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ΠΕΡΙΛΗΨΗ 
 

Τα τελευταία χρόνια υπάρχει αρκετό ερευνητικό ενδιαφέρον στο πεδίο της εγκατάστασης 

δικτύων αισθητήρων και της διαχείρισης των παραγόμενων δεδομένων. Στα πλαίσια αυτής 

της εργασίας παρουσιάζουμε ένα ομότιμο σύστημα που παρέχει τη δυνατότητα υποβολής 

ερωτημάτων σε πολλαπλά δίκτυα αισθητήρων με βάση την περιοχή εγκατάστασής τους. Οι 

κόμβοι που εκπροσωπούν το κάθε δίκτυο αισθητήρων οργανώνονονται ιεραρχικά με βάση 

την τοποθεσία τους. Η ιεραρχία των κόμβων χρησιμοποιείται για την προώθηση ερωτημάτων 

στα δίκτυα αισθητήρων και για την παράδοση αποτελεσμάτων στους χρήστες που τα 

υπέβαλαν. Τα πιο σημαντικά στοιχεία του συστήματός μας είναι η αυτόματη κατασκευή της 

ιεραρχίας κόμβων, η ενημερότητα για τους διαθέσιμους τύπους αισθητήρων και η αποδοτική 

ομαδοποίηση ερωτημάτων για επαναχρησιμοποίηση αποτελεσμάτων. Δόθηκε επίσης 

ιδιαίτερη προσοχή στη δυναμική είσοδο και έξοδο δικτύων αισθητήρων στο, και από το, 

σύστημα και στην αντιμετώπιση βλαβών. Εκτελέσαμε διάφορα πειράματα ωστε να 

αξιολογήσουμε την προτεινόμενη αρχιτεκτονικη και τα αποτελέσματα έδειξαν οτι ο 

σχεδιασμός του συστήματος οδήγησε σε μειωμένη επικοινωνία μεταξύ των κόμβων και 

λιγότερο υπολογιστικό φόρτο στα δίκτυα αισθητήρων.   

Το σύστημα που προτείνουμε έχει ως στόχους: 

-Τη δυναμική προσθήκη  και αφαιρεση υποσυστημάτων δικτύων αισθητήρων χωρίς να 

καταργείται η σχηματισμένη ιεραρχία. 

-Την υποβολή ερωτημάτων από χρήστες μέσω εφαρμογών ή ιστοσελίδων σε πολλαπλά 

δίκτυα αισθητήρων, μέσω του Διαδικτύου. Οι χρήστες δε χρειάζεται να γνωρίζουν την 

εσωτερική δομή του συστήματος.  

-Τη διαχείριση ερωτημάτων μακράς διαρκείας για μεγάλες περιοχές. 

-Την επαναχρησιμοποίηση δεδομένων από παρόμοια ερωτήματα.  

Κάθε δίκτυο αισθητήρων που συμμετέχει στο σύστημα εκπροσωπείται από έναν κόμβο 

(peer). Οι ιδιοκτήτες δικτύων αισθητήρων προσδιορίζουν την περιοχή εγκατάστασης τους 

δίνοντας δηλωτικά περιοχής στους κόμβους-εκπροσώπους που μοιάζουν με ονόματα DNS 

(π.χ.: earth.europe.greece.thessaly.volos.port). Τα δηλωτικά αυτά φανερώνουν σχέσεις 

πατέρα-παιδιού μεταξύ των κόμβων (π.χ.: ο κόμβος earth.europe.greece.thessaly.volos.port. 

gate1μπορεί να θεωρηθεί παιδί του προηγούμενου). Οι χρήστες του συστήματος έχουν πλήρη 

εικόνα των διαθέσιμων κόμβων και μπορούν να ζητήσουν δεδομένα από δίκτυα αισθητήρων 

με βάση την περιοχή που τους ενδιαφέρει. Στα ερωτήματα ορίζεται η περιοχή ενδιαφέροντος, 

ο τύπος αισθητήρα (ήχος, φως, επιτάχυνση κ.τ.λ.) η διάρκεια του ερωτήματος και οι περίοδοι 

δειγματοληψίας δεδομένων.   
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Οι πρώτες εργασίες στο πεδίο των δικύων αισθητήρων αφορούσαν κυρίως την κατασκευή 

αισθητήρων και στην ανάπτυξη πρωτοκόλλων για τη μεταξύ τους επικοινωνία αλλά και τη 

σύνδεση με Ηλεκτρονικούς Υπολογιστές. Σταδιακά προστίθενταν περισσότερες δυνατότητες 

τόσο στο υλικό όσο και στο λογισμικό τους με αποτέλεσμα να φτάσουμε στην ανάπτυξη 

μικρών λειτουργικών συστημάτων. Στη συνέχεια αναπτύχθηκαν αρκετά περιβάλλοντα για τη 

διαχείριση και την ανάκτηση δεδομένων, αρχικά από ένα μόνο δίκτυο και στη συνέχεια από 

πολλαπλά δίκτυα αισθητήρων.  

Στο σύστημα εμφανίζονται 4 κύριες οντότητες το Application Client (AC) API, τα Peer 

Element (PE), η Peer Element Registry (PER) και τα Sensor Network Front End (SNFE). Για 

κάθε δίκτυο αισθητήρων που συμμετέχει στο σύστημα υπάρχει ένας ηλεκτρονικός 

υπολογιστής στον οποίο είναι εγκατεστημένο το PE ωστε να διαχειριστεί ερωτήματα και να 

ανακτήσει δεδομένα για το συγκεκριμένο δίκτυο. Για κάθε τύπο αισθητήρα υπάρχει ένα 

SNFE που δρα ως διεπαφή μεταξύ του ΡΕ και του λογισμικού που επικοινωνεί με το δίκτυο 

αισθητήρων (Sensor Network Gateway). Κάθε φορά που ένα ΡΕ μπαίνει ή βγαίνει από το 

σύστημα η PER ενημερώνεται ώστε να ανανεώσει τη σχηματισμένη ιεραρχία.  Οι χρήστες 

υποβάλουν τα ερωτήματα μέσω εφαρμογών ή ιστοσελίδων που χρησιμοποιούν το AC API το 

οποίο επιτρέπει την αποστολή τους στο σύστημα.  Η οντότητα AC κρατάει πληροφορίες για 

κάθε υποβληθέν ερώτημα και το προωθεί κατάλληλα αφού επικοινωνήσει με την PER.  

Όπως αναφέραμε και προηγουμένως οι κόμβοι του συστήματος (ΡΕ) οργανώνονται 

ιεραρχικά σε μορφή δέντρου με βάση τα δηλωτικά περιοχής τους. Η ιεραρχία σχηματίζεται 

αυτόματα με την είσοδο και έξοδο των PE. Τη διαδικασία συντονίζει η PER ενώ ειδικός 

αλγόριθμος χρησιμοποιείται για την αποφυγή εμφάνισης κόμβων με πολλά παιδιά.  

Τα ερωτήματα προωθούνται σύμφωνα με την ιεραρχία. Κάθε κόμβος (ΡΕ) που λαμβάνει ένα 

ερώτημα το καταγράφει εσωτερικά και το προωθεί στα κατάλληλα SNFE και σε όσα από τα 

παιδιά του μπορούν να το εξυπηρετήσουν. Αν ληφθεί ερώτημα παρόμοιο με κάποιο που ήδη 

εξυπηρετείται, επαναχρησιμοποιούνται τα δεδομένα που παράγονται για το παλαιότερο και 

δεν προωθείται εκ νέου σε SNFE. Δεν προωθούνται ερωτήματα σε υπο-δέντρα της ιεραρχίας 

που δεν μπορούν να υποστηρίξουν το ζητούμενο τύπο αισθητήρων.  

Βλάβες σε κόμβους αντιμετωπίζονται αφού εντοπιστούν από κάποιον άλλο κόμβο χωρίς να 

διαταράσσεται η ιεραρχία. 

