVOY
ovoTnuatOv. Xtn Plodoyia, To cOVOETO SIKTLO AVOTOPIGTOVV L0 TOKIAMO BloAoyiK®V
OVTOTNT®V, OO ATAOVG OPYAVIGLOVS LEYPL aVTIOPAGELS TPMTEIVAOY. MeydAn tpoondBeia £xet
Yivel yuo TNV katnyoplomoinomn Kabe k6pPfov tov diktvov avaroya pe tn BEom Tovg oTn dou
T0V  ProAoykod SIKTVOL KOl Yo TN OlIKPIoT TV KOUPOV Tov €00V UEYAAN ETLPPOT| GTO
dlktvo omd Tovg KOuPovg TV omoiwv M andAewr dev Ba emnpedost T cuvoyn Kot
AELTOVPYIKOTNTA TOL GLVOAIKOV S1KTVOV.

‘Evag yevikdg otdyog Otav peretdpe tétotov &€idovg diktva egivar va opicovpe v
EVPMOOTIO. TOL GLVOAIKOD OIKTVOV OYETIKO UE OPOAUOTO TV TuMUdteov tov. Ilo
CUYKEKPIUEVA, M EVPOOTIO Umopel v kaBoploTel TAPATNPOVTAS TIS CAAAYEG TOL OKTOOV
KaODC a@apodue TOLS KOUPBOLE KO TIG OKUEC TOV ~ SlypapEG 0VTOD TOL €160VG UTOPOLV VO
Bewpnbovv mg emiBécelg ouvBeT®V SKTV®V. Be®POVLE TPEiG TOTOVG EMBECEMV: Ol KOPLPEG
pumopobv va agaipebodv opowdpopea pe tuyaio tpémo, pe ebivovca celpd TIHOV TOV
UETPIKAOV KEVIPIKOTNTAG TOVG TOLTOYpOVE Kot pe @Bivovoa Gepd TIUOV TOV UETPIKOV
KEVIPIKOTNTAG TOug akoAovbiaxd. H evdidueon kevipikdmra, o PBabuog, mn kevipkdtnta
gYYOTNTOG KOl 1 KEVTIPIKOTNTA 101000avOcHATOG Eivol KATOol TopadelylaTo UETPIKAOV TOL
gyoov MOM eueoviotel oV avilvon ovvletov OIkTOmV kol €xouv emionuovOel oe
TPONYOVUEVEG UEAETEC TNV TTPOSTAfeLn KaBopIGHOD TNG EVPWGTING TOVG.

Ymv mapovca gpyocio mpoomabovpe Vo TPOGOIOPIGOVIE TNV EMIOPACT OV EYEL OTNV
voKeipeV dopn TV GOVOET®V SIKTV®V 1 6TOYOTOoINoT KOUPOV Yio dtoypapr] COLPOVA HE
TNV TN TNG TOTIKNAG KoL UN TOTIKNG UETPIKNG Tovs. Epapudlovue 6la to Tpoavapepfévra
glon embéocemv o€ Proloyikd OlkTva Kol ETEKTEIVOLUE TIC NON VIAPYOVGES EPYUGIES
TPOCTOOMVTAG VO TPOYLUATOTOMGOVUE GTOYXEVUEVEG EMBETELS PacIOUEVES OTIC TIHEG TNG U-
PCI tung kébe xopupov. Emmhiéov, npocmaboldue vo ektelécovpe emtB€oelg o€ pio opado
Koppov oopemva pe v K-shell tyun tovg, apapdvtag kébe popd avtodc mov aviKoLY 6TO
o Kevipkd k-core. Te owt ™ pelétn, o 6TO)0G £ival vo eQaprOGOvUE EMTOECELS TOGO GE
TPOYUATIKA 0G0 Kot o€ cuvheTIKd BroAoyikd cOvOeTa dikTLO KOl VO, 0ELOAOYNCOVUE EKTEVAC
TNV EVPMOOCTIO KO EVTTAOELD TOVG GE GTOYELUEVES KOl TUYAIEG OLOTOYIES.

Ta amoteréopata deiyvouv OTL 1 otoyevuéveg embéoelg oe PloAoyikd cuvbeta diktvo e
Baon ™ ¢Bivovca ocepd g p-PCl tung tov kopufmv tov 1600 TOwTOYPOVE, OGO KOt
akoAovOlokd pmopovv va Tpaypatonomboby Yo vo Tpoceyyicovpe KaADTEPO T UES TN
NG EVPOOTIONG KOt TNG EVTAOELAG TOVG, GUYKPITIKA pe TG dAAeg peTpikég kevepukotnrag. 1o
ovykekpipéva, to 2-PCl emttuyydvel v kaAdTEPT TPOGEYYIOT] GUYKPLTIKG, LE OAEG TIG AAAEG
petpikég. To k-shell xatopOdver va gxkbBéoel kaldtepa v evmddelo Tov diktdov ox’ Ot vo
OTEIKOVIOEL TNV €UPOOTIO TOL, EVA YO TNV TEPITTOON TOV GLVOETIKOV SIKTO®V 1GYVEL
akpipdc to avtibero. To k-shell dev pmopei vo Bswpnbel w¢ PédtioTn KevipikdTTa Yo
enifeon. O Pobuog tov kouPwv pmopel va Bempnbel wg BEATIOT KEVIPIKOTNTO BOTE VO
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avadeiovpe v evpwotia froloyikdv chvietwv diktdmv dtav cuppaivovy cEAALATO Kot
TN S1APKELN TOVTOYPOVAV EMBPECEDV KOl TNV EVOLAUEST] KEVTIPIKOTNTO KOl TNV EKKEVTPIKOTNTA
otav gpappolovpe axorlovBlokés emBEceLS.



Abstract

The analysis of Complex Networks has received considerable development during the last
decade, since huge amount of information of a variety of complex networks became widely
available. In this direction, many complex systems can be described by complex networks,
where the components are represented by vertices and their connections by edges. Among
others, complex network representation has found a number of applications in areas as
bioinformatics, graph visualization, sociology and distributed system analysis. In biology,
complex networks represent a variety of biological units, from simple organisms to protein
interactions. Huge amount of effort has been devoted on classifying the role of each
individual node according to their position in the biological network structure and
distinguishing high-impact nodes from nodes whose loss will not affect the consistency and
functionality of the system.

An overall goal when studying such networks is defining the robustness of the entire
system to the failure of its parts. In particular, robustness definition can be addressed by
observing how the structure of the network changes as vertices and nodes are removed; these
kinds of edge and node removals can be considered as attacks of the complex network. We
consider three types of attacks: vertices are removed uniformly at random, in decreasing order
of their centrality measure simultaneously and in decreasing order of their centrality measure
sequentially. Betweenness, eccentricity, degree, closeness and eigenvector centrality are some
examples of the metrics that have already been introduced in complex network analysis and
that have already been considered in previous work when trying to identify the robustness of
complex networks.

Here we are trying to identify the effect on the underlying network structure of targeting
vertices for removal according to their value of local and non-local measures. We apply all
aforementioned attacks on biological networks and we extend the existing studies by trying to
employ targeted attacks based on the p-Power Community Index (u-PCl) value of each
vertex. In addition, we try to perform attacks on a group of nodes according to their k-shell
value, by removing each time those which belong to the most central one. In this study, the
goal is to perform node and edge attacks both on empirical and on synthetic biological
complex networks and evaluate extensively their robustness and vulnerability towards
malicious and random failures.

The results show that sequential and simultaneous target attacks by descending order of p-
PCI value of nodes can be performed on biological complex networks to approximate the
average robustness and vulnerability of the network better than the other centrality measures.
Particularly, 2-PCl has the best approximation compared to all other centralities. K-shell
manages to capture vulnerability better than exposing the fragility of the network against
malicious attacks and the opposite is true for synthetic networks; either way, k-shell cannot be
considered as an optimal centrality measure for attack. Degree can be considered as the
superior centrality in order to highlight the robustness of a biological complex network
against simultaneous target attacks and eccentricity or closeness when performing the attacks
sequentially.

