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Περίληψη 

Η αλάιπζε ηωλ Σύλζεηωλ Δηθηύωλ έρεη ζεκεηώζεη ζεκαληηθή αλάπηπμε θαηά ηε δηάξθεηα 

ηεο ηειεπηαίαο δεθαεηίαο, θαζώο κεγάινο όγθνο πιεξνθνξηώλ πνπ αθνξνύλ πνηθηιία 

ζύλζεηωλ δηθηύωλ έγηλε επξέωο δηαζέζηκνο. Πξνο απηή ηελ θαηεύζπλζε, πνιιά ζύλζεηα 

ζπζηήκαηα κπνξνύλ λα πεξηγξαθνύλ ζαλ ζύλζεηα δίθηπα, όπνπ νη ζπληζηώζεο ηνπο 

αλαπαξηζηώληαη ωο θνξπθέο θαη νη ζπλδέζεηο ηνπο ωο αθκέο. Μεηαμύ άιιωλ, ε 

αλαπαξάζηαζε κε ζύλζεηα δίθηπα έρεη βξεη κεγάιν αξηζκό εθαξκνγώλ ζε πεδία όπωο 

βηνπιεξνθνξηθή, νπηηθνπνίεζε γξάθωλ, θνηλωληνινγία θαη ζηελ αλάιπζε θαηαλεκεκέλωλ 

ζπζηεκάηωλ. Σηε βηνινγία, ηα ζύλζεηα δίθηπα αλαπαξηζηνύλ κηα πνηθηιία βηνινγηθώλ 

νληνηήηωλ, από απινύο νξγαληζκνύο κέρξη αληηδξάζεηο πξωηεϊλώλ. Μεγάιε πξνζπάζεηα έρεη 

γίλεη γηα ηελ θαηεγνξηνπνίεζε θάζε θόκβνπ ηνπ δηθηύνπ αλάινγα κε ηε ζέζε ηνπο ζηε δνκή 

ηνπ  βηνινγηθνύ δηθηύνπ θαη γηα ηε δηάθξηζε ηωλ θόκβωλ πνπ έρνπλ κεγάιε επηξξνή ζην 

δίθηπν από ηνπο θόκβνπο ηωλ νπνίωλ ε απώιεηα δελ ζα επεξεάζεη ηε ζπλνρή θαη 

ιεηηνπξγηθόηεηα ηνπ ζπλνιηθνύ δηθηύνπ.   

Έλαο γεληθόο ζηόρνο όηαλ κειεηάκε ηέηνηνπ είδνπο δίθηπα είλαη λα νξίζνπκε ηελ 

επξωζηία ηνπ ζπλνιηθνύ δηθηύνπ ζρεηηθά κε ζθάικαηα ηωλ ηκεκάηωλ ηνπ. Πην 

ζπγθεθξηκέλα, ε επξωζηία κπνξεί λα θαζνξηζηεί παξαηεξώληαο ηηο αιιαγέο ηνπ δηθηύνπ 

θαζώο αθαηξνύκε ηνπο θόκβνπο θαη ηηο αθκέο ηνπ    δηαγξαθέο απηνύ ηνπ είδνπο κπνξνύλ λα 

ζεωξεζνύλ ωο επηζέζεηο ζύλζεηωλ δηθηύωλ. Θεωξνύκε ηξείο ηύπνπο επηζέζεωλ: νη θνξπθέο 

κπνξνύλ λα αθαηξεζνύλ νκνηόκνξθα κε ηπραίν ηξόπν, κε θζίλνπζα ζεηξά ηηκώλ ηωλ 

κεηξηθώλ θεληξηθόηεηάο ηνπο ηαπηόρξνλα θαη κε θζίλνπζα ζεηξά ηηκώλ ηωλ κεηξηθώλ 

θεληξηθόηεηάο ηνπο αθνινπζηαθά. Η ελδηάκεζε θεληξηθόηεηα, ν βαζκόο,  ε θεληξηθόηεηα 

εγγύηεηαο θαη ε θεληξηθόηεηα ηδηνδπαλύζκαηνο είλαη θάπνηα παξαδείγκαηα κεηξηθώλ πνπ 

έρνπλ ήδε εκθαληζηεί ζηελ αλάιπζε ζύλζεηωλ δηθηύωλ θαη έρνπλ επηζεκαλζεί ζε 

πξνεγνύκελεο κειέηεο ζηελ πξνζπάζεηα θαζνξηζκνύ ηεο επξωζηίαο ηνπο. 

Σηελ παξνύζα εξγαζία πξνζπαζνύκε λα πξνζδηνξίζνπκε ηελ επίδξαζε πνπ έρεη ζηελ 

ππνθείκελε δνκή ηωλ ζύλζεηωλ δηθηύωλ ε ζηνρνπνίεζε θόκβωλ γηα δηαγξαθή ζύκθωλα κε 

ηελ ηηκή ηεο ηνπηθήο θαη κε ηνπηθήο κεηξηθήο ηνπο. Εθαξκόδνπκε όια ηα πξναλαθεξζέληα 

είδε επηζέζεωλ ζε βηνινγηθά δίθηπα θαη επεθηείλνπκε ηηο ήδε ππάξρνπζεο εξγαζίεο 

πξνζπαζώληαο λα πξαγκαηνπνηήζνπκε ζηνρεπκέλεο επηζέζεηο βαζηζκέλεο ζηηο ηηκέο ηεο κ-

PCI ηηκήο θάζε θόκβνπ. Επηπιένλ, πξνζπαζνύκε λα εθηειέζνπκε επηζέζεηο ζε κία νκάδα 

θόκβωλ ζύκθωλα κε ηελ k-shell ηηκή ηνπο, αθαηξώληαο θάζε θνξά απηνύο πνπ αλήθνπλ ζην 

πην θεληξηθό k-core. Σε απηή ηε κειέηε, ν ζηόρνο είλαη λα εθαξκόζνπκε επηζέζεηο ηόζν ζε 

πξαγκαηηθά όζν θαη ζε ζπλζεηηθά βηνινγηθά ζύλζεηα δίθηπα θαη λα αμηνινγήζνπκε εθηελώο 

ηελ επξωζηία θαη εππάζεηά ηνπο ζε ζηνρεπκέλεο θαη ηπραίεο αζηνρίεο.  

Τα απνηειέζκαηα δείρλνπλ όηη ε ζηνρεπκέλεο επηζέζεηο ζε βηνινγηθά ζύλζεηα δίθηπα κε 

βάζε ηε θζίλνπζα ζεηξά ηεο κ-PCI ηηκήο ηωλ θόκβωλ ηνπ ηόζν ηαπηόρξνλα όζν θαη 

αθνινπζηαθά κπνξνύλ λα πξαγκαηνπνηεζνύλ γηα λα πξνζεγγίζνπκε θαιύηεξα ηε κέζε ηηκή 

ηεο επξωζηίαο θαη ηεο εππάζεηάο ηνπο, ζπγθξηηηθά κε ηηο άιιεο κεηξηθέο θεληξηθόηεηαο. Πην 

ζπγθεθξηκέλα, ην 2-PCI επηηπγράλεη ηελ θαιύηεξε πξνζέγγηζε ζπγθξηηηθά κε όιεο ηηο άιιεο 

κεηξηθέο. Τν k-shell θαηνξζώλεη λα εθζέζεη θαιύηεξα ηελ εππάζεηα ηνπ δηθηύνπ απ‟ όηη λα 

απεηθνλίζεη ηελ επξωζηία ηνπ, ελώ γηα ηελ πεξίπηωζε ηωλ ζπλζεηηθώλ δηθηύωλ ηζρύεη 

αθξηβώο ην αληίζεην. Τν k-shell δελ κπνξεί λα ζεωξεζεί ωο βέιηηζηε θεληξηθόηεηα γηα 

επίζεζε. Ο βαζκόο ηωλ θόκβωλ κπνξεί λα ζεωξεζεί ωο βέιηηζηε θεληξηθόηεηα ώζηε λα 

Ανάλυζη Βιολογικών Γεδομένων: Μία προζέγγιζη με Σύνθεηα Γίκηυα 
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αλαδείμνπκε ηελ επξωζηία βηνινγηθώλ ζύλζεηωλ δηθηύωλ όηαλ ζπκβαίλνπλ ζθάικαηα θαηά 

ηε δηάξθεηα ηαπηόρξνλωλ επηζέζεωλ θαη ηελ ελδηάκεζε θεληξηθόηεηα θαη ηελ εθθεληξηθόηεηα 

όηαλ εθαξκόδνπκε αθνινπζηαθέο επηζέζεηο. 
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Abstract 

The analysis of Complex Networks has received considerable development during the last 

decade, since huge amount of information of a variety of complex networks became widely 

available. In this direction, many complex systems can be described by complex networks, 

where the components are represented by vertices and their connections by edges.  Among 

others, complex network representation has found a number of applications in areas as 

bioinformatics, graph visualization, sociology and distributed system analysis. In biology, 

complex networks represent a variety of biological units, from simple organisms to protein 

interactions. Huge amount of effort has been devoted on classifying the role of each 

individual node according to their position in the biological network structure and 

distinguishing high-impact nodes from nodes whose loss will not affect the consistency and 

functionality of the system. 