Προσομοιώσαμε τη χρήση του συστήματός και διαπιστώσαμε οτι οι αλγόριθμοι και 

διαδικασίες που χρησιμοποιούνται οδηγούν σε μειωμένη χρήση μηνυμάτων μεταξύ των 

κόμβων και σε εξοικονόμηση πόρων στα δίκτυα αισθητήρων.  
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Η σχεδίαση και υλοποίηση του συστήματος, οι προσομοιώσεις και η σχετικές αναφορές 

αναλύονται στο αγγλικό κείμενο που ακολουθεί.  
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ABSTRACT 
 

In the last few years there has been a lot of interest in the field of sensor networks’ 

deployment and data management. We introduce an overlay, peer to peer architecture which 

provides a querying interface for multiple sensor networks, organized with area criteria. The 

peers that represent single sensor networks are organized in a hierarchy tree which is used for 

query forwarding and result delivery. The most important features of our system are the 

automatic hierarchy construction based on the peers’ area declaratives, the awareness of 

sensing capabilities throughout the hierarchy and the efficient query multiplexing and result 

reuse.  We focus on the dynamic entrance and departure of sensor networks in the system and 

transparent failure handling. Simulation experiments were conducted in order to evaluate the 

architecture. Results indicate that our design decisions minimize the communication between 

the peers and computational load of the actual sensing devices at the edges of the 

architecture.  
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Chapter 1 

Introduction 

 
 

In the last few years a lot of research has been made in the field of environment monitoring 

devices. Various experimental platforms, which contain sensors of various types and send the 

acquired readings through wireless interfaces, have been designed and manufactured by 

university and industry research groups. Such devices become cheaper and more powerful 

and a large number of them are already produced for modern applications like smart-houses, 

vehicle and transportation management systems, production and supply chains, weather 

condition probing and detection systems. During the next years sensors are going to become 

part of more aspects of our everyday life. By becoming smaller and consuming less power, 

they will be installed in many traditional appliances, in buildings, in portable devices even in 

our clothes and shoes.  

The first research projects in the field of wireless sensor networks were investigating the 

communication protocols, routing schemes, data collection and aggregation and power-

consumption control within a singe network. As sensors become more affordable, we would 

like to take advantage of their rising presence in order to monitor wide areas of our 

environment, covered by autonomous sensor networks. A future sensor-use scenario would 

provide that anyone can deploy a simple sensor network and publish the produced data, 

making them available to a universal sensor database. However, to reach that day many 

challenges need to be faced: hardware and software heterogeneity between different sensor 

networks, complication in the deployment of sensor networks and in data publishing, efficient 

discovery of non-permanent sensor devices, failure handling, and scalability issues. 

Obviously, special middleware must be developed, which will bridge the gap between sensor 

owners and data consumers. In the last 2-3 years various platforms have been devised, 

providing abstractions for querying multiple sensor networks through the Internet.  

We propose a peer to peer platform for querying multiple sensor networks through the 

Internet with area criteria. Every sensor network is represented by a peer of the system, which 

receives queries from external users or other peers and forwards them to the sensor network. 

An area declarative is assigned to each peer. Peers form a hierarchy according to the area 

 15



declaratives assigned by their owners. The proposed architecture has been designed with the 

following goals in mind: 

• Ability to add new, and remove existing, sensor network subsystems in a 

straightforward way, without invalidating the rest of the infrastructure: Sensor owners 

are able to connect their network to the system, through an API, in a transparent way. 

They can add or remove sensor devices of different type or even support an opportunistic 

sensor network which uses passing-by sensors. Every new sensor network which 

becomes part of the system updates the architecture for its sensing capability and 

becomes aware of any queries for which can provide readings.  

• Allow remote applications to submit monitoring queries to the system and receive 

sensor readings over the Internet: An API is provided for this reason which abstracts the 

P2P architecture which lies between the sensors and the end users who request the data.  

• Focus is on long-lived queries with potentially very wide area coverage. The peers 

hold state of the posted queries. Sensors, or networks of sensors, which entered the 

system after the query post, can contribute transparently to the result feed. 

• Support query processing in an abstract area-oriented fashion, with transparent 

query distribution to, and result aggregation from, the various sensor network 

subsystems:  Client applications are able to request data either from a narrow or a broader 

area. Aggregation operators can be applied to the sensor feeds according to the user-

queries. 

• Enable simple query multiplexing and result de-multiplexing for better scalability: 

When similar queries are posted, the results are efficiently reused to avoid excess 

network traffic and sensors’ power drainage.   

• Self-organization of different sensor networks for better scalability: The peers of the 

system automatically create a tree hierarchy according to their area declaratives. As we 

show with experiments, by using this hierarchy scheme we can achieve more efficient 

query forwarding, state keeping, and result reuse and thus, spare network and sensors’ 

resources.  

The sensor networks’ owners give area declaratives to the peers in a DNS like form (e.g.: 

earth.europe.greece.thessaly.volos.port). The declaratives imply father-child relationships 

between peers (e.g.: earth.europe.greece.thessaly.volos.port.gate1 can be considered as 

“child” of the previous node) though the final hierarchy is decided by a standard and more 

complex scheme that we describe later. Both sensor deployers and client users are able to 

have a view of the available peers of the system.  
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This is a typical use scenario from a user’s point of view: Bob wants to know the average 

temperature in Athens every 2 hours for the next 5 days. He visits a website, which invokes 

our Client API and posts the query to the system. All the available peers that can give 

temperature readings in the desired area are properly “informed”. If new sensor networks 

with temperature sensing capability join the system, they offer their data after been connected 

to the hierarchy.  Sensor networks’ departures and failures are confronted by the P2P network 

and are not visible to the end-user.  

The innovation of our system lies mainly to the hierarchy organization scheme we propose 

based on area declaratives. Based on the tree hierarchy we propose efficient query forwarding 

and result multiplexing and reuse. Another innovative feature is the automatic detection of 

sensor devices at the edges of the system.   

In the next chapter we refer to some projects related to our work, both early ones, about 

single sensor network data management, and posterior, in the field of combination and 

management of multiple networks of sensing devices. In Chapter 3 we present the system 

architecture, in Chapter 4 we describe how the peers’ hierarchy is constructed and in Chapter 

5 the way queries are submitted to, and managed by, the system. An implemented sensor 

gateway is described in Chapter 6 and in Chapter 7 we give some simulation results that 

either explain some of our design options or prove the efficiency gain we get from the self-

organized peer hierarchy. Finally we conclude our work and look on future plans in the field 

of sensor networks’ management.  
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Chapter 2 

Related Projects 

 
 

During the last few years, environment monitoring devices have become smaller, cheaper and 

more powerful. Sensors of all types are ready to become part of our cities, houses, cars and 

even our clothes. Much research has been made in various fields of sensor networks’ 

deployment and management. The common target of the projects presented in this chapter is 

the efficient monitoring of our environment through the use of sensing devices.  In the first 

section we present some devices and architectures that can be used by one to build a single 

sensor network in order to monitor a specific area in an efficient and transparent way. In the 

next 6 sections we present projects which aim to merge data from different networks and 

provide an abstraction for users to query multiple sensor networks, possibly with location 

criteria. Finally we present some research efforts studying the integration of wireless sensor 

networks and grid computing.  

 

2.1. Early projects in the field of sensor networking 
Naturally, the first research efforts in the field of sensor networking aimed to the design and 

fabrication of hardware platforms (usually referred as motes) which contain simple sensors 

and are able to communicate over the air with each other and/or more powerful systems (most 

commonly a PC) in order to acquire and store the produced readings. Mica Motes [1], 

Smart-Its [2] and Intel Motes [3] are some of these experimental platforms with which one 

can deploy a small-area wireless sensor network. A list of wireless sensor motes can be found 

here [4]. Along with the hardware platforms, communication protocol stacks and APIs were 

created in order to facilitate the communication of PCs (through some kind of gateway) with 

the motes. Later more advanced features were added and lead to the development of simple 

operating systems providing various services such as sensor data storage, message routing, 

power control and more.  
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The most widely cited effort in the field of sensors’ operating systems is TinyOS [5] by 

Berkeley University and Intel Research. TinyOS is an embedded operating system written in 

nesC [6], a subset of the C programming language optimized for the resource limitations of 

sensor devices. TinyOS applications are developed in nesC and are made out of software 

components, some of which represent hardware abstractions and are connected to each other 

using proper interfaces. TinyOS provides components and interfaces for widely used 

abstractions like packet communication, message routing, sensing, actuation and data storage. 