Keywords: Biological Complex Networks, Robustness, Vulnerability, Simultaneous Target
Attack, Sequential Target Attack, Random Attack, u-PCl, k-shell




Introduction

Many complex systems can be represented by complex networks, even if they initially
seem unrelated to this concept. We refer to complex networks, when their components are
described by vertices (nodes) and their connections by edges. There are numerous available
examples of networks in many disciplines such as technology, sociology and biology. We
face some of the most important examples of complex networks in the latter category, since
the availability of large biological datasets has led to the recent popularity of the study of
Protein Interaction Networks and to the development of such network types. In particular:

e Protein Interaction Networks (PINs), which is the most important category of
networks in complex biological systems analysis. In PINs representation, proteins are
represented as nodes and their interactions as edges.

e Neuronal networks (NNs)

e Gene regulatory networks (DNA-protein interaction networks)

e Signaling Networks

e Species Interaction Networks

e Metabolic Networks

e Food webs

are only some of the most representative biological complex networks examples. In biology,
complex network studying has shifted its focus on large-scale network analysis, since almost
every biological system is described by very large networks. Large-scale biological networks
are referenced as “omes”, such as genome, interactome, proteome, diseasome, biome and so

on.[18]

Figure 1| The Human Gene Co-expression Network Image can be found here:
http://bioinfow.dep.usal.es/coexpression/network.jpg
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Figure 2| A Metabolic Network
Image can be found here:
http://fiehnlab.ucdavis.edu/staff/grapov/grapov-metabolic-network-jpg.png

The construction of a robust network of complex systems is a great challenge to the
scientific community. An important aspect of studying the behavior of complex networks is to
define the effect of random and malicious failures on the individual components of the
network and on the whole system when vertices along with the edges attached to them are
removed according to a centrality value. It is clear, that the importance of each node differs in
each case of networks. Consider an example in which an attacker installs a virus on a
machine. In this case, the attacker has to choose the most important node, here the hub node
which is the node with the most connections to other nodes, in order to spread the virus
installed efficiently. Now, consider a network of proteinomics, in which proteins
are represented as nodes and their interactions as edges. In this case, deleting a hub-node is
more likely to be fatal to an organism than non-hub, a phenomenon known as the centrality-
lethality rule. [1]

It became imperative, regardless of the network type, to define some characteristics of
complex networks that can indicate a robust underlying structure. At this point, we have to
clarify what robustness is without giving yet a strict but a more free and intuitive definition.
Among other definitions, robustness of a network can be described as the ability of a network
to maintain its total throughput under node and link removal [2]; this means that a robust
network maintains to keep its components strongly connected and thus it is less sensitive to
node attacks.

In order to measure the robustness of complex networks and the importance of nodes
within them, in the last few years, a significant amount of metrics and methods have been
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evolved and introduced in network analysis. Significant effort was made for this purpose. In
previous related works, studies for the effect on the performance of the whole network was
devoted and particularly cases in which node deletion in random or descending order of their
degree, betweenness, eigenvector, eccentricity centrality value or their k-coreness is being
performed. The purpose of this work is to extend previous work and also to investigate the
robustness of biological networks when u-PCl attacks are performed.

Moreover, in each case other network characteristics, like vulnerability, maximum
component size, number of triangles in the network, number of k-cores etc. have been studied
and results are provided. Networks that are used in this study are retrieved both from real-
world biological datasets and from synthetic networks like Barabasi -Albert and Erdés—Rényi
graphs. The last two graph types are selected for our purpose, since they are the most similar
to real-world network representations, with the first one to be a much better representation;
the second one has a lack of many characteristics of empirical biological networks.

The rest parts of this paper are organized as follows. In Sect. 2 we review the related work,
our motivations and contributions; in Sect. 3 we describe Biological Network models, the
centralities we used in our work, the network measures and the three attack types. We also
define robustness and vulnerability in the same section. In Sect. 4 we describe the Network
models we used in our work, our simulation model and the results retrieved. Finally, Sect. 5
concludes our work.
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2 Related Work

Defining the robustness of a network against random and malicious failures on the
individual components of the network and on the whole system has attracted significant
attention in the literature concerning various types of networked systems. The studies along
this line have been able to examine the robustness of, e.g. technological networks like the
Internet topology at the autonomous system (AS) level [3], social networks like the Facebook
network [4], Biological networks like Protein Interaction Networks (PINSs) [5], and so on.

In the context of network robustness, it is beneficial to investigate in depth the attack of
nodes according to their value of as many centrality measures as possible in order to define
the most aggressive attack or the robust network infrastructure. Huge amount of effort has
been devoted to study the robustness when performing deletion of nodes according to their
degree and betweenness value. Particularly, Ali Sydney et al. [2] considered the latter attacks
and elasticity as a robustness measure and showed that link redundancy is a sufficient but not
an essential criterion for robustness.

A more thorough research on the on the definition of robustness of a network has been
made by lyer, Killingback, Sundaram and Wang in [5]. They suggested as robustness
measurement the largest existing component of the network compared to the fraction of nodes
that have been removed. The deletion of the vertices follows the descending order of
betweenness, eccentricity, closeness, degree and eigenvector values that we describe in the
next chapter in detail. They staged the attacks one step further, considering not only random
and malicious failures, but they focus both on simultaneous and on sequential targeted attacks
when targeting the nodes.

Another metric used to highlight the underlying structure of networks, mostly very large
sized, and its hierarchies which cannot be captured using other metrics due to their size, is the
k-shell or k-core of a graph. Since real-world networks tent to have enormous size, the
problem of the k-core decomposition has emerged and was addressed in recent works [8] [9]
[10]. There are numerous examples of networks that have been “decomposed” based on this
method; study of the Internet topology at the autonomous system (AS) level, discovery of the
role of proteins in complex proteinomic networks are only some of the examples that can be
mentioned. The k-coreness is used to identify a group of nodes with degree at least k. It
became clear, that higher values of k-coreness correspond to more central nodes of the
network. In our study, we try to process a targeted attack on nodes with the largest coreness in
a biological complex network and we present the obtained results in Sect.4 and 5.

Similar work has been provided in [7] by Nicosia, Criado, Romance, Russo and Latora but
in their study the problem of identifying the central elements in a network is described
inversely. Therefore, they define a subset of nodes, called controlling set, which can prescribe
a set of centrality values to all nodes of the network. Although they do not define the
robustness of a network, their work proves that we can find a set of nodes whose role is
more important than other nodes in the network and thus they can be considered as perfect
candidates in a targeted attack.

13



Although it cannot directly be related to our work, in [6] Katsaros, Tassioulas, Dimokas
and Manolopoulos developed a new metric called p-Power Community Index (u-PCI) which
is more informative that the node degree and it is not affected by any isolated nodes. This
latter measure provides a more localized/centralized centrality measurement and it was
proposed as a criterion to select sensors with a special role in a grid of sensors based on their
ability to influence the communication between multi-hop connected nodes.

2.1 Motivations and contributions

The proposed centralities so far are used as a criterion to rank nodes according to their
importance in order to measure robustness of complex networks focus on the power each
node individually in a network has. These kinds of metrics are strictly related to the
characteristics of each node. All of these centralities examine each node as an individual
entity in the network. But how can its importance be affected if it belongs to a powerful
neighborhood? What happens if this node is deleted? Will the network collapse? What
happens if we delete a whole set of nodes and particularly the most ‘central’ k-shell? Can a
biological network maintain its overall throughput under such a node deletion or will it
degrade rapidly? These questions we will try to answer in this work.

Motivated by the research in [6] for defining the most powerful sensor, here node, we
propose the u-PCIl as a new criterion to target nodes for deletion in attacks on Biological
networks. Moreover, considering that biological networks have a modular organization, we
also extend previous studies and investigate the evolution of the giant component’s size
during a node removal according to their k-core values. Then, we use the results to calculate
numerically the robustness and vulnerability of both empirical and synthetic biological
complex networks.