An overall goal when studying such networks is defining the robustness of the entire 

system to the failure of its parts. In particular, robustness definition can be addressed by 

observing how the structure of the network changes as vertices and nodes are removed; these 

kinds of edge and node removals can be considered as attacks of the complex network.  We 

consider three types of attacks: vertices are removed uniformly at random, in decreasing order 

of their centrality measure simultaneously and in decreasing order of their centrality measure 

sequentially. Betweenness, eccentricity, degree, closeness and eigenvector centrality are some 

examples of the metrics that have already been introduced in complex network analysis and 

that have already been considered in previous work when trying to identify the robustness of 

complex networks. 

Here we are trying to identify the effect on the underlying network structure of targeting 

vertices for removal according to their value of local and non-local measures. We apply all 

aforementioned attacks on biological networks and we extend the existing studies by trying to 

employ targeted attacks based on the κ-Power Community Index (κ-PCI) value of each 

vertex. In addition, we try to perform attacks on a group of nodes according to their k-shell 

value, by removing each time those which belong to the most central one.  In this study, the 

goal is to perform node and edge attacks both on empirical and on synthetic biological 

complex networks and evaluate extensively their robustness and vulnerability towards 

malicious and random failures. 

The results show that sequential and simultaneous target attacks by descending order of κ-

PCI value of nodes can be performed on biological complex networks to approximate the 

average robustness and vulnerability of the network better than the other centrality measures. 

Particularly, 2-PCI has the best approximation compared to all other centralities. K-shell 

manages to capture vulnerability better than exposing the fragility of the network against 

malicious attacks and the opposite is true for synthetic networks; either way, k-shell cannot be 

considered as an optimal centrality measure for attack. Degree can be considered as the 

superior centrality in order to highlight the robustness of a biological complex network 

against simultaneous target attacks and eccentricity or closeness when performing the attacks 

sequentially. 

Keywords: Biological Complex Networks, Robustness, Vulnerability, Simultaneous Target 

Attack, Sequential Target Attack, Random Attack, κ-PCI, k-shell 
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1 Introduction 

Many complex systems can be represented by complex networks, even if they initially 

seem unrelated to this concept. We refer to complex networks, when their components are 

described by vertices (nodes) and their connections by edges. There are numerous available 

examples of networks in many disciplines such as technology, sociology and biology. We 

face some of the most important examples of complex networks in the latter category, since 

the availability of large biological datasets has led to the recent popularity of the study of 

Protein Interaction Networks and to the development of such network types. In particular:  

 Protein Interaction Networks (PINs), which is the most important category of 

networks in complex biological systems analysis. In PINs representation, proteins are 

represented as nodes and their interactions as edges. 

 Neuronal networks (NNs)   

 Gene regulatory networks (DNA-protein interaction networks) 

 Signaling Networks 

 Species Interaction Networks 

 Metabolic Networks  

 Food webs  

are only some of the most representative biological complex networks examples. In biology, 

complex network studying has shifted its focus on large-scale network analysis, since almost 

every biological system is described by very large networks. Large-scale biological networks 

are referenced as “omes”, such as genome, interactome, proteome, diseasome, biome and so 

on.[18] 

 

 
Figure 1| The Human Gene Co-expression Network Image can be found here: 

http://bioinfow.dep.usal.es/coexpression/network.jpg 

http://bioinfow.dep.usal.es/coexpression/network.jpg
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The construction of a robust network of complex systems is a great challenge to the 

scientific community. An important aspect of studying the behavior of complex networks is to 

define the effect of random and malicious failures on the individual components of the 

network and on the whole system when vertices along with the edges attached to them are 

removed according to a centrality value. It is clear, that the importance of each node differs in 

each case of networks. Consider an example in which an attacker installs a virus on a 

machine. In this case, the attacker has to choose the most important node, here the hub node 

which is the node with the most connections to other nodes, in order to spread the virus 

installed efficiently. Now, consider a network of proteinomics, in which proteins 

are represented as nodes and their interactions as edges. In this case, deleting a hub-node is 

more likely to be fatal to an organism than non-hub, a phenomenon known as the centrality-

lethality rule. [1] 

It became imperative, regardless of the network type, to define some characteristics of 

complex networks that can indicate a robust underlying structure. At this point, we have to 

clarify what robustness is without giving yet a strict but a more free and intuitive definition.  

Among other definitions, robustness of a network can be described as the ability of a network 

to maintain its total throughput under node and link removal [2]; this means that a robust 

network maintains to keep its components strongly connected and thus it is less sensitive to 

node attacks.  

In order to measure the robustness of complex networks and the importance of nodes 

within them, in the last few years, a significant amount of metrics and methods have been 

Figure 2| A Metabolic Network  

Image can be found here:  

http://fiehnlab.ucdavis.edu/staff/grapov/grapov-metabolic-network-jpg.png 

 

http://fiehnlab.ucdavis.edu/staff/grapov/grapov-metabolic-network-jpg.png
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evolved and introduced in network analysis. Significant effort was made for this purpose. In 

previous related works, studies for the effect on the performance of the whole network was 

devoted and particularly cases in which node deletion in random or descending order of their 

degree, betweenness, eigenvector, eccentricity centrality value or their k-coreness is being 

performed. The purpose of this work is to extend previous work and also to investigate the 

robustness of biological networks when κ-PCI attacks are performed.  

Moreover, in each case other network characteristics, like vulnerability, maximum 

component size, number of triangles in the network, number of k-cores etc. have been studied 

and results are provided. Networks that are used in this study are retrieved both from real-

world biological datasets and from synthetic networks like Barabási -Albert and Erdős–Rényi 

graphs. The last two graph types are selected for our purpose, since they are the most similar 

to real-world network representations, with the first one to be a much better representation; 

the second one has a lack of many characteristics of empirical biological networks. 

The rest parts of this paper are organized as follows. In Sect. 2 we review the related work, 

our motivations and contributions; in Sect. 3 we describe Biological Network models, the 

centralities we used in our work, the network measures and the three attack types. We also 

define robustness and vulnerability in the same section. In Sect. 4 we describe the Network 

models we used in our work, our simulation model and the results retrieved. Finally, Sect. 5 

concludes our work. 
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2  Related Work 

 

Defining the robustness of a network against random and malicious failures on the 

individual components of the network and on the whole system has attracted significant 

attention in the literature concerning various types of networked systems. The studies along 

this line have been able to examine the robustness of, e.g. technological networks like the 

Internet topology at the autonomous system (AS) level [3], social networks like the Facebook 

network [4], Biological networks like Protein Interaction Networks (PINs) [5], and so on.  

In the context of network robustness, it is beneficial to investigate in depth the attack of 

nodes according to their value of as many centrality measures as possible in order to define 

the most aggressive attack or the robust network infrastructure. Huge amount of effort has 

been devoted to study the robustness when performing deletion of nodes according to their 

degree and betweenness value. Particularly, Ali Sydney et al. [2] considered the latter attacks 

and elasticity as a robustness measure and showed that link redundancy is a sufficient but not 

an essential criterion for robustness. 

A more thorough research on the on the definition of robustness of a network has been 

made by Iyer, Killingback, Sundaram and Wang in [5]. They suggested as robustness 

measurement the largest existing component of the network compared to the fraction of nodes 

that have been removed. The deletion of the vertices follows the descending order of 

betweenness, eccentricity, closeness, degree and eigenvector values that we describe in the 

next chapter in detail. They staged the attacks one step further, considering not only random 

and malicious failures, but they focus both on simultaneous and on sequential targeted attacks 

when targeting the nodes. 

Another metric used to highlight the underlying structure of networks, mostly very large 

sized, and its hierarchies which cannot be captured using other metrics due to their size, is the 

k-shell or k-core of a graph. Since real-world networks tent to have enormous size, the 

problem of the k-core decomposition has emerged and was addressed in recent works [8] [9] 

[10].  There are numerous examples of networks that have been “decomposed” based  on this 

method; study of the Internet topology at the autonomous system (AS) level, discovery of the 

role of proteins in complex proteinomic networks are only some of the examples that can be 

mentioned. The k-coreness is used to identify a group of nodes with degree at least k. It 

became clear, that higher values of k-coreness correspond to more central nodes of the 

network. In our study, we try to process a targeted attack on nodes with the largest coreness in 

a biological complex network and we present the obtained results in Sect.4 and 5.    