All I/O operations in TinyOS- enabled motes which take a long time, are asynchronous and 

have a callback. For optimization purposes these callbacks, called events, are linked statically 

to the applications during compiling. While being non-blocking enables the TinyOS to 

maintain high concurrency, it leads the programmers to write complex code using many small 

event handlers. To support larger computations the “tasks” feature is provided. Tasks are non-

preemptive and run in FIFO order. A TinyOS component can post a task, which the operating 

system will schedule to run later. This simple concurrency model is fairly sufficient for I/O 

centric applications, but its difficulty with CPU-driven applications has led to several 

proposals for adding thread-execution. TinyOS code is statically linked with application 

code, and compiled into a small binary which is then installed in the sensor motes. TinyOS is 

free and open source and has been ported in a large variety of experimental hardware 

platforms.  

Apart from the internal functions of wireless sensor motes, various software platforms have 

been developed in the field of sensor data collection and representation. For example 

MoteLab [9] is a sensor network testbed developed at Harvard University which provides a 

web interface that makes it easier for users to program the motes, create sensor jobs, reserve 

job-execution time slots, collect the sensor data, and perform administrative functions. Other 

sensor network management projects include EmStar [7], Kansei [8] and various other 

approaches which are, in most cases, designed for specific applications.  

A powerful system built upon the previously referred TinyOS, is TinyDB [10, 11] by 

Berkeley University. TinyDB is a query processing system used for extracting data and 

information from a network of TinyOS-enabled sensor motes. It does not require writing 

nesC code for the motes as it provides a simple, SQL-like interface from which the user 

specifies the data to be extracted, along with additional parameters, like the rate at which data 

should be refreshed. Given a query specifying the user data-interests, TinyDB collects the 

desired data from sensor-motes in the environment, filters it, aggregates it and routes it to the 

host-PC. The primary goal of TinyDB is to free developers from writing complicated low-

level code for sensor devices and to offer important features like metadata management 
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(providing a metadata catalogue to describe the types of sensor readings that are available in 

the network), high level queries declaration, sensor network topology management (by 

tracking neighbouring motes and maintaining routing tables), multiple query management 

(allowing multiple queries to be run on the same set of motes at the same time), results’ reuse 

and query forwarding to new-coming motes. TinyDB provides a Java API for writing PC 

applications that query and extract data from the sensor network and also contains a simple 

graphical query-builder and result display that uses the API. In order to use TinyDB, its 

TinyOS components must be installed onto each mote in the sensor network. 

 

2.2. Simple sensor networks’ gateways 
In this section we present some projects introducing software components that make wireless 

sensor devices accessible through the Internet.  

VIPBridge [12] is a platform through which users can send queries to many, distinctive 

sensor networks. The main idea of the system is the mapping of every available sensor of the 

system with a unique IP (version 6) address. The target is achieved through the use of a 

bridge-component in every sensor network, which is aware of the number of sensors it 

represents and maps them with unique IPv6 addresses. Every time an application needs data 

(or meta-data) from a sensor, the relevant query is sent in IP level; it is then received by the 

bridge-component, becomes properly transformed and finally is forwarded to the target 

sensor through the proper communication protocol. The results produced by sensor devices 

follow the reverse route. There are similar projects [13, 14, 15] whom basic target is to make 

sensor devices visible to the Internet and accessible from applications via classic TCP/IP 

stack. 

A more advanced approach is [16] where services from different sensor networks can be 

accessed and combined with the use of JXTA technology [17] and Universal Plug and Play 

standard [18]. JXTA is used to form a network of P2P nodes exchanging data from sensor 

networks and UPnP provides a platform for transparent access of sensing services. Each node 

(P2P bridge) represents a specific sensor network and declares its attributes (e.g.: location, 

number and type of sensors etc) in a JXTA advertisement. Sensor data is exchanged, merged 

and filtered amongst the nodes through JXTA messages. Node discovery and message 

routing are conducted by the JXTA infrastructure. Client applications access the available 

sensing services through a UPnP Gateway. For that cause a UPnP proxy is created for each 

service.  
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2.3. The HiFi Project 
HiFi [19] is a research project aiming in the collection and aggregation of data produced by 

large fan-in systems. The proposed architecture can be used in scenarios where organizations 

with hierarchical structure need to process large amounts of data produced in their edges. 

Typical scenarios of that type are nation-wide production and supply chains empowered with 

RFID tags and readers, power production and consumption management networks, networks 

collecting data from sensing devices or computer and communication monitoring systems. 

Such systems require collection, filtering and cleaning of data produced in their edges, 

successive aggregation as data move inwards the system hierarchy, strong temporal and 

spatial focus and effective integration within and across different enterprises. The HiFi 

architecture’s major components are a Meta Data Repository, the Data Stream Processor and 

the HiFi glue (the least two being parts of the system nodes).   

The Metadata Repository (MDR) is a globally accessible registry for system-wide 

information. The metadata the MDR holds is of three types: schema, views, and system 

information. The schema contained in the MDR is the schema over which a specific 

application’s queries and views are written. The views stored in the MDR are those exported 

by each HiFi node. The MDR also maintains a mapping of the views exported by a node and 

its physical location, which is vital for keeping the nodes’ topology. The system information 

contained in the MDR includes node capabilities, access control, and information related to 

organizational boundaries and administrative domains. Additionally, the MDR maintains 

runtime information, such as the current set of queries running on each node, the network 

usage, and connection status of the nodes.  

The Data Stream Processor (DSP) is responsible for all single node data stream processing. 

The core functionality expected of a DSP is the ability to process continuous queries, add 

queries and sources on-the-fly and cancel queries. A DSP can also provide functions for 

modifying and suspending a query along with data streams archiving. The DSP is oblivious 

of HiFi and could be any stream processor such as TelegraphCQ [20], Aurora [21] or 

STREAM [22]. 

The HiFi Glue, which runs on each HiFi node, is the software component which seamlessly 

binds together the system. It coordinates its local DSP, communicates with other HiFi nodes, 

and manages incoming and outgoing streams. The HiFi Glue consists of services, which 

perform actions such as query planning, management of DSP, resource, views, archives and 

cache, handling of queries and produced data and system management.  
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The HiFi research team has built a testing version of HiFi using the TelegraphCQ stream 

query processor and the TinyDB sensor database system.  

 

2.4. The IrisNet Project 
IrisNet [23] is a distributed architecture enabling convenient deployment of wide area 

sensing services collecting data from heterogeneous sensor networks. IrisNet comprises of 

two different types of modules, sensing agents (SAs) and organizing agents (OAs). All agents 

run onto Internet-connected PCs.  

Each SA is directly connected to one or more sensing devices varying from temperature and 

pressure meters to webcams and microphones. Every SA running on a host provides a 

common runtime environment for the services running on the IrisNet, to share and filter the 

sensors’ data.  

OAs are organized in groups (one group for each service). A group of OAs creates the 

distributed database and query processing infrastructure used for a specific service. Each OA 

holds a local database, storing sensor data from various SAs. A group of OAs combines these 

databases into a distributed database dedicated to the specific service. The data is replicated 

and moved into the distributed database according to the service’s special requirements. OAs 

are organized in a location-based hierarchy. A distributed algorithm is deployed throughout 

the OAs, using statistics held by them, to decide which parts of the distributed database are 

replicated or partitioned, targeting to smaller average query response time and network 

traffic.  