In summary, our work’s contributions are the followings:

o Definition of the robustness of biological complex networks. We study of the effect
of random and malicious failures on the individual components of the network and on
the whole system when vertices are removed according to their:

o u-PCl value (sequentially & simultaneously)
k-coreness (simultaneously)
degree, eccentricity, eigenvector, closeness and betweenness centrality value
(sequentially & simultaneously)

o Definition of the robustness of biological complex networks against random failures.

o Evaluation of the outcomes. Robustness of the biological network is used as the main
criterion to characterize its infrastructure, its resistance to disconnection of its
components and its throughput under node and link removal.
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Complex Networks

3.1 Complex Networks

A complex network is a graph (network) with non-trivial topological features - features
that do not occur in simple networks such as lattices or random graphs but often occur in real
graphs [19]. In all cases of Complex Networks, vertices are considered to be the elements of
the represented complex system and the edges between them mean that they are associated in
some order level; see Figure 3 and 4 for example.

Figure 3| The worldwide air transportation network. Each grey link reassembles traffic of
passengers between more than represent the network’s skeleton, a tree-like structure only 1,300 links
that represents the core structure of the network. Link in the skeleton are the most important
connections of the network. Image can be found here:
http://optimizationandanalytics.files.wordpress.com/2013/01/complex-network-structure.png

Figure 4| The Internet AS The m-core decomposition of the Internet AS. Light purple means 1-
coreness and red means 21-coreness. Image can be found here:
http://www.nature.com/srep/2013/130827/srep02517/fig_tab/srep02517_ F5.html
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3.2  Biological Complex Network Models
3.2.1 The Biological Complex Network Model

A biological network is any network that applies to biological systems. A network is any
system with sub-units that are linked into a whole, such as species units linked into a
whole food web. Complex biological systems may be represented and analyzed as
computable networks [18]. Protein-Protein Interactions, the most common biological network
model, are mainly represented by Biological Complex Networks, e.g. PINs (Protein
Interaction Networks), where the proteins are represented as nodes and the connections
between the interacting proteins are shown as edges [11].

In this work, we will use undirected graphs to form the desired biological networks since
they are commonly represented as undirected graphs, i.e. graphs where the edges are not
directed and therefore edge (u,v) is identical to (v,u).

Definition 1: A graphor anundirected graphis a tuple G= (V,E)with a nonempty
set V whose elements are called vertices, nodes or points a (possibly empty) set E of
unordered pairs of elements of V called links or edges.[20]

Figure 5| Undirected Graph

Image can be found here: http://homepages.ius.edu/rwisman/C455/html/notes/AppendixB4/B4-2.qif
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Figure 6] Human disease network (HDN) In the HDN, each node corresponds to a distinct disorder,
colored based on the disorder class to which it belongs. A link between disorders in the same disorder
class is colored with the corresponding dimmer color, and links connecting different disorder classes
are gray. The size of each node is proportional to the number of genes participating in the
corresponding disorder (see key), and the link thickness is proportional to the number of genes shared
by the disorders it connects.

Biological networks share a number of common global features which are listed below.
Biological networks have [17]:

o ascale-free degree distribution; this means that they contain a number of hub nodes
that are the most important in the network [15]

e asmall average shortest path length between any two nodes; this is also knows as
small-world model

e adisassortative nature

e amodular organization

e astructural and dynamical robustness

In our research we tried to examine as many biological network types as possible. We
provide both empirical biological networks and synthetic ones. In order to highlight
topological properties of synthetic biological networks, the scale-free network model
proposed by Barabasi Albert and the Erdés—Rényi model for random graphs where used. The
first model is suitable to represent biological complex networks; the second is simpler than
the real networks but since real-world networks have a small average diameter like the ER
model we used it to see the effects of attacks on its structure.
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3.2.2 The Barabasi— Albert (BA) scale-free Network Model

Definition 2: Barabasi— Albert scale free model

The Barabasi— Albert (BA) model is an algorithm for generating random scale-free networks
using a preferential attachment mechanism. Scale-free networks are widely observed in
natural and human-made systems and therefore ideal to represent synthetic biological

networks. [21] [12]

Figure 7| The Barabasi— Albert Graph The graph was created with CentiBin. Number of iterations
was set to 20 and random seed to 10.

The Barabasi— Albert Algorithm

The network begins with an initial connected network of my, nodes. New nodes are added
to the network one at a time. Each new node is connected to m<mj existing nodes with a
probability that is proportional to the number of links that the existing nodes already have.
Formally, the probability p; that the new node is connected to node i is:

) ki
Pi=3

where k; is the degree of node i and the sum is made over all pre-existing nodes j (i.e. the
denominator results in the current number of edges in the network). [21]
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The most important properties of Barabasi— Albert scale free model [21]

Heavily linked nodes ("hubs™) tend to quickly accumulate even more links, while
nodes with only a few links are unlikely to be chosen as the destination for a new
link. The new nodes have a "preference" to attach themselves to the already heavily
linked nodes.

The degree distribution resulting from the BA model is scale free, in particular, it is a
power law of the form P(k) ~ k3

The_ average path length of the BA model increases approximately logarithmically
with the size of the network.

While there is no analytical result for the_clustering coefficient_ of the BA model, the
empirically determined clustering coefficients are generally significantly higher for
the BA model than for random networks. The clustering coefficient also scales with
network size following approximately a power law C ~ N=%75

The Barabasi— Albert (BA) model is suitable for Metabolic networks and food-webs
and belongs to the Scale-free networks category with networks with a power-law
distribution P(k) ~ k™

3.2.3 The Erdos—Rényi Random Network model

Definition 3: Erdés—Rényi Random Graph model [22]

The_ Erdés—Rényi model_is either of two closely related models for generating random graphs,
including one that sets an edge between each pair of nodes with equal probability,
independently of the other edges.

Figure 8| The Erdés—Rényi Graph The Graph was created with CentiBin with edge probability set to

0.09
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The most important properties of Erdés—Rényi Random Graph model [22]

e The expected number of edges in G(n, p) is (3) p

e Ifnp< 1, then a graph in G(n, p) will almost surely have no connected components
of size larger than O(log(n)).

e If np =1, then a graph in_G(n, p) will almost surely have a largest component whose
size is of order n*®

e Ifnp — ¢ > 1, where c is a constant, then a graph in G(n, p) will almost surely have a
unique giant component containing a positive fraction of the vertices. No other

component will contain more than O(log(n)) vertices.

o Ifp < @ then a graph in G(n, p) will almost surely contain isolated vertices,

and thus be disconnected.

o pr> (1+ezlnn

, then a graph in G(n, p) will almost surely be connected.

The Erdés—Rényi (ER) model is suitable for uncorrelated random graphs and belongs to
the single-scale network category with a sharp distribution of vertex degrees exhibiting
exponential or Gaussian tails. [14] The construction of the network can be described as
following: At first we have N disconnected nodes and then we add edges according to a fixed
edge probability.

3.3  Robustness & Vulnerability

Complex Networks provide significant insides into the ability of a complex system to
maintain its throughput under node attack. The idea for defining its robustness and therefore
its vulnerability too, is to observe the evolution of the size of the giant component of the
network during the attack. The process of deleting a fraction of nodes together with the edges
connected to them from a network is known as percolation. Percolation is a key approach to
measure the robustness of a network. An important aspect of understanding this concept is to
understand beforehand that the larger the largest component is compared to the size of the
network the harder it is for its components to fail against node and link attack. The simple
example below can describe at a very basic level the robustness concept in networks. Of
course, simple networks like the one below are unlikely to occur in any real-world complex
systems and we use it only to point out the meaning of robustness.
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To make an intuitive approach of network robustness we assume these two networks:

(a) (®)

Figure 9| (a) Star Graph (b) Ring Graph with node A in center. A has edges to all peripheral
nodes. Every node in 9a has degree=1 except from node A which has degree=8. Every node in 9b has
degree=3 except from node A which has degree=8. In both cases degree attack is performed and thus
node A, which has the highest degree value, is removed.

In the first case we see that if a degree strategic attack takes place, then node A is chosen
to be removed first because of its high degree value. In the second case we observe that using
the same criterion node A is removed again. Although we have the same number of nodes,
each attack leads to a different result; case 9b appears to be more robust because after one
node attack it does not fall apart directly. Contrariwise, network in 9a cannot manage to hold
any of its components together. Therefore, one can assume that network 9b is more robust
than network 9a.