Similar work has been provided in [7] by Nicosia, Criado, Romance, Russo and Latora but 

in their study the problem of identifying the central elements in a network is described 

inversely. Therefore, they define a subset of nodes, called controlling set, which can prescribe 

a set of centrality values to all nodes of the network. Although they do not define the 

robustness of a network, their work proves that we can find a set of nodes whose role is 

more important than other nodes in the network and thus they can be considered as perfect 

candidates in a targeted attack. 
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Although it cannot directly be related to our work, in [6] Katsaros, Tassioulas, Dimokas 

and Manolopoulos developed a new metric called κ-Power Community Index (κ-PCI) which 

is more informative that the node degree and it is not affected by any isolated nodes. This 

latter measure provides a more localized/centralized centrality measurement and it was 

proposed as a criterion to select sensors with a special role in a grid of sensors based on their 

ability to influence the communication between multi-hop connected nodes. 

 

2.1 Motivations and contributions 

 

The proposed centralities so far are used as a criterion to rank nodes according to their 

importance in order to measure robustness of complex networks focus on the power each 

node individually in a network has. These kinds of metrics are strictly related to the 

characteristics of each node. All of these centralities examine each node as an individual 

entity in the network. But how can its importance be affected if it belongs to a powerful 

neighborhood? What happens if this node is deleted? Will the network collapse? What 

happens if we delete a whole set of nodes and particularly the most „central‟ k-shell? Can a 

biological network maintain its overall throughput under such a node deletion or will it 

degrade rapidly? These questions we will try to answer in this work. 

Motivated by the research in [6] for defining the most powerful sensor, here node, we 

propose the κ-PCI as a new criterion to target nodes for deletion in attacks on Biological 

networks. Moreover, considering that biological networks have a modular organization, we 

also extend previous studies and investigate the evolution of the giant component‟s size 

during a node removal according to their k-core values. Then, we use the results to calculate 

numerically the robustness and vulnerability of both empirical and synthetic biological 

complex networks.  

In summary, our work‟s contributions are the followings: 

 Definition of the robustness of biological complex networks. We study of the effect 

of random and malicious failures on the individual components of the network and on 

the whole system when vertices are removed according to their: 

 

o κ-PCI value (sequentially & simultaneously) 

o k-coreness (simultaneously) 

o degree, eccentricity, eigenvector, closeness and betweenness centrality value 

(sequentially & simultaneously) 

 

 

 Definition of the robustness of biological complex networks against random failures.   

 

 Evaluation of the outcomes. Robustness of the biological network is used as the main 

criterion to characterize its infrastructure, its resistance to disconnection of its 

components and its throughput under node and link removal. 
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3 Complex Networks  

 

 

3.1   Complex Networks 

 

A complex network is a graph (network) with non-trivial topological features - features 

that do not occur in simple networks such as lattices or random graphs but often occur in real 

graphs [19]. In all cases of Complex Networks, vertices are considered to be the elements of 

the represented complex system and the edges between them mean that they are associated in 

some order level; see Figure 3 and 4 for example. 

 

 
Figure 3| The worldwide air transportation network. Each grey link reassembles traffic of 

passengers between more than represent the network‟s skeleton, a tree-like structure only 1,300 links 

that represents the core structure of the network. Link in the skeleton are the most important 

connections of the network. Image can be found here: 

http://optimizationandanalytics.files.wordpress.com/2013/01/complex-network-structure.png 

 

Figure 4| The Internet AS The m-core decomposition of the Internet AS. Light purple means 1-

coreness and red means 21-coreness. Image can be found here: 

http://www.nature.com/srep/2013/130827/srep02517/fig_tab/srep02517_F5.html 

http://optimizationandanalytics.files.wordpress.com/2013/01/complex-network-structure.png
http://www.nature.com/srep/2013/130827/srep02517/fig_tab/srep02517_F5.html
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3.2  Biological Complex Network Models 

3.2 .1 The Biological Complex Network Model 

A biological network is any network that applies to biological systems. A network is any 

system with sub-units that are linked into a whole, such as species units linked into a 

whole food web. Complex biological systems may be represented and analyzed as 

computable networks [18]. Protein-Protein Interactions, the most common biological network 

model, are mainly represented by Biological Complex Networks, e.g. PINs (Protein 

Interaction Networks), where the proteins are represented as nodes and the connections 

between the interacting proteins are shown as edges [11]. 

In this work, we will use undirected graphs to form the desired biological networks since 

they are commonly represented as undirected graphs, i.e. graphs where the edges are not 

directed and therefore edge (u,v) is identical to (v,u). 

 

Definition 1: A graph or an undirected graph is a tuple G = (V,E) with a nonempty 

set V whose elements are called vertices, nodes or points a (possibly empty) set E of 

unordered pairs of elements of V called links or edges.[20] 

 

 
 

Figure 5| Undirected Graph 

Image can be found here: http://homepages.ius.edu/rwisman/C455/html/notes/AppendixB4/B4-2.gif 

http://homepages.ius.edu/rwisman/C455/html/notes/AppendixB4/B4-2.gif
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Figure 6| Human disease network (HDN) In the HDN, each node corresponds to a distinct disorder, 

colored based on the disorder class to which it belongs. A link between disorders in the same disorder 

class is colored with the corresponding dimmer color, and links connecting different disorder classes 

are gray. The size of each node is proportional to the number of genes participating in the 

corresponding disorder (see key), and the link thickness is proportional to the number of genes shared 

by the disorders it connects.  

 

Biological networks share a number of common global features which are listed below. 

Biological networks have [17]: 

 a scale-free degree distribution; this means that they contain a number of hub nodes 

that are the most important in the network [15] 

 a small average shortest path length between any two nodes; this is also knows as 

small-world model 

 a disassortative nature 

 a modular organization 

 a structural and dynamical robustness 

In our research we tried to examine as many biological network types as possible. We 

provide both empirical biological networks and synthetic ones. In order to highlight 

topological properties of synthetic biological networks, the scale-free network model 

proposed by Barabási Albert and the Erdős–Rényi model for random graphs where used. The 

first model is suitable to represent biological complex networks; the second is simpler than 

the real networks but since real-world networks have a small average diameter like the ER 

model we used it to see the effects of attacks on its structure.  
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3.2.2 The Barabási– Albert (BA) scale-free Network Model 

Definition 2: Barabási– Albert scale free model  

The Barabási– Albert (BA) model is an algorithm for generating random scale-free networks 

using a preferential attachment mechanism. Scale-free networks are widely observed in 

natural and human-made systems and therefore ideal to represent synthetic biological 

networks. [21] [12] 

  

 

 

 
Figure 7| The Barabási– Albert Graph The graph was created with CentiBin. Number of iterations 

was set to 20 and random seed to 10. 

 

 

The Barabási– Albert Algorithm 

The network begins with an initial connected network of m0 nodes. New nodes are added 

to the network one at a time. Each new node is connected to m m0 existing nodes with a 

probability that is proportional to the number of links that the existing nodes already have. 

Formally, the probability pi that the new node is connected to node i is: 

pi = 

    

    
 

where ki is the degree of node i and the sum is made over all pre-existing nodes j (i.e. the 

denominator results in the current number of edges in the network). [21] 

 

 

 

http://centibin.ipk-gatersleben.de/
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The most important properties of Barabási– Albert scale free model [21] 

 Heavily linked nodes ("hubs") tend to quickly accumulate even more links, while 

nodes with only a few links are unlikely to be chosen as the destination for a new 

link. The new nodes have a "preference" to attach themselves to the already heavily 

linked nodes.  

 

 The degree distribution resulting from the BA model is scale free, in particular, it is a 

power law of the form P(k) ~     

 

 The average path length of the BA model increases approximately logarithmically 

with the size of the network. 

 

 While there is no analytical result for the clustering coefficient of the BA model, the 

empirically determined clustering coefficients are generally significantly higher for 

the BA model than for random networks. The clustering coefficient also scales with 

network size following approximately a power law C ~        

 

 The Barabási– Albert (BA) model is suitable for Metabolic networks and food-webs 

and belongs to the Scale-free networks category with networks with a power-law 

distribution P(k) ~   γ 

 

3.2.3  The Erdős–Rényi Random Network model 

Definition 3: Erdős–Rényi Random Graph model [22] 

The Erdős–Rényi model is either of two closely related models for generating random graphs, 

including one that sets an edge between each pair of nodes with equal probability, 

independently of the other edges. 

 
 
Figure 8| The Erdős–Rényi Graph The Graph was created with CentiBin with edge probability set to 

0.09 

http://centibin.ipk-gatersleben.de/
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The most important properties of Erdős–Rényi Random Graph model [22] 

 The expected number of edges in G(n, p) is   
 
    

 If np < 1, then a graph in G(n, p) will almost surely have no connected  components 

of size larger than O(log(n)). 

 If np = 1, then a graph in G(n, p) will almost surely have a largest component whose 

size is of order n
2/3

 

 If np → c > 1, where c is a constant, then a graph in G(n, p) will almost surely have a     

unique giant component containing a positive fraction of the vertices. No other 

component will contain more than O(log(n)) vertices. 

 If     
        

 
, then a graph in G(n, p) will almost surely contain isolated vertices, 

and thus be disconnected.  

 If    
        

 
, then a graph in G(n, p) will almost surely be connected. 