Various services are created by the IrisNet research group (a Parking Space Finder service, a 

Network and Host Monitoring service and a Coastal Imaging service).  The system is 

designed for dynamic implementation and deployment of sensing services. The SAs are 

easily programmable. Service editors may write and upload simple code to SAs (senselets) 

which dynamically filter and store sensor data with desired attributes. They are also able to 

use SAs to collect and feed sensor data from their own sensor networks or even implement 

their own SAs for specific hardware not yet supported by IrisNet. The data feeds from the 

sensing devices are internally represented in XML format which is well suited in describing 

hierarchical data with self describing tags. Users’ queries are processed with the use of XPath 

and other XML technologies.  
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2.5. The SenseWeb Project 
Microsoft’s SenseWeb [25, 26] is a platform which provides mechanisms to store sensor 

data, to process queries, to aggregate and present results through easy-to-use map-like web-

interfaces. The project’s main objective is to provide sensor network owners with tools that 

make their sensor-feeds accessible from many users worldwide. The project consists of four 

main components: the GeoDB sensor index, the DataHub data publishing toolkit, the IconD 

aggregator and the client-side GUI.  

GeoDB is a geographically indexed database maintaining the sensor descriptions. A sensor 

description is the meta-data describing the location, sensor type, owner, data rate and 

visualization options for the sensors, represented in XML format. GeoDB indexes data by 

using hierarchical triangular mesh (HTM) scheme which is suitable for location-related 

queries. Indexing is implemented in SQL server. No real-time data is stored in this database.  

DataHub is the web service which provides sensor meta-data to the GeoDB database and 

sensor data to the system in response to user queries. A sensor network owner first registers 

the sensor description with DataHub, which redirects the description to GeoDB, and then the 

publisher can start sending sensor data. Both scalar (e.g.: temperature, humidity) and 

multimedia (e.g.: audio, photos, video) data are supported and are represented using an 

ontology that describes inheritance, associations, and compositional relationships between 

various sensor data types. Data may be cached or permanently stored following the system’s 

needs.  

IconD is the system’s query processor and aggregator. Given the users' queries based on 

location range, map zoom level, sensor type, and aggregation operators, IconD queries the 

GeoDB for sensor meta-information and then corresponding DataHub services to get the real-

time sensor data. It properly aggregates the data and finally creates icons that will be 

displayed at the client interface.  

The sensor network owner is able to upload data from cameras or TinyOS-enabled sensors by 

simply using the SenseWeb Data Publishing Toolkit (DataHub web-service). Users query the 

data through a web-page [27]. The GeoDB and the IconD aggregator are transparent to both 

the data owners and users. Up to date users can get data about traffic, temperature and 

pollution conditions in various US cities.  
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2.6. The “Global Sensor Networks” Project 
Global Sensor Networks (GSN) project [28] introduces a middleware which supports 

flexible integration and discovery of sensor networks, enables fast deployment of new 

platforms, provides distributed querying, aggregation and combination of data, and supports 

the dynamic adaptation of the system configuration during operation. The main target of the 

system is to face the heterogeneity of the available software and hardware platforms and thus 

to minimize the unnecessary and repetitive implementation of similar functionalities for 

different platforms. An important feature is the possibility to filter sensor network data from 

local or remote sensor networks through simple SQL-like queries. The design of GSN 

follows four main design goals: Simplicity (a minimal set of powerful abstractions is used), 

adaptivity (adding new types of sensor networks and dynamic (re-) configuration of data 

sources is supported during run-time), scalability (through a peer-to-peer architecture), and 

light-weight implementation (small memory usage, low hardware and bandwidth 

requirements, web-based management tools).  

The key abstraction in GSN is the virtual sensor. Virtual sensors provide an abstraction 

hiding the implementation details of access to sensor devices and they are the actual services 

provided and managed by the system (GSN container). A virtual sensor corresponds either to 

a data stream received directly from sensor devices or to a stream coming from other virtual 

sensors. A virtual sensor can have any number of input streams and produces one output 

stream.  The specification of a virtual sensor provides all necessary information required for 

deploying and using it.  

The production of a new output stream element of a virtual sensor is triggered by the arrival 

of a data stream element from one of its input streams. Afterwards, proper timestamps are 

given to the data stream, the desired SQL filtering is performed, the data is temporarily stored 

and finally any consumers of the virtual sensor are notified for the new stream element.  

The production time of sensor data is a very important value. Each data stream is represented 

as a sequence of timestamped tuples. Multiple time attributes can be associated with data 

streams and can be manipulated through SQL queries. GSN provides a number of features to 

control the temporal processing of data streams, in order to avoid undesirable delays and 

exhaustion or unneeded reservation of resources.  

GSN follows a container-based architecture. Each container can host and manage many 

virtual sensors regulating almost every function of them including remote access, 

communication with the sensor network, security policy, persistence, data filtering, 

concurrency, and access to resources. Sensor network owners create virtual sensor 
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descriptions which contain key-value pairs (in XML format) and publish them to a peer-to-

peer directory so that virtual sensors can be discovered and contacted based on any 

combination of their properties, for example, geographical location or sensor type. GSN 

nodes are organized in a peer-to-peer network targeting in greater scalability.  

The GSN implementation consists of the GSN-CORE (mainly the GSN container), 

implemented in Java, and the platform-specific GSN-WRAPPERS, implemented in Java, C, 

and C++, which are used to communicate with the actual sensing devices depending on the 

used technology. For deploying a virtual sensor the sensors’ owner has to specify a virtual 

sensor descriptor in XML format, if GSN already supports the concerned hardware and 

software. Supporting a new type of sensing device can be achieved by supplying a Java 

wrapper compliant to the GSN API interfacing the system to be supported. Currently GSN 

provides wrappers for TinyOS-enabled motes (Mica, Mica2, Mica2Dot and Telos), USB and 

wireless cameras, and some RFID readers. GSN implementation also includes visualization 

tools for data and network structure presentation.  

 

2.7. The Hourglass Project 
Hourglass [29] is another project which tries to address the need for rapid development and 

deployment of applications that consume data from multiple, heterogeneous sensor networks. 

Hourglass is an Internet-based infrastructure for connecting a wide range of sensors, services, 

and applications in a transparent way. The infrastructure consists of an overlay network of 

well-connected machines which provides service registration and discovery, and routing of 

data streams from sensor networks to client applications. Hourglass supports a set of internal 

services such as filtering, aggregation, compression, and buffering of sensor data. It also 

allows third party services to be deployed and used in the network. Other features of the 

system include the preservation of data flow in cases of disconnection, the support for 

participants of widely varying capabilities (from powerful servers to PDAs), the utilization of 

powerful and well-connected machines and the effective separation of communication paths 

for short-lived control messages and long-lived stream-oriented data.  

Circuit is the key abstraction of the system that links a set of data producers, a data consumer, 

and in-network services into a data flow. Control messages are used to set up the sensor data 

channels that travel over multiple services. Any data produced, are processed by intermediate 

services and then delivered to consumers. The structure of a circuit is specified in the 

Hourglass Circuit Descriptor Language (HCDL), an XML-defined language that is used to 

describe circuits to be established by Hourglass. Circuits can transparently face temporary 
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hosts’ disconnections. A circuit has a unique circuit identifier that is used to refer to it 

throughout the system. 

The nodes in a circuit are realized by Hourglass services. A service can function as a pure 

data producer, a pure data consumer, or both (in that case called operators). The services in 

Hourglass are of two categories, generic services that are useful to a wide-range of 

applications, offering for example buffering, filtering or storage of data, and application 

specific services. The set of the available services is partitioned with the use of topics which 

describe the services’ attributes. Service endpoints are defined that bind circuit nodes to 

actual service instances.  

The services in Hourglass are arranged into service providers. A service provider is 

comprised of one or more Hourglass nodes. Each service provider is contained in a single 

administrative domain and joins or leaves the system as a unit. A service provider must 

support a minimum functionality in the form of a circuit manager (which manages the circuit 

creation process and monitors its status ever since) and a registry (which acts as a repository 

of information about the various services and circuits) in order to join the system.  

The establishment of a new circuit is initiated by an application either directly or through a 

proxy service. The application contacts with one of the circuit managers which “hides” the 

communication with the actual data producers or operators. Sensor data streams are routed 

from producers to consumers along the circuit-defined paths. The system reuses the actual 

network connections between services as much as possible and provides query multiplexing. 