To calculate the ability described above numerically we define robustness as follows [5]:
Let N be an initial network of size N. Let N, be the network that results when a fraction p of
the vertices is being removed together with the edges connected to them. Consider vertex
removal either uniformly randomly either targeted in descending order of any measurement
that shows their importance. We will clarify and analyze thoroughly node deletion in the
following chapter. The largest component of N, will be denoted by N,°. In order to quantify
the robustness, we have first to calculate the fraction o(p) = | N,° |/ N.
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We define the quantity of the robustness R as follows:

R=Y1 6(/N) ,RE0,1/2]

The fraction %allows the robustness to be compared with the R value of other networks of
various sizes and structures. The extremities of R correspond to the following networks: we
observe R value equal to % when a star graph is provided and equal to % 1- %) when a fully
connected graph is provided.

We define the quantity of vulnerability V of the network as follows:
V=--R , V€[0,1/2]

Think of vulnerability as a measure of the weakness of the network to resist to a thread,
i.e. node attack.
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3.4 Centrality Measures

Vertex and edge removal presuppose identifying a centrality measure that quantifies the
importance of each vertex (node) of the network. This allows arranging the nodes according
to their importance. Below are the definitions and the descriptions of each centrality measure
used in this work.

Degree Centrality

Degree of a node is assumed to be the number of edges it is connected to. It is the simplest
centrality measure. Given an undirected graph G = (V, E), with size N = |V| the degree
centrality of a node (vertex) v € V of the network is equal to deg(v).

d, = deg(v)

Figure 10] A Complex Network. Node P2 has degree centrality equal to 3 and therefore dv =3
Image can be found here: http://assets.20bits.com/misc/low-degree.png

Betweenness Centrality

Betweenness Centrality is another useful centrality measure that takes proper account of
the importance and load of the node. It is equal to the number of shortest paths from all
vertices to all others that pass through that node. The betweenness centrality of a node v is
given by the expression:

— ast (V)
BV - Zsiv;tt o
st

where o is the total number of shortest paths from node s to node t and og; is the number of
those paths that pass through v. Since we deal with undirected networks and in order to
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normalize the betweenness centrality value, i.e. g € [0,1] , it has to be divided by w

where N is the number of nodes in the largest component. B, achieves its highest value when
v is cross by every single shortest path [23].

Figure 11| A Network whose vertices are ranked according to their betweenness centrality. Hue
from red=0 to blue=max shows the node betweenness. Image can be found here:
http://upload.wikimedia.org/wikipedia/commons/6/60/Graph_betweenness.svg

Eigenvector Centrality

Eigenvector centrality is a measure of the influence of a node in a network . It assigns
relative scores to all nodes in the network based on the concept that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections to
low-scoring nodes. [24]

For a given graph G(V,E) with |[V| number of vertices let A = (a,;) be the adjacency matrix,
i.e.a, = 1if vertex vis linked to vertex t, and a,; = O otherwise. The centrality score of
vertex v can be defined as:

1 1
Xy = KZ teM(v) Xt = 2 ZtEG Ayt Xt

where M(V) is a set of the neighbors of v and X is a constant. With a small rearrangement this
can be rewritten in vector notation as the eigenvector equation

AX = AX
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In general, there will be many different eigenvalues A for which an eigenvector solution
exists. However, the additional requirement that all the entries in the eigenvector are positive
implies (by the Perron-Frobenius theorem) that only the greatest eigenvalue results in the
desired centrality measure. The v component of the related eigenvector then gives the
centrality score of the vertex v in the network. Power iteration is one of many algorithms that
may be used to find this dominant eigenvector. Furthermore, this can be generalized so that
the entries in A can be real numbers representing connection strengths, as in a stochastic
matrix. Consider the following example:

Matrix A is the 5x5 adjacency matrix for this undirected graph G=(V,E)

(@)

Vector x contains the degree centrality for each vertex

(b)

If we then multiply A and x the result for aech vertex is shown on the graph below

(©)

Figure 12| A Graph that represents the calculation of the eigenvector centrality. 12a, 12b and 12c
show the steps.
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If we take a closer look we can see that the degree centrality has been spread out. Each
vertex now has a value that corresponds to the sum of the degrees of its neighbors. Our goal
now is to find a matrix that has the following characteristic:

B:x=A"X
rxl] A *xx1
|x2] |A*x2
B-|x3|= A*x3
x4 A *x x4
I—xSJ |-/1*x5J

In this case the vector is called Eigenvector of A and the entries Eigenvector centralities of
the vertices. The vector can be multiplied by the adjacency matrix and return itself multiplied
by a scalar. [29] The eigenvector and eigenvalues can be calculated by solving the following
equation:

(A-AD)-x = 0

where I is the identity matrix.

Eccentricity Centrality

The distance between two vertices in a graph is the number of edges in a shortest path
connecting them. This shortest path is also known as geodesic path and the number as
geodesic distance. The eccentricity e, of a vertex vis the greatest geodesic distance
between v and any other vertex. It can be thought of as how far a node is from the node most
distant from it in the graph [25] [26] or one can assume that e, reflects how far is each node
from every other node at most in the graph. Therefore, if we consider dist.xv € V to be the
maximum distance node v has to any other node in the network then e,, can be considered as

e, = ———— [13]

B distymaxVEV

Closeness Centrality

Closeness centrality is based on the mean value of the distance from the node under
consideration to all other nodes of the network. Therefore we can find the mean geodesic path
as suggested in [5]:

R if path y;; for i=j is also included in the sum

or

g , if path y;; for i=j is not included in the sum

1
i = N=1ZjevYij
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Then we can define closeness centrality as

From the c; type, it is clear that nodes that are connected to many other nodes through
geodesic paths have a larger value of closeness. At this point, it is important to mention that
closeness centrality shows how long it will take for information to spread out from a single
node v to all other nodes sequentially [24]. Here follows an example:

Figure 13| An undirected Graph

We now calculate the closeness for each node in order to find which the most “central”
one is.

Co_1__ 4 _a_.,
Ja - 1724374 — 10

‘b = gl_b= 1+1iz+3 = ; = 0.57

‘= i: 2+1i1+2 = % = 0.67

‘a = é: 3+23—1+1 = ; =057

Coo L__ 4 __ 4 _,,

Je 4+3+2+1 ~ 10

As the results show, c is definitely the most central node and thus it can reach each other
node in a short distance.

k-core / k-shell

A subgraph G(C) induced by the set CEV is a k-core iff Yu € C: dg(gy(u) =k and G(C)
is maximal, i.e., for C o C, there exists v € C such that deg(v) < k. Anode v of G is said to
have coreness k iff it belongs to the k-core but not the (k+1)-core. All nodes with coreness k
constitute a special group of nodes named k-shell. The k-core is obtained by recursively
removing all nodes of degree smaller than k, until the degree of all remaining vertices is
larger or equal to k; a process also known as k-shell decomposition.[9]
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Figure 14| k-cores and k-shells of an
undirected graph. It is obvious from the
graph that all green nodes constitute 1-shell,
because they have degree at least one, they
belong to 1-core (the green one) but not the
2-core (the blue one). Therefore, the green
core represents the 1-core of the given graph.

k-shell decomposition was introduced

as a technique to characterize very large

graphs beyond its degree distribution. It

helps to highlight the underlying structure

of the network that is hindered by its

large size. Since biological networks consist of a large number of vertices, we used this tool

to make targeted attacks on nodes. The k-shell decomposition of a network suffers two

serious shortcomings due to its size: first k-shell decomposition is a very slow process when

the size is enormous and second memory constrains occur in this case. We have developed a

distributed and parallel algorithm for this purpose to achieve the decomposition. The

algorithm is developed in the Hadoop’s MapReduce environment, which is a cloud based
master-slave platform.

p-Power Community Index

The p-Power Community Index (u-PCI) of a sensor (here a node is assumed to be a
sensor) v is equal to k, such there are up to p x k sensors in the u-hop neighborhood of v with
degree greater than or equal to k and the rest of the sensors within that neighborhood have a
degree less than or equal to k [6]. As described in [6], nodes which have more connections
(large d, value) are more likely to be powerful because they can clearly affect more nodes. It
is clear that their power depends on the d, of their one-hop neighbors. If a node has a large
u-PCl value, it means that this node can reach other nodes on short paths.