The Erdős–Rényi (ER) model is suitable for uncorrelated random graphs and belongs to 

the single-scale network category with a sharp distribution of vertex degrees exhibiting 

exponential or Gaussian tails. [14] The construction of the network can be described as 

following: At first we have N disconnected nodes and then we add edges according to a fixed 

edge probability.  

 

 

3.3  Robustness & Vulnerability  

Complex Networks provide significant insides into the ability of a complex system to 

maintain its throughput under node attack. The idea for defining its robustness and therefore 

its vulnerability too, is to observe the evolution of the size of the giant component of the 

network during the attack. The process of deleting a fraction of nodes together with the edges 

connected to them from a network is known as percolation. Percolation is a key approach to 

measure the robustness of a network. An important aspect of understanding this concept is to 

understand beforehand that the larger the largest component is compared to the size of the 

network the harder it is for its components to fail against node and link attack. The simple 

example below can describe at a very basic level the robustness concept in networks. Of 

course, simple networks like the one below are unlikely to occur in any real-world complex 

systems and we use it only to point out the meaning of robustness. 
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To make an intuitive approach of network robustness we assume these two networks: 

 
Figure 9| (a) Star Graph (b) Ring Graph with node A in center. A has edges to all peripheral 

nodes.  Every node in 9a has degree=1 except from node A which has degree=8. Every node in 9b has 

degree=3 except from node A which has degree=8. In both cases degree attack is performed and thus 

node A, which has the highest degree value, is removed. 

 

In the first case we see that if a degree strategic attack takes place, then node A is chosen 

to be removed first because of its high degree value. In the second case we observe that using 

the same criterion node A is removed again. Although we have the same number of nodes, 

each attack leads to a different result; case 9b appears to be more robust because after one 

node attack it does not fall apart directly. Contrariwise, network in 9a cannot manage to hold 

any of its components together. Therefore, one can assume that network 9b is more robust 

than network 9a. 

To calculate the ability described above numerically we define robustness as follows [5]: 

Let N be an initial network of size N. Let Np be the network that results when a fraction p of 

the vertices is being removed together with the edges connected to them. Consider vertex 

removal either uniformly randomly either targeted in descending order of any measurement 

that shows their importance. We will clarify and analyze thoroughly node deletion in the 

following chapter. The largest component of Np will be denoted by Np
c
. In order to quantify 

the robustness, we have first to calculate the fraction ζ(ξ) = | Np
c
 |/ N.  
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We define the quantity of the robustness R as follows: 

 

R = 
 

 
 ζ     

 

   
  , R   [0,    ] 

 

The fraction 
 

 
 allows the robustness to be compared with the R value of other networks of 

various sizes and structures. The extremities of R correspond to the following networks: we 

observe R value equal to 
 

 
 when a star graph is provided and equal to 

 

 
 (1 -  

 

 
 ) when a fully 

connected graph is provided.  

We define the quantity of vulnerability V of the network as follows: 

 

V = 
 

 
 – R , V   [0,    ]  

 

Think of vulnerability as a measure of the weakness of the network to resist to a thread, 

i.e. node attack. 
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3.4 Centrality Measures 

 

Vertex and edge removal presuppose identifying a centrality measure that quantifies the 

importance of each vertex (node) of the network. This allows arranging the nodes according 

to their importance. Below are the definitions and the descriptions of each centrality measure 

used in this work. 

 

Degree Centrality  

Degree of a node is assumed to be the number of edges it is connected to. It is the simplest 

centrality measure. Given an undirected graph G = (V, E), with size N = |V| the degree 

centrality of a node (vertex) v    of the network is equal to deg(v). 

dv = deg(v) 

 

 

Figure 10| A Complex Network. Node P2 has degree centrality equal to 3 and therefore dv =3 

Image can be found here: http://assets.20bits.com/misc/low-degree.png 

 

Betweenness Centrality  

Betweenness Centrality is another useful centrality measure that takes proper account of 

the importance and load of the node. It is equal to the number of shortest paths from all 

vertices to all others that pass through that node. The betweenness centrality of a node   is 

given by the expression:  

 

Bv =  
       

    
      

 

where     is the total number of shortest paths from node s to node t and      is the number of 

those paths that pass through  . Since we deal with undirected networks and in order to 

http://assets.20bits.com/misc/low-degree.png
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normalize the betweenness centrality value, i.e. g        , it has to be divided by  
          

 
, 

where N is the number of nodes in the largest component. Bv achieves its highest value when 

  is cross by every single shortest path [23]. 

 

 

Figure 11| A Network whose vertices are ranked according to their betweenness centrality. Hue 

from red=0 to blue=max shows the node betweenness. Image can be found here: 

http://upload.wikimedia.org/wikipedia/commons/6/60/Graph_betweenness.svg 

 

Eigenvector Centrality  

Eigenvector centrality is a measure of the influence of a node in a network . It assigns 

relative scores to all nodes in the network based on the concept that connections to high-

scoring nodes contribute more to the score of the node in question than equal connections to 

low-scoring nodes. [24] 

For a given graph G(V,E) with |V| number of vertices let A = (av,t) be the adjacency matrix, 

i.e. av,t = 1 if vertex   is linked to vertex  , and av,t = 0 otherwise. The centrality score of 

vertex v can be defined as: 

 

xv  =  
 

  
            =  

 

 
               

 

where M(v) is a set of the neighbors of v and ι is a constant. With a small rearrangement this 

can be rewritten in vector notation as the eigenvector equation 

A x = ι x 

 

http://upload.wikimedia.org/wikipedia/commons/6/60/Graph_betweenness.svg
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In general, there will be many different eigenvalues ι for which an eigenvector solution 

exists. However, the additional requirement that all the entries in the eigenvector are positive 

implies (by the Perron-Frobenius theorem) that only the greatest eigenvalue results in the 

desired centrality measure.
 
The v

th
 component of the related eigenvector then gives the 

centrality score of the vertex v in the network. Power iteration is one of many algorithms that 

may be used to find this dominant eigenvector.
 
Furthermore, this can be generalized so that 

the entries in A can be real numbers representing connection strengths, as in a stochastic 

matrix. Consider the following example: 

Matrix A is the 5x5 adjacency matrix for this undirected graph G=(V,E) 

 

(a) 

Vector x contains the degree centrality for each vertex 

 

(b) 

If we then multiply A and x the result for aech vertex is shown on the graph below 

 

(c) 

Figure 12| A Graph that represents the calculation of the eigenvector centrality. 12a, 12b and 12c 

show the steps. 

http://en.wikipedia.org/wiki/Eigenvalue_algorithm
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If we take a closer look we can see that the degree centrality has been spread out. Each 

vertex now has a value that corresponds to the sum of the degrees of its neighbors. Our goal 

now is to find a matrix that has the following characteristic: 

Β   x = ι
   x 

B   

 
 
 
 
 
  
  
  
  
   

 
 
 
 

 = 

 
 
 
 
 
    
    
    
    
     

 
 
 
 

 

In this case the vector is called Eigenvector of A and the entries Eigenvector centralities of 

the vertices. The vector can be multiplied by the adjacency matrix and return itself multiplied 

by a scalar. [29] The eigenvector and eigenvalues can be calculated by solving the following 

equation: 

     ι         

 where   is the identity matrix. 

 

Eccentricity Centrality  

The distance between two vertices in a graph is the number of edges in a shortest path 

connecting them. This shortest path is also known as geodesic path and the number as 

geodesic distance. The eccentricity     of a vertex   is the greatest geodesic distance 

between v and any other vertex. It can be thought of as how far a node is from the node most 

distant from it in the graph [25] [26] or one can assume that     reflects how far is each node 

from every other node at most in the graph. Therefore, if we consider distmax    to be the 

maximum distance node   has to any other node in the network then     can be considered as 

 

    = 
 

          
  [13] 

 

Closeness Centrality 

Closeness centrality is based on the mean value of the distance from the node under 

consideration to all other nodes of the network. Therefore we can find the mean geodesic path 

as suggested in [5]:  

 
 
     

 
 

          
 , if path      for i=j is also included in the sum 

or 

 
 
     

 
   

          
, if path      for i=j is not included in the sum 
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Then we can define closeness centrality as  

 
       

 

  
 
. 

From the    type, it is clear that nodes that are connected to many other nodes through 

geodesic paths have a larger value of closeness. At this point, it is important to mention that 

closeness centrality shows how long it will take for information to spread out from a single 

node   to all other nodes sequentially [24]. Here follows an example: 

 

 

Figure 13| An undirected Graph 

 

We now calculate the closeness for each node in order to find which the most “central” 

one is. 

 
       

 
  

    
 

       
     

 
  

          
 

 
       

 
  

    
 

       
     

 
 
          

 

 
       

 
  

    
 

       
     

 
 
             

 

 
       

 
  

    
 

       
     

 
 
         

 

 
       

 
  

    
 

       
     

 
  

          
 

As the results show, c is definitely the most central node and thus it can reach each other 

node in a short distance. 