When a service provider is disconnected from the rest of the Hourglass system, local services 

become aware of the lack of heartbeat messages on their circuit links and act properly in 

order to temporarily store any produced data. 

The Hourglass research team has created health-related applications built upon Hourglass 

[24] and is currently investigating the efficient placement of operators in a Data Collecting 

Network like Hourglass [30].  

 

2.8. Sensor Networks and Grid Computing 
Recently, research efforts have emerged studying how sensors can be integrated into grid 

computing applications. One of them is the Discovery Net project [32] which is a grid-based 

framework for developing and deploying knowledge discovery services to analyze data 

collected from distributed high throughput sensors. However, frameworks of this type tend to 

use sensor grid architectures that are custom built for specific applications. Although these 
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application-driven architectures are efficient and can deliver good performance for the 

targeted applications, they are not flexible with generic use-scenarios.  

Another approach is [42] where sensor data is enclosed in XML format within SOAP 

envelopes (in order to be compatible to grid standards) and then are forwarded to applications 

using web-services and standard Internet protocols.  

There are also projects which aim to define middleware architectures connecting sensor 

networks with the grid. One of them is the Common Instrument Middleware Architecture 

(CIMA) project [33] which aims to “grid-enable” instruments and sensors as real-time data 

sources to facilitate their integration with the grid. The CIMA middleware is based on current 

grid standards such as OGSA [34]. This middleware architecture uses a standard instrument 

representation format and software stack. A problem with this approach is that the 

middleware architecture might be too complex to be implemented on simple sensor devices 

with low computational and processing capability.  

Another approach is the SPRING framework [35] which integrates wireless sensor networks 

with grid computing by using proxies as interfaces between the sensor networks and the grid, 

supporting a wide range of sensor devices, even the less computationally powerful ones. The 

system tries to address the challenges and design issues arising when trying to create sensor-

enabled grids like the lack of efficient grid-APIs for sensors, the dynamic and prone to faults 

nature of communication links between sensor devices , proprietary communication 

protocols, scalability issues, sensors’ power management combined with Quality of 

Service(QoS) requested from grid applications, sensor resources scheduling, security 

problems of wireless sensor devices and availability issues. The system’s main component is 

the Wireless Sensor Network proxy (WSN-proxy), which acts as the interface between a 

sensor network and the grid. The proxy serves several important functions, facing the 

previously mentioned challenges. First, it exposes the sensor network resources as grid 

services and translates the sensor data from its native format to a suitable OGSA format. 

Second, the proxy controls the communication between the wireless sensor network and the 

grid. By using techniques like caching, buffering, and link management, the proxy is able to 

cushion the effects of unexpected sensor nodes disconnection or hardware faults. Third, the 

scalability of the sensor grid is enhanced as new wireless sensor networks can be added 

seamlessly to an existing sensor grid. Finally, the WSN-proxy provides various services like 

power management, scheduling, security, availability, and QoS for the underlying wireless 

sensor network. Apart from the WSN-proxy a SPRING-based sensor grid contains various 

software components (layers) found in classic computational or storage grids like grid meta-

schedulers, user interfaces and APIs. In the testbed created by the research team, standard 
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grid solutions are used such as the Globus Toolkit [36] to implement the grid interfaces, the 

Community Scheduler Framework [37] to implement the grid meta-scheduler and the Sun 

Grid Engine [38] which plays an important role in the implementation of the WSN scheduler 

and the Resource Scheduler of the compute cluster.  
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Chapter 3 

System Architecture 

 

 

In this chapter we will present some of the basic principles of our system along with its 

software components and some of the used data structures.  

3.1. Motivation and basic principles 
Sensor devices become cheaper, more powerful and energy- efficient, and gradually become 

part of more aspects of our everyday life, with rising presence in buildings, home devices, 

vehicles, even in clothes and shoes. While the first research projects had to do mostly with 

the management of data produced within a single sensor device or a simple network of them, 

the last few years various projects have emerged which provide data collection and 

management from different sensor networks. In the previous chapter we described the most 

important efforts in this field.  

We introduce a peer to peer platform which provides a querying interface for multiple sensor 

networks, organized with area criteria. Our system tries to face the challenges of  sensor data 

collecting platforms: hardware and software heterogeneity between different sensor 

networks, complication in the deployment of sensor networks and in data publishing, 

discovery of non-permanent sensor devices, failure handling, and scalability issues. 

The most important feature of our system is the hierarchy organization scheme we introduce, 

based on area declaratives. Additionally we propose a sensing capabilities’ awareness 

scheme throughout the hierarchy, which minimizes unneeded queries to sensor networks that 

do not support the desired properties, and efficient query multiplexing and result reuse, which 

reduces the communication between the nodes of the system and the computational load of 

the actual sensing devices at the edges of the architecture. Attention is also paid in data 

representation of queries and results, in handling of communication links’ or hosts’ failures, 

in the transparency of adding and removing existing sensor network subsystems and the 

facilitation of writing communication code for devices that are not already supported.  
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The system comprises four main components, the Application Client API, the Peer Elements, 

a Peer Element Registry and Sensor Network Front Ends. For each participating sensor 

network there is a representative host-PC where a Peer Element (PE) is installed in order to 

manage the queries for the network it represents, and collect any available data. For each type 

of monitoring device used in the sensor network, a respective Sensor Network Front End 

(SNFE) is installed in the representative-PC and is registered to its Peer Element being an 

interface between the peer to peer architecture and the Sensor Network Gateway that directly 

communicates with the network of monitoring devices. The Peer Element Registry (PER) 

keeps state for every participating sensor network. Every time a Peer Element joins or leaves 

the system the Peer Element Registry is contacted, in order to coordinate the peers’ hierarchy 

update. End users post their queries to the system through applications or web-interfaces that 

use the Application Client API (AC). The Application Client component keeps state of all the 

posted queries per client interface and properly forwards them, after contacting the Peer 

Element Registry in order to find a Peer Element that can serve them.  
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Figure 3.1: The System Overview 

 32 



3.2. The Application Client (AC) Component 
This component resides within the application space. It provides an API and internal 

processing logic through which communication takes place with the rest of the system. For 

each query, the AC finds through the PER a suitable PE to which it forwards the query, then 

keeps the query state and becomes responsible for receiving the corresponding result-data. 

The application receives the query results and is able to cancel the query by calling the 

respective functions of the AC API.  

The AC API provides the following functions: 

QueryID postQuery(queryString): With this method, client applications submit the desired 

queries to the system. The queryString must be of the form of 

“query:[avg|max|min|sum|count]<senseType>in:<area>for:<totalTime>every:<time

Interval>”. When this method is invoked, proper state about the query is held in the AC 

component and the query is sent to the system, so as to be forwarded to any PEs that can 

provide related sensor data. The method returns either a unique (in the AC scope) QueryID or 

an error code in cases of connection failures or malformed query string. If the desired sense 

type is not yet supported in the PEs that represent sub-areas of the desired area the QueryID 

is returned along with a NOT-YET-SUPPORTED code. If returned, the ID can be used as 

argument to API methods for query management or result retrieval.  

List<ResultData> getResults (QueryID): This function checks if there is any sensor data for 

the query with the desired QueryID. Result data is asynchronously received by the AC 

component and properly stored in data structures of the component. There are two versions of 

the function, one returning a list of ResultData (a data structure described later) objects and 

another returning results in stings. Null is returned if no query with the requested QueryID is 

found in the system.  

returnCode cancelQuery(QueryID): This method cancels the query with the respective 

QueryID. A CANCEL-QUERY request is forwarded to the network of PEs which serves this 

query. All the data and state held within the AC are erased if PEs acknowledge for local 

query cancel. Proper success or error codes are returned.  

areaStrings availableAreasUnder ( areaOfInterest ): This is a utility method which returns 

the area-declaratives of all the PEs representing sub-areas of areaOfInterest.  

sensesString (areaOfInterest) : This method returns the sensing capabilities for which PEs in 

sub-areas of areaOfInterest can produce results.  
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Apart from the API, the AC provides an internal processing logic used to keep state of the 

posted queries and to manage the results.   