Figure 15| An undirected graph For p=1, PCI(6) = PCI(3) = 3 and PCI(7) = PCI(4) = 2, PCI(1) =
PCI(2) = PCI(8) = PCI(9) = 1, PCI(5) = 2. For p=2, 2-PCI(6) = 2-PCI(3) = 2-PCI(4) = 1, 2- PCI(1) =
2-PCI(2) = 2-PCI(5) = 2-PCI(7) = 2-PCI(8) = 2 and 2-PCI(9) = 3. Notice that when a node does not
have any pHop neighbor then the pPCI value is set to zero.
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The p-PCI algorithm can be calculated for any value of y; if it is calculated for u=1, the
u-PClI is then considered as the plain Power Community Index (PCI). In our study we use
only the PCI and 2-PCI values. Larger values of p are not in our interest; u-PCI values
indicate that the node can reach others in a relatively short path and when values of u are
larger than 2 then the concept of direct influence on other nodes from the node under
consideration is basically lost. Having in mind the latter note, it is obvious that when a node
does not have a u-hop neighborhood the u-PClI value is set to zero. It means practically that in
this case the node is not able to exert influence to any other node of the network. In case

where the goal is a targeted attack, this node is not considered as a perfect candidate for
removal.

We now present the algorithm we used to compute PCI and 2-PCI values in this work.

Algorithm 1: Algorithm for p-PCI calculation
Input: Undirected Graph G = (V. E)
Output: n-PCI value for each ve V
1. for each veV do
2. oneHopNeighborhood €— getOneHopNeighborhood(v):
3. ifp == 2 then
4. for each v= oneHopNeighborhood do
5. pHopNeighborhood «€— getOneHopNeighborhood(v):
o. end
7. else //pp = = 1
8. nHopNeighborhood €— oneHopNeighborhood:
9. end
10. k=1:
11. if uHopNeighborhood is empty then
12, return O:
13. end
14. while deg(v) = k ve pHopNeighborhood do
15. k++:
16. next v:
17. end
18. end
19. return k-1:

Figure 16| Algorithm for p-PCI calculation. Notice that we only considered two possible values for
w in our algorithm; p=1 and p=2.
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35 Network Measures

Besides the centrality metrics we included other more global metrics to obtain the statistics
and draw our conclusions. The above centrality measures are used to retrieve the importance
of each node in the network and to arrange them in order of their importance. Then this
arrangement is used to choose which node to remove in a targeted attack. More global
measures are used to characterize the whole complex system. Below we describe these global
metrics to clarify their concept.

Clustering Coefficient

The Clustering Coefficient of a network measures the average probability that two
neighbors of a vertex are themselves adjacent. The local clustering coefficient C; of a vertex i
€ N is defined as [5]:

o (number of pairs of neighbors of i that are adjacent)

Ci=

(number of pairs of neighbors of i)

The global clustering coefficient C for the whole network is defined as the mean value of
all G, i.e.

C=23N.C, Cefo01]

Diameter of Network

The diameter d of a network is the maximum eccentricity of any vertex in the graph; d is
the greatest distance between any pair of vertices or, alternatively,

d =max,ey €, .

To find the diameter of a graph, first find the shortest path between each pair of vertices
and then consider the greatest length of any of these paths as the diameter of the graph [25].
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3.6 Attack Types

The robustness of the network can be considered as its resistance to disconnection of its
components and its throughput under node and link removal. Before the removal takes place,
centrality measures have to be obtained for each node in the network. After degree,
betweenness, eccentricity, eigenvector, closeness, k-shell or u-PClI centrality is calculated for
each node, all nodes are arranged in decreasing rank of the specified centrality measure. This
is a conduct process so that the individual importance of each node in the network can be
highlighted. As a next step the network gets “pruned”, while removing one by one the nodes
in the latter described order. During this reduction we study the effect this process has on the
largest component of the network, i.e. we calculate the robustness. Several types of strategic
node attack exist.

The first attack type to note is the simplest and unlikely to occur when targeted attack is
aimed. In this case, nodes are deleted together with the edges connected to them in a random
order, true to its name, regardless to their centrality values.

In situations where the goal is to force targeted attacks, simultaneous attacks are the first to
be taken under consideration. Simultaneous targeted attacks describes a situation where the
centrality measure is calculated firstly for all nodes and then nodes along with their edges are
removed in the order of the centrality measure, from the highest to the lowest.

A second approach for coordinated attacks is more complex than the latter and known as
the sequential target attack. Sequential target attack is a malicious attack and a situation where
the centrality measure for all nodes of the initial network is calculated and then the “attacker”
picks the node with the highest value. In order to delete the next node, centrality measures
have to be calculated from scratch because now the network under consideration has changed.
As a result the role and significance of each node in the network has changed too and this it is
wise to recalculate the centralities to highlight the most powerful node.

31



Evaluation

4.1 Simulation model

We developed a graph simulation model based on Gephi, an open source interactive
visualization and exploration platform suitable for complex networks analysis. We also
developed a user interface shown in Figure 17. For this purpose we used NetBeans IDE
(Integrated Development Environment) and java version javal.7.0_03. Our system has the
following features: 6GB RAM and IntelCore i7 950 @ 3,7 GHz. We also had to increase
heap size of this project up to 1MB in order to avoid Java’s Garbage Collection during graph
initialization, especially when the graph was dense.

In order to retrieve the k-cores and k-shells of the graph we developed a distributed
algorithm for Hadoop’s MapReduce. We used the fully distributed version of Hadoop; one
master node and a pair of slaves were provided for this purpose. Hadoop was installed on a
blade server and on each Daemon CentOS (Community ENTerprise Operating System) was
installed. Also each Daemon has a 30GB disk, a 12GB RAM and 8 cores.

Figure 17| Our application Interface
4.2 Our Network Models

The networks we used for our experiment were both empirical biological networks
and synthetic ones. A Protein-to-Protein interaction network in budding Yeast (Yeast) and a
Human Disease Network (HDN) were included in the category of empirical biological
networks (the original datasets can be found in [27] and [28]). Barabasi —Albert (BA) and
Erdés—Rényi (ER) networks were used to examine the robustness of synthetic networks that
share similar features with the empirical ones. The latter networks were generated with
CentiBin software. All networks have different sizes and attributes.
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4.2.1| Protein-to-Protein Interaction Network in budding Yeast

The Protein-to-Protein Interaction Network in budding Yeast is an empirical network that
consists of 2361 nodes and 7182 edges. For better visualization we provide the network
structure in Figure 17 that follows. In Figure 20 correlations between centrality measures are
shown for the Yeast Protein Network. In Figures 18 and 19 the distribution of each centrality
is provided.

Figure 18| The Yeast Protein Interaction Network — Proteome with 2361 nodes and 7182 edges The
network is created with Gephi visualization software. For this purpose and for our experiment dataset
that is provided in the Gephi wiki is used. Dataset can be found here
http://wiki.gephi.org/index.php/Datasets

33


https://gephi.org/
http://wiki.gephi.org/index.php/Datasets

Figure 19| Centrality measures Distributions of Protein-to-Protein Interaction Network in
budding Yeast with 2361 nodes and 6646 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d)
eccentricity respectively.

Figure 20| Centrality measures Distributions of Protein-to-Protein Interaction Network in
budding Yeast with 2361 nodes and 6646 edges. (a) degree; (b) PCI; (c) 2-PCI respectively.
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Figure 21| Correlations between centrality measures of Protein Interaction Network in budding
Yeast with 2361 nodes and 6646 edges. (a) betweenness versus eccentricity; (b) betweenness versus
eigenvector; (c) eccentricity versus eigenvector; (d) eigenvector versus closeness
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4.2.2| The Human Disease Network

The Human Disease Network is an empirical network that consists of 7533 nodes and
22052 edges. For better visualization we provide the network structure in Figure 21 that
follows. Figure 24 shows the correlations between centrality measures for the Human Disease
Network. The distribution of each centrality is provided in Figures 22 and 23.

Figure 22| The Human Disease Network — Diseasome The network is created with Gephi
visualization software. For this purpose and for our experiment dataset that is provided in the Gephi
wiki is used. Dataset can be found here http://wiki.gephi.org/index.php/Datasets

Figure 23| Centrality measures Distributions of the Human Disease Network with 7533 nodes and
22052 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) eccentricity respectively.
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Figure 24| Centrality measures Distributions of the Human Disease Network with 7533 nodes and
22052 edges. (a) degree; (b) PCI; (c) 2-PCI respectively.