 

k-core / k-shell  

A subgraph G(C) induced by the set C V is a k-core iff      : dG(  )(      and G(C) 

is maximal, i.e., for    , there exists      such that dG(  )( ) < k. A node   of G is said to 

have coreness k iff it belongs to the k-core but not the (k+1)-core. All nodes with coreness k 

constitute a special group of nodes named k-shell. The k-core is obtained by recursively 

removing all nodes of degree smaller than k, until the degree of all remaining vertices is 

larger or equal to k; a process also known as k-shell decomposition.[9] 
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k-shell decomposition was introduced 

as a technique to characterize very large 

graphs beyond its degree distribution. It 

helps to highlight the underlying structure 

of the network that is hindered by its 

large size. Since biological networks consist of a large number of vertices, we used this tool 

to make targeted attacks on nodes. The k-shell decomposition of a network suffers two 

serious shortcomings due to its size: first k-shell decomposition is a very slow process when 

the size is enormous and second memory constrains occur in this case. We have developed a 

distributed and parallel algorithm for this purpose to achieve the decomposition. The 

algorithm is developed in the Hadoop‟s MapReduce environment, which is a cloud based 

master-slave platform. 

 

μ-Power Community Index  

The κ-Power Community Index (κ-PCI) of a sensor (here a node is assumed to be a 

sensor) v is equal to k, such there are up to κ x k sensors in the κ-hop neighborhood of v with 

degree greater than or equal to k and the rest of the sensors within that neighborhood have a 

degree less than or equal to k [6]. As described in [6], nodes which have more connections 

(large dv value) are more likely to be powerful because they can clearly affect more nodes. It 

is clear that their power depends on the dv of their one-hop neighbors. If a node has a large    

κ-PCI value, it means that this node can reach other nodes on short paths. 

 

Figure  15| An undirected graph For κ=1, PCI(6) = PCI(3) = 3 and PCI(7) = PCI(4) = 2, PCI(1) = 

PCI(2) =  PCI(8) = PCI(9) = 1, PCI(5) = 2.  For κ=2, 2-PCI(6) = 2-PCI(3) = 2-PCI(4) = 1, 2- PCI(1) = 

2-PCI(2) = 2-PCI(5) = 2-PCI(7) = 2-PCI(8) = 2 and 2-PCI(9) = 3. Notice that when a node does not 

have any κHop neighbor then the κPCI value is set to zero. 

Figure 14| k-cores and k-shells of an 

undirected graph. It is obvious from the 

graph that all green nodes constitute 1-shell, 

because they have degree at least one, they 

belong to 1-core (the green one) but not the 

2-core (the blue one). Therefore, the green 

core represents the 1-core of the given graph. 
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The κ-PCI algorithm can be calculated for any value of κ; if it is calculated for κ=1, the   

κ-PCI is then considered as the plain Power Community Index (PCI). In our study we use 

only the PCI and 2-PCI values. Larger values of κ are not in our interest; κ-PCI values 

indicate that the node can reach others in a relatively short path and when values of κ are 

larger than 2 then the concept of direct influence on other nodes from the node under 

consideration is basically lost. Having in mind the latter note, it is obvious that when a node 

does not have a κ-hop neighborhood the κ-PCI value is set to zero. It means practically that in 

this case the node is not able to exert influence to any other node of the network. In case 

where the goal is a targeted attack, this node is not considered as a perfect candidate for 

removal. 

We now present the algorithm we used to compute PCI and 2-PCI values in this work.  

 

Figure 16| Algorithm for μ-PCI calculation. Notice that we only considered two possible values for 

κ in our algorithm; κ=1 and κ=2. 
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3.5  Network Measures 

 

Besides the centrality metrics we included other more global metrics to obtain the statistics 

and draw our conclusions. The above centrality measures are used to retrieve the importance 

of each node in the network and to arrange them in order of their importance. Then this 

arrangement is used to choose which node to remove in a targeted attack. More global 

measures are used to characterize the whole complex system. Below we describe these global 

metrics to clarify their concept. 

 

 

Clustering Coefficient  

The Clustering Coefficient of a network measures the average probability that two 

neighbors of a vertex are themselves adjacent. The local clustering coefficient Ci of a vertex i 

  N is defined as [5]: 

 

Ci = 
                                                     

                                   
 

 

The global clustering coefficient C for the whole network is defined as the mean value of 

all Ci, i.e. 

C = 
 

 
    

 
    ,          

 

Diameter of Network  

The diameter   of a network is the maximum eccentricity of any vertex in the graph;   is 

the greatest distance between any pair of vertices or, alternatively, 

 

             . 

 

To find the diameter of a graph, first find the shortest path between each pair of vertices 

and then consider the greatest length of any of these paths as the diameter of the graph [25]. 

 

 

 



 
 

  

 

31 

3.6   Attack Types 

 

The robustness of the network can be considered as its resistance to disconnection of its 

components and its throughput under node and link removal. Before the removal takes place, 

centrality measures have to be obtained for each node in the network. After degree, 

betweenness, eccentricity, eigenvector, closeness, k-shell or κ-PCI centrality is calculated for 

each node, all nodes are arranged in decreasing rank of the specified centrality measure. This 

is a conduct process so that the individual importance of each node in the network can be 

highlighted. As a next step the network gets “pruned”, while removing one by one the nodes 

in the latter described order. During this reduction we study the effect this process has on the 

largest component of the network, i.e. we calculate the robustness. Several types of strategic 

node attack exist.  

The first attack type to note is the simplest and unlikely to occur when targeted attack is 

aimed. In this case, nodes are deleted together with the edges connected to them in a random 

order, true to its name, regardless to their centrality values. 

In situations where the goal is to force targeted attacks, simultaneous attacks are the first to 

be taken under consideration. Simultaneous targeted attacks describes a situation where the 

centrality measure is calculated firstly for all nodes and then nodes along with their edges are 

removed in the order of the centrality measure, from the highest to the lowest.  

A second approach for coordinated attacks is more complex than the latter and known as 

the sequential target attack. Sequential target attack is a malicious attack and a situation where 

the centrality measure for all nodes of the initial network is calculated and then the “attacker” 

picks the node with the highest value. In order to delete the next node, centrality measures 

have to be calculated from scratch because now the network under consideration has changed. 

As a result the role and significance of each node in the network has changed too and this it is 

wise to recalculate the centralities to highlight the most powerful node.  
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4 Evaluation 

 

4.1 Simulation model 

We developed a graph simulation model based on Gephi, an open source interactive 

visualization and exploration platform suitable for complex networks analysis. We also 

developed a user interface shown in Figure 17. For this purpose we used NetBeans IDE 

(Integrated Development Environment) and java version java1.7.0_03. Our system has the 

following features:  6GB RAM and IntelCore i7 950 @ 3,7 GHz. We also had to increase 

heap size of this project up to 1MB in order to avoid Java‟s Garbage Collection during graph 

initialization, especially when the graph was dense. 

In order to retrieve the k-cores and k-shells of the graph we developed a distributed 

algorithm for Hadoop‟s MapReduce. We used the fully distributed version of Hadoop; one 

master node and a pair of slaves were provided for this purpose. Hadoop was installed on a 

blade server and on each Daemon CentOS (Community ENTerprise Operating System) was 

installed. Also each Daemon has a 30GB disk, a 12GB RAM and 8 cores.  

 

Figure 17| Our application Interface 

4.2 Our Network Models 

The networks we used for our experiment were both empirical biological networks 

and synthetic ones. A Protein-to-Protein interaction network in budding Yeast (Yeast) and a 

Human Disease Network (HDN) were included in the category of empirical biological 

networks (the original datasets can be found in [27] and [28]). Barabási –Albert (BA) and 

Erdős–Rényi (ER) networks were used to examine the robustness of synthetic networks that 

share similar features with the empirical ones. The latter networks were generated with 

CentiBin software. All networks have different sizes and attributes.  
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4.2.1| Protein-to-Protein Interaction Network in budding Yeast 

The Protein-to-Protein Interaction Network in budding Yeast is an empirical network that 

consists of 2361 nodes and 7182 edges. For better visualization we provide the network 

structure in Figure 17 that follows. In Figure 20 correlations between centrality measures are 

shown for the Yeast Protein Network. In Figures 18 and 19 the distribution of each centrality 

is provided. 

 

 

Figure 18| The Yeast Protein Interaction Network – Proteome with 2361 nodes and 7182 edges The 

network is created with Gephi visualization software. For this purpose and for our experiment dataset 

that is provided in the Gephi wiki is used. Dataset can be found here 

http://wiki.gephi.org/index.php/Datasets 

 

https://gephi.org/
http://wiki.gephi.org/index.php/Datasets
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Figure 19| Centrality measures Distributions of Protein-to-Protein Interaction Network in 

budding Yeast with 2361 nodes and 6646 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) 

eccentricity respectively.