Figure 3.2: The AC component 
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Every time a query is submitted through the API, a data structure is created 

(QueryInACObject) which describes the query’s basic attributes (more information about 

QueryInACObject in section 3.6) and afterwards a QueryObject is forwarded to a PE 

suggested by the PER. The QueryInACObjects for all the submitted queries are stored in the 

SubmittedQueries list.  As we show in figure 3.2 there is the ACListener thread that listens to 

a socket for ResultObjects (also described in section 3.6) coming from various PEs. 

Whenever a ResultObject arrives at the socket an ACResultHandler thread is created that 

parses the ResultObject and stores the contained sensor data in the proper object(s) of 

SubmittedQueries list, so as, the application using the AC, is able to get them asynchronously 

by calling the getResults method of the API. More than one ACResultHandler threads may 

run simultaneously handling multiple result objects. There is also the 

ExpiredQueriesCollector thread which checks the SubmittedQueries list for queries that 

expired. If expired queries are found, they are erased from the AC component.  

 

3.3. The Peer Element Registry (PER) Component 
This component resides on a well-known server and port, and provides registry and discovery 

services for PEs. Its role is vital for the hierarchy formation and management. The PER 

component is the one which makes decisions about each PE’s position in the hierarchy.  
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Every time a new PE joins the system, it first contacts the PER in order to find which PE is 

going to be its father-PE and whether there are PEs which will become its child-PEs. The 

PER is also contacted in cases of PE departures or failures so as to update the state of the P2P 

network. The father-child relationships are stored in the PER registry.  

FAILURE request  

UPDATE-SENSING-CAPABILITIES request 

AVAILABLE-AREAS request 

PE-LOOKUP request  
AVAILABLE-SENSING-CAPABILITIES request

Read Only Requests: 

DEPART request 

 

JOIN request  
Hierarchy Updating Requests: 

Figure 3.3: The requests handled by the PER 

The PER handles two request categories. The first ones are hierarchy updating requests 

received by PEs that either enter or leave the P2P architecture (JOIN and DEPART requests). 

The handling of these requests is synchronous, forcing every other request to wait until the 

invoking PE sends to the PER an acknowledgement of proper completion. If any error occurs 

in the underlying protocols, the PER database is roll-backed to its previous state.   

 The other category contains read-only requests either from ACs (PE-LOOKUP, 

AVAILABLE-SENSING-CAPABILITIES and AVAILABLE-AREAS requests) or from PE 

components (FAILURE and UPDATE-SENSING-CAPABILITIES requests).  

We will briefly describe how the PER reacts to these requests: 

JOIN: PE nodes send a JOIN request when they initialize and join the system. The joining PE 

sends its network address, its available sensing capabilities and its area declarative. The PER 

runs an algorithm (which we describe later) and decides, according to the joining PE’s area 

declarative, in which point of the tree hierarchy it is going to be placed, thus which will be its 

father-PE and if there are any child-PEs. The PER sends back to the PE the father-PE and 

child-PE network addresses  

DEPART: When a PE terminates, it a DEPART request is sent to the PER in order to update 

the hierarchy state. The PER decides which PE is going to become the father-PE of the 

terminating-PE’s child-PEs and informs the terminating PE, which in turn informs its child-

PEs. The record of the departing PE is erased from the database if the request handling 

terminates properly.  

PE-LOOKUP: This request is sent by an AC component whenever it has to find the PE which 

is representative for the target area defined in a query. The PER looks on its database for the 

proper PE entry and its network address is sent back.  

 35



FAILURE: This request is sent by a PE or AC component if another PE does not seem to 

respond. The PER receives the failing PE’s information and checks if it exists in its database. 

It then checks if the PE is responding. If no response is received in a fair time space and the 

detecting component is another PE, it sends a response to it giving the permission to run the 

departure protocol on behalf of the failed PE. IF an AC or a departing PE detected the failure, 

a CHECK-PE request is sent to the root-PE in order to perform the failure handling 

procedure.  

UPDATE-SENSING-CAPABILITIES: Whenever a new sensor network is added in a peer of 

the system (thus a new SNFE is registered) the available sensing capabilities of the PE 

component are possibly increased. In that case an UPDATE-SENSING-CAPABILITIES 

request is sent to the PER in order to update the proper entries.    

AVAILABLE-SENSING-CAPABILITIES and AVAILABLE-AREAS: These requests are sent by 

ACs. The PER searches its database and sends the requested information to the remote AC.  

PER 

PE 
DB 

PE 

AC 

PERListener 
Thread 

ReadOnlyRequestHandler 
Thread 

UpdateRequestHandler 
Thread 

Figure 3.4: The PER component  

The Peer Element Registry in our implementation resides in a well known ip and port. There 

is a PERListener thread which listens to a socket on this network address and waits for 

requests from AC and PE components. When a blocking request is received, the 

UpdateRequestHandler thread is awakened to handle it. Afterwards, it is suspended until 

another updating request needs to be handled. Hierarchy updating requests (blocking) are not 

handled simultaneously in order to avoid race conditions. When a read-only request arrives, a 

new ReadOnlyRequestHandler thread is created to handle it. More than one 
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ReadOnlyRequestHandler threads may run simultaneously handling multiple read-only 

requests.  

As shown in figure 3.4, we use a DBMS to store information about the registered PEs. We 

use JDBC functions to access the database. In our implementation the DBMS used is version 

4 of MySQL. However the PER is easily reconfigurable and any JDBC-enabled DBMS can 

be used provided that we acquire the corresponding JDBC driver.  

+-------------------+--------------+------+-----+---------+-----------------+ 
| Field             | Type         | Null | Key | Default | Extra           | 
+--------------------+--------------+------+-----+---------+----------------+ 
| id                 | bigint(20)   |      | PRI | NULL    | auto_increment | 
| area               | varchar(200) |      |     |         |                | 
| representativeFor  | text         |      |     |         |                | 
| sensingCapabilities| varchar(200) |      |     |         |                | 
| ip                 | varchar(50)  |      |     |         |                | 
| port               | int(11)      |      |     | 0       |                | 
| fatherID           | bigint(20)   |      |     | 0       |                | 
| realFather         | int(11)      |      |     | 0       |                | 
| markedBy           | bigint(20)   |      |     | 0       |                | 
+--------------------+--------------+------+-----+---------+----------------+ 

Figure 3.5: The PER database table 
 

For every PE registered in the PER database the following entries are filled-in: 

ip and port: These fields contain the network address in which the PE listens for requests 

from ACs or other PEs. 

id: This field is created automatically by the database in order to define uniquely the PE 

registries.  

sensingCapabilities: This field describes the sensing capabilities supported in the area the PE 

represents. Capabilities are not necessarily provided by sensors of the particular PE, but it 

may be supported by any PE which is one of its hierarchy descendants.  

area: This field contains the area declarative of the PE, as it is defined by its owner.  

representativeFor: This field contains the areas for which the PE is representative for. For 

example if a PE with area declarative “earth.greece.thessaly” exists and a PE with area: 

“earth.greece.thessaly.volos.port.gate1” joins the system, the second PE becomes a child of 

the first and the first becomes representative for the areas “earth.greece.thessaly.volos” and 

“earth.greece.thessaly.volos.port”.  

fatherId: In this field the id of the father-PE is stored. 

markedBy: This variable is used in failure handling procedure. If it is equal to -1 the PE is not 

marked as failed. If it is equal to another PE’s id, it means that this PE is marked as failed by 

the PE with the respective id. It prevents the simultaneous failure handling for the same PE 

by more than one PEs.  
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realFather: This field is a boolean variable showing whether the father-PE of the described 

PE is its direct father (e.g.: a.b.c is direct father of a.b.c.d) or an ascendant and became its 

father because intermediate PEs do not exist (e.g a is father of a.b.c.d if a.b and a.b.c PEs do 

not exist. We are able to get this information by other fields but we added it to avoid 

complicated string-parsing database queries.  