Figure 25| Correlations between centrality measures of the Human Disease Network with 7533
nodes and 22052 edges. (a) betweenness versus eccentricity; (b) betweenness versus eigenvector; (c)
eccentricity versus eigenvector; (d) eigenvector versus closeness
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4.2.3| The Barabasi—Albert Network Model

The Barabasi—Albert Network is a synthetic network that consists of 5001 nodes and
14947 edges. We used a random seed equal to 1212 and we processed 5000 iterations to
retrieve this network.

Figure 26| The Barabasi—-Albert Network with 5001 nodes and 14947 edges. The dataset for the
graph was created with CentiBin and the visualization was created with Gephi. The purple nodes are
hub nodes.

Figure 27| Centrality measures Distributions of the Barabasi-Albert Network with 5001 nodes
and 14947 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) eccentricity respectively.
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Figure 28| Centrality measures Distributions of the Barabasi-Albert Network with 5001 nodes
and 14947 edges. (a) degree; (b) PCI; (c) 2-PClI respectively.

Figure 29| Correlations between centrality measures of the Barabasi—Albert Network with 5001
nodes and 14947 edges. (a) betweenness versus eccentricity; (b) betweenness versus eigenvector; (c)
eccentricity versus eigenvector; (d) eigenvector versus closeness.
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4.2.4| The Erdés-Rényi Network Model

The Erdds-Rényi Network is a synthetic network that consists of 5000 nodes and
12536 edges. We used an edge probability equal to 0.001to retrieve this network.

Figure 30| The Erdés-Rényi Network with 5000 nodes and 12536 edges. The dataset for the graph
was created with CentiBin and the visualization was created with Gephi.

Figure 31| Centrality measures Distributions of the Erdés-Rényi Network with 5000 nodes and
12536 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) eccentricity respectively.
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Figure 32| Centrality measures Distributions of the Erdds-Rényi Network with 5001 nodes and
12536 edges. (a) degree; (b) PCI; (c) 2-PCI respectively.

Figure 33| Correlations between centrality measures of Erddgs-Rényi Network with 5000 nodes
and 12536 edges. (a) betweenness versus eccentricity; (b) betweenness versus eigenvector; (c)
eccentricity versus eigenvector; (d) eigenvector versus closeness.
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Before we start to describe our results we first have to provide some important insights of
the network models that have been included in our work. Table 1 and 2 that follow store the
characteristics of each of them.

Network Models and Features

Network Number of Diameter Average Path Number of Number of
Type Triangles length shortest paths k-cores
Yeast 3530 11 4.376 4.944.096 10
HDN 7043 17 4.629 52.976.918 10

BA 341 7 4.169 25.005.000 2
ER 20 11 5.455 24.656.192 3

Table 1| Table containing all networks along with their characteristics

Network Models and Features
Max Max Avg
Type Short Description Undirected #V #E Largest Clustering
Component = Coefficient
Protein-to-Protein W
Interaction Network in
Yeast budding Yeast 2.361 6.646 2.224 0.200

Network

A network of disorders
and disease genes
linked by known W
disorder-gene
HDN associations, indicating 7.533 = 22.052 7.279 0.106
the common genetic
origin of many diseases
[http://wiki.gephi.org/inde
x.php/Datasets]
Barabasi—Albert N
network, edge
BA probability=0.0001.The 5.001 = 14.947 5.001 0.007
network was generated
with CentiBin.
Erd6s-Rényi network, V
random seed=1212 &
number of
ER iterations=200.The 5.000 12.536 4.966 0.001
network was generated
with CentiBin.

Table 2| Table containing all the networks along with their characteristics
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4.3 Attack Performance Evaluation

4.3.1| Simultaneous Target Attack

Our first experiment includes simultaneous target attacks. In this section we study the
effect of node deletion on the largest component of the network. The node and edge removal
follows a simultaneous strategy; this means that degree, betweenness, eccentricity, closeness,
eigenvector, PCI, 2-PCI and k-shell values are calculated for all nodes and nodes are then
deleted in descending order of their centralities in each case. This process was applied to a
variety of network models, such as scale-free networks (BA), a yeast protein-to-protein
interaction network (Yeast), a network of disorders and disease genes (HDN) and a random
network (ER). It is important to notice that in case of the k-shell, only simultaneous attack is
performed.

Figure 34| Robustness against simultaneous target attack of (a) the Protein Interaction Network in
budding Yeast (b) the Human Disease Network, (¢) Barabasi—Albert Network and (d) the Erdés-Rényi
Network
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Figure 34 shows robustness results for each network used in our study against attacks by
each centrality measure aforementioned. It is clear from the graphs that performing
simultaneous target attacks according to the degree centrality turns the network into a less
robust but more vulnerable one, in each studied case. Hence, simultaneous degree attack is the
most effective way to decompose the network and destroy the consistency of its structure.
Simultaneous target attack according to betweenness centrality seems to be the second most
effective attack in order to degrade the network structure.

Eigenvector centrality has a medium impact on the robustness of real-world biological
networks compared to the other centralities of this study and a medium to good impact on
synthetic ones. The same can be assumed when performing the simultaneous strategic attack
but now according to the k-shell values. Although different networks might have a different
number of k-cores, the largest component size is medially to slightly low affected by node
removal in each case.

An attacker is unlikely to achieve network destruction when trying to delete nodes in
descending order of their closeness centrality simultaneously. In all situations, the network is
decomposed in a very slow way and therefore it is less vulnerable to attacks than other metric
values. Eccentricity attack has also a relatively low performance when the goal is to destroy
the biological network. One can see in Figure 34 that in both in the PIN and the HDN the
network maintains its total throughput in a very good level and in the less better in the ER and
almost in an average level in the BA.

A very interesting outcome is that when attacking nodes of both biological and synthetic
networks according to their PCI (u=1) value, their individual components disconnect
relatively rapid. Although all four networks nodes have different PCI values, PCI
simultaneous target attack has very similar results on each one. This means that deleting
nodes which have one-hop neighbors that are effective information spreaders, i.e. hub nodes,
makes the network vulnerable to attacks. In real-world biological networks performing the
same attack as the latter, but this time aiming nodes who have two-hop hub neighbors, has a
less effective result. In this kind of attacks, the network appears to have a better resistance to
structure degradation than the PCI attack. We believe that when performing simultaneous
target attacks, 2-PCI has on the average a mediocre performance but is steadily medium in
each network considered. Generally, apparent from the results 2-PCI manages to approximate
the mean value® of robustness and vulnerability in the best way compared to all other six
centralities that have been tested.

At this point let us examine the case of the HDN in a little more detailed way since its
topological features affect the u-PCI values in an interesting aspect. Previous studies show
that hub proteins (nodes) are likely to be encountered in essential human genes and their role
is dominant in the structure of the interactome [15]. On the other hand, non essential proteins
have mostly a localized role in the network. Considering that p-PCI is a localized measure,
more informative than the degree and also not influenced by the isolated nodes we can
observe that PCI reflects more the fragility against sequential removal of nodes with a more

'The average value of robustness is considered as the mean value of the robustness that is calculated
when degree, eigenvector, eccentricity, closeness and k-shell simultaneous target attacks are
performed.
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powerful effect to their neighborhood than eccentricity or closeness centrality. Therefore,
nodes that are attached to many hub nodes are removed and make hub nodes less powerful. In
this situation essential genes become gradually more non essence nodes. Hub nodes play a
central and functional role in the human interactome and hence making them more powerless
inevitably destroys the underlying network structure. Taking under account the impact that
PCI on the HDN has it is logical to assume that 2-PCI has less effect on the network
degradation than PCI; the results are confirming this aspect.