 

Figure 20| Centrality measures Distributions of Protein-to-Protein Interaction Network in 

budding Yeast with 2361 nodes and 6646 edges. (a) degree; (b) PCI; (c) 2-PCI respectively. 
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Figure 21| Correlations between centrality measures of Protein Interaction Network in budding 

Yeast with 2361 nodes and 6646 edges. (a) betweenness versus eccentricity; (b) betweenness versus 

eigenvector; (c) eccentricity versus eigenvector; (d) eigenvector versus closeness 
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4.2.2| The Human Disease Network 

 

The Human Disease Network is an empirical network that consists of 7533 nodes and 

22052 edges. For better visualization we provide the network structure in Figure 21 that 

follows. Figure 24 shows the correlations between centrality measures for the Human Disease 

Network. The distribution of each centrality is provided in Figures 22 and 23. 

 

Figure 22| The Human Disease Network – Diseasome The network is created with Gephi 

visualization software. For this purpose and for our experiment dataset that is provided in the Gephi 

wiki is used. Dataset can be found here http://wiki.gephi.org/index.php/Datasets 

 

Figure 23| Centrality measures Distributions of the Human Disease Network with 7533 nodes and 

22052 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) eccentricity respectively. 

https://gephi.org/
http://wiki.gephi.org/index.php/Datasets
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Figure 24| Centrality measures Distributions of the Human Disease Network with 7533 nodes and 

22052 edges. (a) degree; (b) PCI; (c) 2-PCI respectively. 

 

Figure 25| Correlations between centrality measures of the Human Disease Network with 7533 

nodes and 22052 edges. (a) betweenness versus eccentricity; (b) betweenness versus eigenvector; (c) 

eccentricity versus eigenvector; (d) eigenvector versus closeness 
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4.2.3| The Barabási–Albert Network Model 

 

The Barabási–Albert Network is a synthetic network that consists of 5001 nodes and 

14947 edges. We used a random seed equal to 1212 and we processed 5000 iterations to 

retrieve this network. 

 

Figure 26| The Barabási–Albert Network with 5001 nodes and 14947 edges. The dataset for the 

graph was created with CentiBin and the visualization was created with Gephi. The purple nodes are 

hub nodes. 

 

Figure 27| Centrality measures Distributions of the Barabási–Albert Network with 5001 nodes 

and 14947 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) eccentricity respectively. 

http://centibin.ipk-gatersleben.de/
https://gephi.org/


 
 

  

 

39 

 

Figure 28| Centrality measures Distributions of the Barabási–Albert Network with 5001 nodes 

and 14947 edges. (a) degree; (b) PCI; (c) 2-PCI respectively. 

 

 

Figure 29| Correlations between centrality measures of the Barabási–Albert Network with 5001 

nodes and 14947 edges. (a) betweenness versus eccentricity; (b) betweenness versus eigenvector; (c) 

eccentricity versus eigenvector; (d) eigenvector versus closeness. 
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4.2.4| The Erdős-Rényi Network Model 

 

The Erdős-Rényi Network is a synthetic network that consists of 5000 nodes and 

12536 edges. We used an edge probability equal to 0.001to retrieve this network. 

 

Figure 30| The Erdős-Rényi Network with 5000 nodes and 12536 edges. The dataset for the graph 

was created with CentiBin and the visualization was created with Gephi. 

 

Figure 31| Centrality measures Distributions of the Erdős-Rényi Network with 5000 nodes and 

12536 edges. (a) betweenness; (b) closeness; (c) eigenvector; (d) eccentricity respectively.  

http://centibin.ipk-gatersleben.de/
https://gephi.org/
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Figure 32| Centrality measures Distributions of the Erdős-Rényi Network with 5001 nodes and 

12536 edges. (a) degree; (b) PCI; (c) 2-PCI respectively. 

 

Figure 33| Correlations between centrality measures of Erdős-Rényi Network with 5000 nodes 

and 12536 edges. (a) betweenness versus eccentricity; (b) betweenness versus eigenvector; (c) 

eccentricity versus eigenvector; (d) eigenvector versus closeness. 
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Before we start to describe our results we first have to provide some important insights of 

the network models that have been included in our work. Table 1 and 2 that follow store the 

characteristics of each of them.  

 

Network Models and Features 

Network 

Type 

Number of 

Triangles 

Diameter Average Path 

length 

Number of 

shortest paths 

Number of    

k-cores 

Yeast 3530 11 4.376 4.944.096 10 

HDN 7043 17 4.629 52.976.918 10 

BA 341 7 4.169 25.005.000 2 

ER 20 11 5.455 24.656.192 3 

Table 1| Table containing all networks along with their characteristics 

 

Table 2| Table containing all the networks along with their characteristics 

 

 

 

 

Network Models and Features 

Network 

Type 
Short Description Undirected #V #E 

Max 

Largest 

Component 

Max Avg 

Clustering 

Coefficient 

Yeast 

Protein-to-Protein 

Interaction Network in 

budding Yeast 

 

2.361 6.646 2.224 0.200 

HDN 

A network of disorders 

and disease genes 

linked by known 

disorder-gene 

associations, indicating 

the common genetic 

origin of many diseases 

[http://wiki.gephi.org/inde

x.php/Datasets] 

 

 

  

7.533 

 

22.052 7.279 0.106 

BA 

Barabási–Albert 

network, edge 

probability=0.0001.The 

network was generated 

with CentiBin. 

 

5.001 14.947 5.001 0.007 

ER 

Erdős-Rényi network, 

random seed=1212 & 

number of 

iterations=200.The 

network was generated 

with CentiBin. 

 

5.000 12.536 4.966 0.001 

http://wiki.gephi.org/index.php/Datasets
http://wiki.gephi.org/index.php/Datasets
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4.3 Attack Performance Evaluation 

 

4.3.1| Simultaneous Target Attack 

Our first experiment includes simultaneous target attacks. In this section we study the 

effect of node deletion on the largest component of the network. The node and edge removal 

follows a simultaneous strategy; this means that degree, betweenness, eccentricity, closeness, 

eigenvector, PCI, 2-PCI and k-shell values are calculated for all nodes and nodes are then 

deleted in descending order of their centralities in each case. This process was applied to a 

variety of network models, such as scale-free networks (BA), a yeast protein-to-protein 

interaction network (Yeast), a network of disorders and disease genes (HDN) and a random 

network (ER). It is important to notice that in case of the k-shell, only simultaneous attack is 

performed.  

 

Figure  34| Robustness against simultaneous target attack of  (a) the Protein Interaction Network  in 

budding Yeast (b) the Human Disease Network, (c)  Barabási–Albert Network and (d) the Erdős-Rényi 

Network 
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Figure 34 shows robustness results for each network used in our study against attacks by 

each centrality measure aforementioned. It is clear from the graphs that performing 

simultaneous target attacks according to the degree centrality turns the network into a less 

robust but more vulnerable one, in each studied case. Hence, simultaneous degree attack is the 

most effective way to decompose the network and destroy the consistency of its structure. 

Simultaneous target attack according to betweenness centrality seems to be the second most 

effective attack in order to degrade the network structure.  

Eigenvector centrality has a medium impact on the robustness of real-world biological 

networks compared to the other centralities of this study and a medium to good impact on 

synthetic ones. The same can be assumed when performing the simultaneous strategic attack 

but now according to the k-shell values. Although different networks might have a different 

number of k-cores, the largest component size is medially to slightly low affected by node 

removal in each case.  

An attacker is unlikely to achieve network destruction when trying to delete nodes in 

descending order of their closeness centrality simultaneously. In all situations, the network is 

decomposed in a very slow way and therefore it is less vulnerable to attacks than other metric 

values. Eccentricity attack has also a relatively low performance when the goal is to destroy 

the biological network. One can see in Figure 34 that in both in the PIN and the HDN the 

network maintains its total throughput in a very good level and in the less better in the ER and 

almost in an average level in the BA.  

A very interesting outcome is that when attacking nodes of both biological and synthetic 

networks according to their PCI (κ=1) value, their individual components disconnect 

relatively rapid. Although all four networks nodes have different PCI values, PCI 

simultaneous target attack has very similar results on each one. This means that deleting 

nodes which have one-hop neighbors that are effective information spreaders, i.e. hub nodes, 

makes the network vulnerable to attacks. In real-world biological networks performing the 

same attack as the latter, but this time aiming nodes who have two-hop hub neighbors, has a 

less effective result. In this kind of attacks, the network appears to have a better resistance to 

structure degradation than the PCI attack. We believe that when performing simultaneous 

target attacks, 2-PCI has on the average a mediocre performance but is steadily medium in 

each network considered. Generally, apparent from the results 2-PCI manages to approximate 

the mean value
1
 of robustness and vulnerability in the best way compared to all other six 

centralities that have been tested. 