 

3.4. The Peer Element (PE) Component  
This component mediates between ACs and available sensor networks, perhaps via other PE 

components, to support the desired query distribution and result delivery. PEs may be 

installed on any computer with a connection to the Internet; one could place PEs on routers or 

DNS servers. PEs can be added and removed in a dynamic fashion, while obeying a certain 

join protocol. The entire intelligence of self-organization, query multiplexing, distribution 

and forwarding as well as result aggregation and de-multiplexing is implemented with this 

component. 

 

Hierarchy Updating Requests: 

 
FATHER-TERMINATING request  
CHILD-TERMINATING request 

NEW-CHILD request 

NEW-FATHER request 

ADD-SENSING-CAPABILITIES request 

SUB-SENSING-CAPABILITIES request 

Query/Result/Notifications  Management 
Requests: 
QUERY request  
CANCEL-QUERY request  

RESULT request 

SNFE-REGISTER request  

CHECK-PE request 

Figure 3.6: The requests handled by the PE component 

The PE components accept requests from all the other components of the system. We divide 

these requests in two categories (Figure 3.6).  

The fist category contains requests submitted in order to inform the PE for a change in the 

hierarchy. In order to avoid race conditions requests of this type are handled one at a time (a 

FIFO queue is used): 

FATHER-TERMINATING: This request is sent by the father-PE of PE11 when it terminates. 

The old father-PE sends the network address of the new father-PE. The PE1 holds the state 

about its new father and sends to it a NEW-CHILD-REQUEST.  

                                                 
1 we refer to the PE which receives the described request as PE1 
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CHILD-TERMINATING: This request is sent by a child-PE when it terminates. When PE1 

receives such a request, it checks if it has a child-PE with the sending PE’s attributes and 

removes it from its child-PEs list. Additionally it updates its available sensing capabilities in 

case the terminating PE is the only which supported some of them. In that case PE1 sends a 

SUB-SENSING-CAPABILITIES request to its father-PE.  

NEW-FATHER: This request is sent by a PE which enters the system and becomes a new 

father-PE for one or more PEs. The receiving PE updates its father-PE and sends any pending 

queries. 

NEW-CHILD: This request is sent by PE which enters the system and becomes the child-PE 

for a PE. The receiving PE keeps state of its new PE, sends to it any queries that it can serve 

and possibly updates its (and its ancestors’) sensing capabilities.  

ADD-SENSING-CAPABILITIES: This request is sent by a PE when it becomes able to 

support one or more new sensing capabilities, either when a new SNFE is registered to it or 

when it has received an ADD-SENSING-CAPABILITIES request by one of its child-PEs. If 

the receiving PE doesn’t already support the particular sense type, it updates its sensing 

capabilities and forwards the request to its father.  

SUB-SENSING-CAPABILITIES: This request is sent by a PE when it becomes unable to 

support one or more particular sensing capabilities due to either one of its child-PEs 

termination or the receiving of a SUB-SENSING-CAPABILITIES request by one of its child-

PEs. If the sending-PE was the only one between the receiving-PE’s children that supported 

the particular sensing capability, the receiving PE updates its sensing capabilities and 

forwards the request to its father.  

The other category contains requests for management of queries, results and other 

notifications: 

QUERY: The receiving PE receives a QueryObject by another PE or an AC, keeps state of it 

(creates and stores a PendingQueryObject) and decides in which child-PEs and which SNFEs 

is going to forward it.   

CANCEL-QUERY: The receiving PE receives the id of a query that must be cancelled. If it 

has previously received this query, it erases the corresponding QueryInPEObject and 

forwards the request to the appropriate PEs and SNFEs.  

RESULT: This request is received either by a registered SNFE or by a child-PE. The 

receiving PE parses the received ResultObject and stores any available sensor data to the 

proper QueryInPEObjects of the PendingQueries list.  
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SNFE-REGISTER: As we will describe later, SNFEs can be added in a node of the system in 

a dynamic and transparent way. Every SNFE is registered to its PE by sending this request. 

The receiving PE holds state of its new SNFE and checks if it supports any new sensing 

capabilities. In that case it updates its sensing capabilities and informs all its ancestors.  

CHECK-CONNECTION: This is a request serving failure check purposes. Whenever a PE or 

AC component, or the PER cannot access a PE, this request is sent. If the PE is up and 

running it has to respond to this check request. If it doesn’t respond in a fair time space it will 

be marked as failed and is going to be properly deleted from the system.  

CHECK-PE: This is a request serving failure check purposes and is sent only to the root-PE 

node. Whenever a departing PE or an AC component cannot access a PE the PER is informed 

and sends this request to the root-PE. If the root-PE receives the request it creates a 

FailureHandler thread that becomes responsible for running the departure protocol for the 

failed-PE.  

 

Submitted 
Queries 
List 

PE 

Figure 3.7: The PE component 

PEListener 
Thread 

PE 

AC 

SNFE 

PER 

ExpiredQueriesCollector  
Thread 

PERequestHandler 
Thread 

SubmittedQueriesManager
Thread 

HierarchyRequestHandler
Thread 

FailureHandler 
Thread 

 

The PE listens for requests in an IP and port defined by its owner. The PEListener thread 

listens to a socket binded to this network address. Whenever a hierarchy updating request is 

received, the HierarchyRequestHandler thread is awakened to handle it. Any simultaneous 

hierarchy updating requests are put in a FIFO queue and are handled one at a time. For every 

other request PEListener creates a PERequestHandler thread which handles it. More than one 
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PERequestHandlers can run simultaneously. There is also the SubmittedQueriesManager 

thread which checks the SubmittedQueries list in fixed intervals. If there is available sensor 

data for a submitted query, it is “packed up” in a ResultObject and it is forwarded to the AC 

which posted the query (if the PE is the first which received it) or to its father-PE. Another 

thread, ExpiredQueriesCollector, is also running through the SubmittedQueries list every few 

milliseconds and erases any expired queries. Finally, there may be FailureHandler threads 

which run the failure handling protocol in case another PE does not seem to respond properly.  

 

3.5. The Sensor Network Front End (SNFE) Component 
This component provides abstract query submission and result delivery functions that are 

independent of the technology used to implement a sensor network. Its role is to mediate 

between a concrete sensor network and a PE that represents it to the rest of the system. 

In order to install an SNFE component to one of the system’s PEs a class implementing the 

SensorNetworkGateway Interface must be created. This class is going to support the 

Interface’s functionality by sending the messages to the actual physical Sensor Network. The 

functions which must be implemented are briefly described: 

void sendQuery (String queryID, long totalTime, int timeInterval, String senseType): 
This function is responsible for the initiation of the query. The proper messages are sent to 

the physical sensor network in order to initiate a query for the given total running time, time 

interval and sense type. The queryID will be the query’s declarative, so it is advised to be 

stored locally in the implementing class.  

List<SensorValue> getValues(String queryID): This function is used for acquiring data for 

the query with ID equal to queryID. It must return a list of SensorValue objects (the data 

structure is described in section 3.6) or null if no data exists. 

int cancelQuery(String _queryID): This function is responsible for sending the proper 

messages to the sensor network which stop the execution of the desired query.  

It is advised to use a data structure in the implementing class in which sensor data is going to 

be placed for every query. The available SNFE sensing capabilities are defined by the owner 

of the sensor network in String form. In a real case scenario sensor owners would agree on 

some basic sense type definitions. Different SNFEs binded on the same PE must be listening 

on different ports. For our tests, we created two classes implementing the 

SensorNetworkGateway Interface.  
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Figure 3.8: The SNFE component
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Each SNFE component listens to a port defined by its owner for requests from the PE it is 

binded to. The SNFEListener thread listens for QUERY and CANCEL-QUERY requests. 