We believe that the best way to attack simultaneously a biological network is to aim for
nodes with the highest degree; not only is this the most efficient way but it is also the fastest
computational way. This result is a consequence of the fact that high degree nodes are
essential and play a central role in empirical networks and are hub nodes in synthetic
networks and therefore when removing them and the links attached to them the network
decomposes relatively fast. Specifically as mentioned in [1], Protein-to-Protein Interaction
Networks have only a small number of hub nodes and the other nodes are not highly
connected. Removing a hub protein (node) from the PIN network probably causes a fatal
failure to the network’s structure rather than removing a non-hub node, i.e. a hode with poor
connections to other nodes, which shall not have a great impact on the proteome. This rule we
confirmed in our studies is known in Genome analysis as centrality-lethality rule.

PCI centrality can be used to highlight the fragility of the network against simultaneous
target attacks, since it results a rapid decrease of the giant component. Removing nodes with
high PCI values diminishes the cohesion of the network structure relatively fast. Less
effective than the latter centrality attack, is to perform a simultaneous attack by a class higher
u (u=2). It does provide less significant insights into biological system vulnerability than the
PCI centrality. We believe that both power community indexes can be considered as a better
option than other centrality measures, like closeness, to expose the vulnerability of the
network and generally a good choice if the goal is to examine the average robustness
compared to other centralities. Also, 2-PCI can be considered as the best option to
approximate the average value of robustness® compared to all other centrality measures used
in this work.

Regardless of the number of k-shells and k-cores and despite that we remove the most
‘central’ nodes in an onion-like shaped structure after retrieving the k-cores (see Figure 14 for
better visualization and understanding of the structure decomposition), simultaneous targeted
node deletion has a poor ability to capture both the robustness and the vulnerability of the
network under consideration. It is clear though that robustness is better exposed for synthetic
and wvulnerability for empirical networks. Another observation is that the hierarchy of
empirical networks comprises ten k-cores in contrast to the BA and ER in which two and
three k-cores appear respectively.

In contrast, a rather inferior choice would be to perform a simultaneous target attack
according to the descending order of closeness centrality. In this case nodes that are as close
to all nodes as possible and not necessarily directly connected to them as in degree centrality
are chosen for deletion. The result in this case is the opposite of what an attacker is actually

2 . o .
The average value of robustness is considered as the mean value of the robustness that is calculated
when degree, eigenvector, eccentricity, closeness and k-shell simultaneous target attacks are
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aiming for. But when the goal is to provide the robustness of the underling network structure
deleting nodes by decreasing order of their closeness centrality will be by far the best choice.

Robustness Report
Simultaneous Target Attack

w m m
5 g 2 ] - 3 .W
Network & 3 =1 2 8 S T —
2 3 = 8 2 = ) 2
o = 5] &
A < =
Yeast 0.109 0.114 0442 0.169 0444 0.149 0.174 0.174
HDN 0.107 | 0.119 @ 0.466 @ 0.186 0.467 @ 0.140 0.194 0.156
BA 0.210 0.239 0500 0.330 0.500 0.267 0.353 0.455
ER 0.301 @ 0.327 | 0471 | 0.372 @ 0.493 | 0.358 | 0.393 0.404

max-min 0.194 0.213 0.058 0.203 0.056 0.218 0.219 0.299
Table 3| Robustness against simultaneous target attack by degree, betweenness, eccentricity,
eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit.

Numerically speaking, we can confirm from results displayed in Table 3 that closeness has
the same effect in almost each network and therefore the difference of the maximum and
minimum value of robustness is very small (0.056). The same applies for the eccentricity
centrality case (0.058). The lack of robustness against simultaneous target attack by degree is
confirmed in the Degree column of Table 3.

Vulnerability Report
Simultaneous Target Attack

w m m
0 g 8 < 2 o x
Network {9': 3 3 2 @ 8 - &5
= - =, D > - O @
® 2 =} =2 ] - =
7 < S @
Yeast 0.391 0.386 0.058 0.331 0.056 0.351 0.326 0.326
HDN 0.393 | 0.381 | 0.034 | 0.314 | 0.033 | 0.360 | 0.306 0.344
BA 0.290 0.261 @ 0.000 0.170 0.000 0.233 0.147 0.045
ER 0.199 | 0.173 | 0.029 | 0.128 | 0.007 | 0.142 | 0.107 0.096

max-min 0.194 0.213 0.058 0.203 0.056 0.218 0.219 0.299
Table 4| Vulnerability against simultaneous target attack by degree, betweenness, eccentricity,

eigenvector, PCI, 2- PCI, closeness and k-shell of all networks. All values are rounded to the third
digit.
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Figure 35| All network models and their robustness against Simultaneous Target Attacks.
Average Robustness is also shown.
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4.3.2| Sequential Target Attack

Our second experiment includes sequential target attacks. We study the effect on the
largest component of the network node deletion has. The node removal follows a sequential
strategy; this means that degree, betweenness, eccentricity, closeness, eigenvector, PCI and 2-
PCI values are calculated for all nodes and they are then deleted in descending order of their
centrality values. A next step is to consider the network N, that results from deletion of a
fraction of p nodes as a new network and force a new round of calculations. This process is
repeated until no nodes are left and highlights each time the most ‘central’ node. We applied
sequential targeted removals to a variety of network models, such as a scale-free network
(BA), a yeast protein-to-protein interaction network (Yeast), a network of disorders and
disease genes (HDN) and a random network (ER).

Figure 36| Robustness against simultaneous target attack of (a) the Protein Interaction Network in
budding Yeast (b) the Human Disease Network, (c) Barabasi—Albert Network and (d) the Erdés-Rényi
Network
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Figure 36 shows that the same networks behaves differently under sequential target attack
when compared to simultaneous. Sequential target attack has on average greater impact than
simultaneous targeted attack by almost each type of centrality measure. The preceding results
can be qualitatively understood considering that in each round of the attacks the most
important node according to the centrality values is removed along with its connections.
Hence, this procedure reduces the resistance of the network to failures and degrades it rapidly.

Specifically, it is obvious from the diagram that sequential attack by both eccentricity and
closeness can highlight the ability of a network to maintain its total throughput under node
and link removal better than other centralities. In both cases the biological complex systems
under consideration disconnect their components quiet hardly; we observe that only after
removing 45-50% of the nodes the size of the giant component is cut in halve.

Conversely, the outcomes for the robustness when targeting nodes according to other
centralities are significantly different. Betweenness centrality appears as the superior choice
in order to attack a biological network in a sequential process. This aspect is respected to
result as a node with a high betweenness level is the node which achieves the maximum
number of shortest paths from all nodes to all others that pass through that node. If this node
is deleted then we delete concurrently the connections between other nodes. As mentioned
previously, protein networks tend to have hub nodes that play a crucial role in its vital
functionality. When removing hub nodes and particularly the most important that is placed in
between other nodes the network degrades rapidly.

We also observe that in contrast to simultaneous target attacks, degree has lost here its
ability to expose vulnerability in the same superior level as in the previous category of
failures. PCI and 2-PCI values as a measure of robustness manage to capture again the best
approximation of the mean value® of both robustness and vulnerability compared to all other
values of robustness calculated in the other cases of centralities; 2-PCI maintains a better
approach of the average robustness value than PCI. PCI again exhibits in a better order the
vulnerability of the network against malicious failures than 2-PCI. Of course, this can be
understood considering that in each round of deletion the most important spreader in the
network is removed; after all, u-PCI tries to discover the node that can achieve the maximum
influence to other nodes.

Finally, sequential targeted node removal by eigenvector centrality reaches again as in
simultaneous attacks a mediocre performance in determining either the robustness or the
vulnerability.

We believe that when the goal is to capture the robustness of a network eccentricity and
closeness are the best choice. On the other hand, node deletion by decreasing betweenness
centrality order is more likely to expose vulnerability against sequential attacks. If the case is
to define the average robustness and vulnerability of malicious failures p-PCI, for p=1 and
even better for u=2, meets the best conditions to capture the throughput of the network under
node removal.

*The average value of robustness is considered as the mean value of the robustness that is calculated
when degree, eigenvector, eccentricity and closeness sequential target attacks are performed.
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Robustness Report
Sequential Target Attack

w m m
o s S B <3
Network &: % g % % 8 §
81 3| EB| 2| & B
a < =
Yeast 0.097 0.081 0.444 0.099 0.444 0.129 0.146
HDN 0.093 0.083 0.467 0.093 0.467 0.110 0.127
BA 0.193 0.179 0.500 0.187 0.500 0.252 0.270
ER 0.253 0.242 0.493 0.251 0.493 0.314 0.321
max-min 0.160 0.161 0.056 0.158 0.056 0.204 0.194

Table 5| Robustness against simultaneous target attack by degree, betweenness, eccentricity,
eigenvector, PCI, 2-PCl, closeness and k-shell of all networks. All values are rounded to the third digit.