At this point let us examine the case of the HDN in a little more detailed way since its 

topological features affect the κ-PCI values in an interesting aspect. Previous studies show 

that hub proteins (nodes) are likely to be encountered in essential human genes and their role 

is dominant in the structure of the interactome [15]. On the other hand, non essential proteins 

have mostly a localized role in the network. Considering that κ-PCI is a localized measure, 

more informative than the degree and also not influenced by the isolated nodes we can 

observe that PCI reflects more the fragility against sequential removal of nodes with a more 

                                                           
1
 The average value of robustness is considered as the mean value of the robustness that is calculated 

when degree, eigenvector, eccentricity, closeness and k-shell simultaneous target attacks are 
performed. 
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powerful effect to their neighborhood than eccentricity or closeness centrality. Therefore, 

nodes that are attached to many hub nodes are removed and make hub nodes less powerful. In 

this situation essential genes become gradually more non essence nodes. Hub nodes play a 

central and functional role in the human interactome and hence making them more powerless 

inevitably destroys the underlying network structure. Taking under account the impact that 

PCI on the HDN has it is logical to assume that 2-PCI has less effect on the network 

degradation than PCI; the results are confirming this aspect. 

We believe that the best way to attack simultaneously a biological network is to aim for 

nodes with the highest degree; not only is this the most efficient way but it is also the fastest 

computational way. This result is a consequence of the fact that high degree nodes are 

essential and play a central role in empirical networks and are hub nodes in synthetic 

networks and therefore when removing them and the links attached to them the network 

decomposes relatively fast. Specifically as mentioned in [1], Protein-to-Protein Interaction 

Networks have only a small number of hub nodes and the other nodes are not highly 

connected. Removing a hub protein (node) from the PIN network probably causes a fatal 

failure to the network‟s structure rather than removing a non-hub node, i.e. a node with poor 

connections to other nodes, which shall not have a great impact on the proteome. This rule we 

confirmed in our studies is known in Genome analysis as centrality-lethality rule.  

PCI centrality can be used to highlight the fragility of the network against simultaneous 

target attacks, since it results a rapid decrease of the giant component. Removing nodes with 

high PCI values diminishes the cohesion of the network structure relatively fast. Less 

effective than the latter centrality attack, is to perform a simultaneous attack by a class higher 

κ (κ=2). It does provide less significant insights into biological system vulnerability than the 

PCI centrality. We believe that both power community indexes can be considered as a better 

option than other centrality measures, like closeness, to expose the vulnerability of the 

network and generally a good choice if the goal is to examine the average robustness 

compared to other centralities. Also, 2-PCI can be considered as the best option to 

approximate the average value of robustness
2
 compared to all other centrality measures used 

in this work. 

Regardless of the number of k-shells and k-cores and despite that we remove the most 

„central‟ nodes in an onion-like shaped structure after retrieving the k-cores (see Figure 14 for 

better visualization and understanding of the structure decomposition), simultaneous targeted 

node deletion has a poor ability to capture both the robustness and the vulnerability of the 

network under consideration. It is clear though that robustness is better exposed for synthetic 

and vulnerability for empirical networks. Another observation is that the hierarchy of 

empirical networks comprises ten k-cores in contrast to the BA and ER in which two and 

three k-cores appear respectively. 

In contrast, a rather inferior choice would be to perform a simultaneous target attack 

according to the descending order of closeness centrality. In this case nodes that are as close 

to all nodes as possible and not necessarily directly connected to them as in degree centrality 

are chosen for deletion. The result in this case is the opposite of what an attacker is actually 

                                                           
2
  The average value of robustness is considered as the mean value of the robustness that is calculated 

when degree, eigenvector, eccentricity, closeness and k-shell simultaneous target attacks are 
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aiming for. But when the goal is to provide the robustness of the underling network structure 

deleting nodes by decreasing order of their closeness centrality will be by far the best choice. 

 

Robustness Report 

Simultaneous Target Attack 
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Yeast 0.109 0.114 0.442 0.169 0.444 0.149 0.174 0.174 

HDN 0.107 0.119 0.466 0.186 0.467 0.140 0.194 0.156 

BA 0.210 0.239 0.500 0.330 0.500 0.267 0.353 0.455 

ER 0.301 0.327 0.471 0.372 0.493 0.358 0.393 0.404 

max-min 0.194 0.213 0.058 0.203 0.056 0.218 0.219 0.299 

Table 3| Robustness against simultaneous target attack by degree, betweenness, eccentricity, 

eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit. 

 

Numerically speaking, we can confirm from results displayed in Table 3 that closeness has 

the same effect in almost each network and therefore the difference of the maximum and 

minimum value of robustness is very small (0.056). The same applies for the eccentricity 

centrality case (0.058). The lack of robustness against simultaneous target attack by degree is 

confirmed in the Degree column of Table 3. 
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Yeast 0.391 0.386 0.058 0.331 0.056 0.351 0.326 0.326 

HDN 0.393 0.381 0.034 0.314 0.033 0.360 0.306 0.344 

BA 0.290 0.261 0.000 0.170 0.000 0.233 0.147 0.045 

ER 0.199 0.173 0.029 0.128 0.007 0.142 0.107 0.096 

max-min 0.194 0.213 0.058 0.203 0.056 0.218 0.219 0.299 

Table 4| Vulnerability against simultaneous target attack by degree, betweenness, eccentricity, 

eigenvector, PCI, 2- PCI, closeness and k-shell of all networks. All values are rounded to the third 

digit. 



 
 

  

 

47 

 

Figure 35| All network models and their robustness against Simultaneous Target Attacks. 

Average Robustness is also shown. 
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4.3.2| Sequential Target Attack 

Our second experiment includes sequential target attacks. We study the effect on the 

largest component of the network node deletion has. The node removal follows a sequential 

strategy; this means that degree, betweenness, eccentricity, closeness, eigenvector, PCI and 2-

PCI values are calculated for all nodes and they are then deleted in descending order of their 

centrality values. A next step is to consider the network Np that results from deletion of a 

fraction of ξ nodes as a new network and force a new round of calculations. This process is 

repeated until no nodes are left and highlights each time the most „central‟ node. We applied 

sequential targeted removals to a variety of network models, such as a scale-free network 

(BA), a yeast protein-to-protein interaction network (Yeast), a network of disorders and 

disease genes (HDN) and a random network (ER).  

 

Figure  36| Robustness against simultaneous target attack of  (a) the Protein Interaction Network  in 

budding Yeast (b) the Human Disease Network, (c)  Barabási–Albert Network and (d) the Erdős-Rényi 

Network 
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Figure 36 shows that the same networks behaves differently under sequential target attack 

when compared to simultaneous. Sequential target attack has on average greater impact than 

simultaneous targeted attack by almost each type of centrality measure. The preceding results 

can be qualitatively understood considering that in each round of the attacks the most 

important node according to the centrality values is removed along with its connections. 

Hence, this procedure reduces the resistance of the network to failures and degrades it rapidly.  

Specifically, it is obvious from the diagram that sequential attack by both eccentricity and 

closeness can highlight the ability of a network to maintain its total throughput under node 

and link removal better than other centralities. In both cases the biological complex systems 

under consideration disconnect their components quiet hardly; we observe that only after 

removing 45-50% of the nodes the size of the giant component is cut in halve.  

Conversely, the outcomes for the robustness when targeting nodes according to other 

centralities are significantly different. Betweenness centrality appears as the superior choice 

in order to attack a biological network in a sequential process. This aspect is respected to 

result as a node with a high betweenness level is the node which achieves the maximum 

number of shortest paths from all nodes to all others that pass through that node. If this node 

is deleted then we delete concurrently the connections between other nodes. As mentioned 

previously, protein networks tend to have hub nodes that play a crucial role in its vital 

functionality. When removing hub nodes and particularly the most important that is placed in 

between other nodes the network degrades rapidly. 

We also observe that in contrast to simultaneous target attacks, degree has lost here its 

ability to expose vulnerability in the same superior level as in the previous category of 

failures. PCI and 2-PCI values as a measure of robustness manage to capture again the best 

approximation of the mean value
3
 of both robustness and vulnerability compared to all other 

values of robustness calculated in the other cases of centralities; 2-PCI maintains a better 

approach of the average robustness value than PCI. PCI again exhibits in a better order the 

vulnerability of the network against malicious failures than 2-PCI. Of course, this can be 

understood considering that in each round of deletion the most important spreader in the 

network is removed; after all, κ-PCI tries to discover the node that can achieve the maximum 

influence to other nodes.    

Finally, sequential targeted node removal by eigenvector centrality reaches again as in 

simultaneous attacks a mediocre performance in determining either the robustness or the 

vulnerability.  

We believe that when the goal is to capture the robustness of a network eccentricity and 

closeness are the best choice. On the other hand, node deletion by decreasing betweenness 

centrality order is more likely to expose vulnerability against sequential attacks. If the case is 

to define the average robustness and vulnerability of malicious failures κ-PCI, for κ=1 and 

even better for κ=2, meets the best conditions to capture the throughput of the network under 

node removal. 

 

                                                           
3
 The average value of robustness is considered as the mean value of the robustness that is calculated 

when degree, eigenvector, eccentricity and closeness sequential target attacks are performed. 