Numbers in Table 5 and 6 confirm our previous opinions about the classification of the
strategies that should be followed in order to provide the robustness and vulnerability of the
network under sequential node deletion. Particularly, every centrality captures poor
robustness, except from eccentricity and closeness. Observing the last row we can see that
although degree, betweenness, PCI and 2-PCI have a negative impact on the robustness they
have a different effect on each network; therefore we can see that the difference from the
maximum and minimum value of robustness is in a range from 0.160 up to 0.204. On the
other hand, eccentricity and closeness manage to affect the size of the largest component in a
very similar way in each network model during node and edge removal.

Vulnerability Report

Sequential Target Attack

gl 2| &| o
Network g s @ o S - N
g 2 g 5 S 9, 3
3 = 3 = z =

4] < =4 @
Yeast 0403 = 0419 0056 0401 0056 0371 0.354
HDN 0407 & 0417 | 0033 & 0407 @ 0033 0390 @ 0.373
BA 0307 0321 0000 0313 0000 0248 0.230
ER 0.247 | 0258 | 0007 @ 0249 0007 018 @ 0.179
max-min 0.160 0.161 0.056 0.158 0.056 0.204 0.194

Table 6| Vulnerability against simultaneous target attack by degree, betweenness, eccentricity,
eigenvector, PCI, 2-PCl, closeness and k-shell of all networks. All values are rounded to the third digit.
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Figure 37| All network models and their robustness against Sequential Target Attacks. Average
Robustness is also shown.
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4.3.2| Random Attack

In order to study the ability of a biological complex system to maintain its throughput
under random node attack and to reach reliable conclusions for the average case, we
performed several rounds of random attacks on each network. The outcomes are shown in
Figure 38. We are able to compare the results without any concerns about inconsistency since
robustness is calculated in percentage and largest component size is normalized.

Figure 38| Robustness against simultaneous target attack of (a) the Protein Interaction Network in
budding Yeast (b) the Human Disease Network, (¢) Barabasi—Albert Network and (d) the Erdés-Rényi
Network
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One can observe that the largest component reduces its size gradually and uniformly in all
four network models and in each experiment robustness has a very similar behavior. In the
Yeast Protein Interaction Network the size of the largest component shrinks to half when
slightly more than 40% of the nodes are removed randomly. Approximately the same results
appear in the Human Disease Network. To understand the results for the Yeast Protein
Interaction Network we should have in mind that Protein Interaction Networks have an
inhomogeneous structure and a great tolerance to random failures of their parts, as mentioned
in [15]. Therefore a random deletion of nodes, does not highly affect the overall network
structure.

In the case of BA and ER once the fraction of vertices removed exceeds about 45%-50%
the size of the largest component is halved. The explanation for this is that when performing
the node deletion, high centralized nodes are distributed throughout the network and the
possibility to delete only these nodes is not very high. Instead, what is most likely to occur is
a very random removal and therefore not only the central nodes are deleted but also those that
are more “isolated”. Consequently, the network is relatively robust against random failures of
its components.

Reviewing the results, we believe that the disadvantage of performing random attacks on
biological complex networks is that the vulnerability of the network under consideration
cannot be exposed in any case since the results of each attack are broadly consistent with
every other random attack performed on the same network. It seems that there is no clear case
in which fragility of the network under consideration is higher than others.

Robustness Report

Random Attack

w T w m

I @ - o = = 2 =

% o = = = >

Network - 2 = = = o = =

Z > Z > = > > >
Yeast 0.381 0.382 0.380 0.393 0.370 0.375 0.381 0.395
HDN 0.394 0.394 0.397 0.398 0.392 0.394 0.398 0.394
BA 0.463 0.454 0.458 0.454 0.451 0.458 0.450 0.457
ER 0.435 0.437 0.433 0.436 0.436 0.435 0.436 0.440
max-min 0.082 0.072 0.078 0.061 0.081 0.083 0.069 0.063

Table 7| Robustness against simultaneous target attack by degree, betweenness, eccentricity,
eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit.

Table 7 summarizes the results from the robustness measured during several random
attacks on each network. The values in the last row show that each round of random attacks
performed has very similar results for all networks; hence the difference from the maximum
and the minimum values found is very small. Moreover, the lack of fragility of the networks
against random node removal is also confirmed from the values of Table 8. Vulnerability
appears to be relatively small in all network models and in all attacks performed on them.
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Network
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Vulnerability Report
Random Attack
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Table 8| Vulnerability against simultaneous target attack by degree, betweenness, eccentricity,
eigenvector, PCI, 2-PCl, closeness and k-shell of all networks. All values are rounded to the third digit.

Figure 39 shows the maximum and minimum values of robustness we encountered during
the experiments and Figure 40 shows the number of nodes and the k-shells found in each

network.
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Figure 39| All networks along with their characteristics
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Figure 40| All networks along with their characteristics
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Discussion

Many complex systems can be represented by complex networks. Complex network
representation has found a number of applications in areas as bioinformatics, graph
visualization, Internet mapping projects, sociology and distributed system analysis. Scientists
originating from each discipline focus their interests on defining the robustness of the
complex network since this will highlight the ability of a network to maintain its total
throughput under node and link removal. Specifically, a robust network maintains to keep its
components strongly connected and makes the network degradation very hard. The less robust
a network is the more vulnerable it is against failures of its components. We consider three
types of network attacks: the random attack, where nodes are removed randomly; sequential
target attacks, where nodes are deleted according to the descending order of their centrality
measure which is recalculated in each round; the simultaneous target attack, where nodes are
deleted according to the descending order of their centrality measure which is calculated only
initially.

This work endeavors to determine the robustness and vulnerability of biological complex
networks towards targeted and random failures, using, besides from the centralities that have
already been examined in previous work, the p-Power Community Index to find out the most
important nodes in the network. The obtained results described extensively in the above
section lead us to the following summarized conclusions:

An interesting result is that PCI and 2-PCI metrics have in each attack type almost the
same impact on the network. Particularly, when trying to attack a biological network by
descending or random order of their Power Community Index, of class one and two for
sequential target attacks and of class two for simultaneous target attacks, the robustness and
vulnerability that is retrieved in each case approximates better the average values of
robustness and vulnerability than the other centrality metrics. We consider as average value of
robustness the average value of robustness of all other metrics except robustness value p-PCI.
We believe that 2-PCI can be considered as an approximation tool of average robustness and
vulnerability for each of the two targeted attack types.

Another significant outcome is that regardless of the number of nodes the network
contains and regardless of the number of k-cores it consists removing the nodes
simultaneously targeted to the k-shell they belong we do not achieve any maximum or
minimum value of robustness compared to the other measures. Deleting the most “central”
nodes in the latter case, captures better the robustness in case of empirical biological networks
and exposes better their vulnerability in case of synthetic ones.

For simultaneous target attacks, deleting nodes by degree is a superior method to expose
the fragility of the network under node attack, since biological complex networks contain
many hub nodes which are crucial for their functionality and play a vital role in the network
structure. If the goal is to highlight the robustness then closeness centrality should be
preferred to arrange the nodes in order of their importance.
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For sequential target attacks, robustness of a biological complex network can be better
retrieved when using closeness or eccentricity centrality to measure the importance of each
node. If we want to exhibit how fragile a network under node attack is we may simply use
betweenness centrality; one will only need to remove a fraction of nodes less than 30% to
achieve the dissolution of the network structure.

A random attack, as our results confirm, does not show any particular trend to a certain
metric value in order to determine either the robustness or the vulnerability of the network.
All centralities tend to have the same behavior against random failures and the networks
appear to be relatively tolerant to random node removal.

As an extension to our study, 2-PCI value can be examined as a approximation tool for
robustness of biological complex networks; specifically, we have to define how precisely it
approaches the average robustness compared to other centrality measures and how much
deviation from the real robustness value can be expected.
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