 
 

  

 

50 

Robustness Report 
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Yeast 0.097 0.081 0.444 0.099 0.444 0.129 0.146 

HDN 0.093 0.083 0.467 0.093 0.467 0.110 0.127 

BA 0.193 0.179 0.500 0.187 0.500 0.252 0.270 

ER 0.253 0.242 0.493 0.251 0.493 0.314 0.321 

max-min 0.160 0.161 0.056 0.158 0.056 0.204 0.194 

Table 5| Robustness against simultaneous target attack by degree, betweenness, eccentricity, 

eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit. 

 

Numbers in Table 5 and 6 confirm our previous opinions about the classification of the 

strategies that should be followed in order to provide the robustness and vulnerability of the 

network under sequential node deletion. Particularly, every centrality captures poor 

robustness, except from eccentricity and closeness. Observing the last row we can see that 

although degree, betweenness, PCI and 2-PCI have a negative impact on the robustness they 

have a different effect on each network; therefore we can see that the difference from the 

maximum and minimum value of robustness is in a range from 0.160 up to 0.204. On the 

other hand, eccentricity and closeness manage to affect the size of the largest component in a 

very similar way in each network model during node and edge removal.  
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Yeast 0.403 0.419 0.056 0.401 0.056 0.371 0.354 

HDN 0.407 0.417 0.033 0.407 0.033 0.390 0.373 

BA 0.307 0.321 0.000 0.313 0.000 0.248 0.230 

ER 0.247 0.258 0.007 0.249 0.007 0.186 0.179 

max-min 0.160 0.161 0.056 0.158 0.056 0.204 0.194 

Table 6| Vulnerability against simultaneous target attack by degree, betweenness, eccentricity, 

eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit. 
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Figure 37| All network models and their robustness against Sequential Target Attacks. Average 

Robustness is also shown. 
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4.3.2| Random Attack  

 

In order to study the ability of a biological complex system to maintain its throughput 

under random node attack and to reach reliable conclusions for the average case, we 

performed several rounds of random attacks on each network. The outcomes are shown in 

Figure 38. We are able to compare the results without any concerns about inconsistency since 

robustness is calculated in percentage and largest component size is normalized. 

 

 

Figure  38| Robustness against simultaneous target attack of  (a) the Protein Interaction Network  in 

budding Yeast (b) the Human Disease Network, (c)  Barabási–Albert Network and (d) the Erdős-Rényi 

Network 
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One can observe that the largest component reduces its size gradually and uniformly in all 

four network models and in each experiment robustness has a very similar behavior. In the 

Yeast Protein Interaction Network the size of the largest component shrinks to half when 

slightly more than 40% of the nodes are removed randomly. Approximately the same results 

appear in the Human Disease Network. To understand the results for the Yeast Protein 

Interaction Network we should have in mind that Protein Interaction Networks have an 

inhomogeneous structure and a great tolerance to random failures of their parts, as mentioned 

in [15]. Therefore a random deletion of nodes, does not highly affect the overall network 

structure.  

In the case of BA and ER once the fraction of vertices removed exceeds about 45%-50% 

the size of the largest component is halved. The explanation for this is that when performing 

the node deletion, high centralized nodes are distributed throughout the network and the 

possibility to delete only these nodes is not very high.  Instead, what is most likely to occur is 

a very random removal and therefore not only the central nodes are deleted but also those that 

are more “isolated”. Consequently, the network is relatively robust against random failures of 

its components. 

Reviewing the results, we believe that the disadvantage of performing random attacks on 

biological complex networks is that the vulnerability of the network under consideration 

cannot be exposed in any case since the results of each attack are broadly consistent with 

every other random attack performed on the same network. It seems that there is no clear case 

in which fragility of the network under consideration is higher than others. 
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Yeast 0.381 0.382 0.380 0.393 0.370 0.375 0.381 0.395 

HDN 0.394 0.394 0.397 0.398 0.392 0.394 0.398 0.394 

BA 0.463 0.454 0.458 0.454 0.451 0.458 0.450 0.457 

ER 0.435 0.437 0.433 0.436 0.436 0.435 0.436 0.440 

max-min 0.082 0.072 0.078 0.061 0.081 0.083 0.069 0.063 

Table 7| Robustness against simultaneous target attack by degree, betweenness, eccentricity, 

eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit. 

 

Table 7 summarizes the results from the robustness measured during several random 

attacks on each network. The values in the last row show that each round of random attacks 

performed has very similar results for all networks; hence the difference from the maximum 

and the minimum values found is very small. Moreover, the lack of fragility of the networks 

against random node removal is also confirmed from the values of Table 8. Vulnerability 

appears to be relatively small in all network models and in all attacks performed on them.  
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Vulnerability Report 

Random Attack 

 

 

Network 

F
irst   A

tta
ck

 

S
eco

n
d

 A
tta

ck
 

T
h

ird
 A

tta
ck

 

F
o

u
rth

 A
tta

ck
 

F
ifth

   A
tta

ck
 

S
ix

th
   A

tta
ck

 

S
ev

en
th

 A
tta

ck
 

E
ig

h
th

 A
tta

ck
 

Yeast 0.119 0.118 0.120 0.107 0.130 0.125 0.119 0.105 

HDN 0.106 0.106 0.103 0.102 0.108 0.106 0.102 0.106 

BA 0.037 0.046 0.042 0.046 0.049 0.042 0.050 0.043 

ER 0.065 0.063 0.067 0.064 0.064 0.065 0.064 0.060 

max-min 0.082 0.072 0.078 0.061 0.081 0.083 0.069 0.063 

Table 8| Vulnerability against simultaneous target attack by degree, betweenness, eccentricity, 

eigenvector, PCI, 2-PCI, closeness and k-shell of all networks. All values are rounded to the third digit. 

Figure 39 shows the maximum and minimum values of robustness we encountered during 

the experiments and Figure 40 shows the number of nodes and the k-shells found in each 

network. 

 

Figure 39| All networks along with their characteristics 

 

 

Figure 40| All networks along with their characteristics 
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5 Discussion 

 

Many complex systems can be represented by complex networks. Complex network 

representation has found a number of applications in areas as bioinformatics, graph 

visualization, Internet mapping projects, sociology and distributed system analysis. Scientists 

originating from each discipline focus their interests on defining the robustness of the 

complex network since this will highlight the ability of a network to maintain its total 

throughput under node and link removal. Specifically, a robust network maintains to keep its 

components strongly connected and makes the network degradation very hard. The less robust 

a network is the more vulnerable it is against failures of its components. We consider three 

types of network attacks: the random attack, where nodes are removed randomly; sequential 

target attacks, where nodes are deleted according to the descending order of their centrality 

measure which is recalculated in each round; the simultaneous target attack, where nodes are 

deleted according to the descending order of their centrality measure which is calculated only 

initially. 

 This work endeavors to determine the robustness and vulnerability of biological complex 

networks towards targeted and random failures, using, besides from the centralities that have 

already been examined in previous work, the κ-Power Community Index to find out the most 

important nodes in the network. The obtained results described extensively in the above 

section lead us to the following summarized conclusions: 

An interesting result is that PCI and 2-PCI metrics have in each attack type almost the 

same impact on the network. Particularly, when trying to attack a biological network by 

descending or random order of their Power Community Index, of class one and two for 

sequential target attacks and of class two for simultaneous target attacks, the robustness and 

vulnerability that is retrieved in each case approximates better the average values of 

robustness and vulnerability than the other centrality metrics. We consider as average value of 

robustness the average value of robustness of all other metrics except robustness value κ-PCI. 

We believe that 2-PCI can be considered as an approximation tool of average robustness and 

vulnerability for each of the two targeted attack types. 

Another significant outcome is that regardless of the number of nodes the network 

contains and regardless of the number of k-cores it consists removing the nodes 

simultaneously targeted to the k-shell they belong we do not achieve any maximum or 

minimum value of robustness compared to the other measures. Deleting the most “central” 

nodes in the latter case, captures better the robustness in case of empirical biological networks 

and exposes better their vulnerability in case of synthetic ones.  

For simultaneous target attacks, deleting nodes by degree is a superior method to expose 

the fragility of the network under node attack, since biological complex networks contain 

many hub nodes which are crucial for their functionality and play a vital role in the network 

structure. If the goal is to highlight the robustness then closeness centrality should be 

preferred to arrange the nodes in order of their importance.  
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For sequential target attacks, robustness of a biological complex network can be better 

retrieved when using closeness or eccentricity centrality to measure the importance of each 

node. If we want to exhibit how fragile a network under node attack is we may simply use 

betweenness centrality; one will only need to remove a fraction of nodes less than 30% to 

achieve the dissolution of the network structure.  

A random attack, as our results confirm, does not show any particular trend to a certain 

metric value in order to determine either the robustness or the vulnerability of the network. 

All centralities tend to have the same behavior against random failures and the networks 

appear to be relatively tolerant to random node removal. 

As an extension to our study, 2-PCI value can be examined as a approximation tool for 

robustness of biological complex networks; specifically, we have to define how precisely it 

approaches the average robustness compared to other centrality measures and how much 

deviation from the real robustness value can be expected. 
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