When such a request is received a SNFERequestHandler thread is created. If the request is a 

QUERY request, the received QueryObject is parsed and the proper query is forwarded to the 

physical sensor network through the SensorNetworkGateway object’s sendQuery method. A 

QueryServant thread is created ,which periodically (in a period defined in the QueryObject) 

checks for sensor data by calling the SensorGateway getResults method. If the request 

received is a CANCEL-QUERY request, the SensorNetworkGateway’s cancelQuery method 

is called. When a query expires, the corresponding QueryServant object is deleted.  

 

3.6. Data Structures 
Throughout our system we use data structures which describe basic entities, like queries, 

sensor data etc. These structures are implemented as Java Objects.  

 

QueryObject: 

 

String QueryID: The query identifier in the PE hierarchy scope  
long ACID: The query identifier in the scope of the query-invoking AC 
String senseType: The sense type for which sensor data is requested  
String aggregationType: The aggregation over sensor data (MAX|MIN|AVG|COUNT|NONE)  
String targetArea:  The area from which sensor data is requested  
long totalTime:  The quey run-time (in seconds) 
int timeInterval:  The intervals in which sensor readings must be produced 
ACInfo invokingClient: The AC which initially posted the query 
PEInfo sentFrom:  The PE (or AC) which sent the QueryObject is sent 

Figure 3.9: The QueryObject fields 
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A QueryObject is sent either from an AC to a PE, when a query is submitted to the system by 

the application using the AC, or from a PE to another PE when a query is forwarded. The 

fields of a Query Object describe the actual query attributes.  

The value of the sentFrom field is equal to the invokingClient value when the QueryObject is 

sent from an AC to the first query-serving PE. 

The QueryID field is the identifier of the query and is unique for the PE hierarchy. It 

comprises of the ID of the first PE which received the query and a unique value given by the 

first PE.  

 

QueryInPEObject: 

 

QueryObject query: The query attributes  
Calendar startTime: The query’s start moment  
String endTime: The moment the query expires  
String linkedToID: The id of the query from which sensor data are used  
List<SNFEInfo> sentToSNFEs: The SNFEs the query is sent to 
List<PEInfo> sentToPEs: The PEs the query is forwarded to 
List<ResultData> data:  The sensor data received for the query 

Figure 3.10: The QueryInPEObject fields 

A QueryInPEObject is created and stored in PE entity whenever a QueryObject is received. It 

holds the attributes of the query, any available sensor data ready to be forwarded, and query 

managing information like its start and end time. PE components keep lists of 

QueryInPEObjects in order to have a complete control over submitted queries.  The 

QueryInACObject and QueryInSNFEObject  structures contain the same fields and are used 

in the scopes of AC and SNFE components respectively.  

 

ResultObject: 

 

 
String QueryID: The ID of the query for which the data is produced  
List<ResultData> data: The sent ResultData objects  
long sequenceNumber:  Result data sequence 

Figure 3.11: The ResultObject fields 

A ResultObject is sent from a PE to its father-PE, or to an AC, whenever sensor data is 

available in the data list of a QueryInPEObject. The sequenceNumber field isn’t used by the 

system; it is filled in case the client application needs to use it.  
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ResultData:  

 

Calendar timestamp: The moment the object is created 
String area: The area of the producing SNFE  
String senseType: The sense type of the data. 
List<SensorValue> sensorValues:  The list of SensorValues 

Figure 3.12: The ResultData fields 

ResultData objects are created by SNFE components containing SensorValue objects along 

with query information and are stored in QueryInPEObjects ready to be forwarded to other 

PEs or ACs. The list of SensorValues represents the actual sensor readings.  

 

SensorValue: 

 

List<Double> value:  The sensor value in double format. 
String stringValue:  The sensor value represented as a string.  
String aggregationType:  The aggregation type of the value  
double aggregationWeight: The number of sensor devices which produced the value 
String sensorID:  The id of the sensor device which produced the value  

Figure 3.13: The SensorValue fields 

A sensor value object represents a sensor node reading or an aggregated value from many 

sensor nodes. The aggregationWeight field indicates the number of sensor devices from 

which the aggregated value was produced. If no aggregation is performed the weight is equal 

to 1. If it is supported by the used SensorGateway, the sensorID field contains the ID of the 

sensor device which produced the value. 

 

PEInfo: 

 

String area:  The area in which the PE node is located 
String ip:  The ip address of the host PC 
int port:  The port in which the PE listens for requests. 
String representativeFor: The areas for which the PE is representative. 
String sensingCapability: The supported sensingCapabilities  

Figure 3.14: The PEInfo fields 

A PEInfo structure contains the information which describes the PE’s basic parameters and 

its network address. 

The ACInfo is a similar data structure which holds the ip and port of an AC component.  

The SNFEInfo is another similar data structure which holds the port of an SNFE 

component and its available sensing capabilities. 
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Chapter 4 

Hierarchical Structure 

 

 

In this chapter we present how the peers’ hierarchy is constructed and updated when sensor 

networks join or leave the system. Initially we present the area model used and then we 

describe the PEs’ join procedure and use some typical join scenarios in order to explain its 

basic principles. After that we describe the departure procedure and finally show how the 

peers handle failures occurring during hierarchy update actions. 

 

4.1. Area Hierarchy Model 
The world is divided into areas of interest. Areas are referenced via area names which are 

structured in a hierarchical fashion (in the spirit of DNS). 

Each PE must be registered under an area name of this type, and is responsible for handling 

the queries targeted to this area, by querying its SNFEs (if available) and by forwarding the 

query to any other PEs that correspond to its sub-areas. For example a PE with name 

“earth.eu.gr.thessaly.volos.port” would be responsible for handling queries about the port of 

Volos, which in turn could rely on two additional PE’s named 

“earth.eu.gr.thessaly.volos.port.dock1” and “earth.eu.gr.thessaly.volos.port.d-ock2”. 

A vital concept of our architecture is the area representation. Initially, when a PE joins the 

system, it is representative for the area defined in its configuration. However if this PE has 

some child-PEs which are not direct child nodes (i.e. their area strings are more than one 

levels longer than its area string), it becomes representative for the areas of the intermediate 

PE nodes which still haven’t joined the system.  

For example if a PE with area “root.earth.europe.greece” (PE1) exists in the system and a PE 

with area “root.earth.europe.greece.thessaly.volos” joins the system, the PE1 is 

representative not only for its area but also for “root.earth.europe.greece.thessaly”. If another 

PE joins the system with its area variable equal to 

“root.earth.europe.greece.macedonia.thessaloniki.airport”, PE1 becomes also representative 
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for the area “root.earth.europe.greece.macedonia” and the area 

“root.earth.europe.greece.macedonia.thessaloniki”. Finally if a node with area 

“root.earth.europe.greece.macedonia” joins the system, it becomes representative for the 

area “root.earth.europe.greece.macedonia.thessaloniki” and 

“root.earth.europe.greece.macedonia” and PE1 becomes again representative for the areas 

“root.earth.europe.greece.thessaly” and “root.earth.europe.greece”.  

The information about which areas a PE is representative for, is kept in the PE 

“representativeFor” variable which is stored in the PE’s scope and in the PER database. The 

PE variable is updated each time a NEW-CHILD or CHILD-DEPARTING request is received. 

The PE lookup in the PER is performed using the representativeFor variables of the PEs.  

 

4.2. Join Procedure 
Every PE which participates in the architecture has to be registered during its startup process. 

The owner of the PE defines its host ip and port, the PE’s area declarative and other internal 

parameters. The host information and the area declarative are stored in a PEInfo object. In 

order to be registered to the system, the PE sends a JOIN request to the PER and the PEInfo 

object which describes it.  

The PER checks if the joining PE’s area-String is well-formatted and decides which, already 

registered, PE is going to become the joining PE’s father-PE. The PER also checks if there 

are PEs in the system which must become the joining PE’s child-PEs and then sends to the 

joining PE an OK response, its updated PEInfo object and the PEInfo objects which describe 

its father-PE and its child-PEs (if any). If the PE receives an OK response, it gets its updated 

PEInfo along with the father-PE’s and child-PEs’ PEInfo objects.  

Then it sends a NEW-CHILD request to its father-PE, receives any related queries and is 

registered in the scope of the father-PE as one of its child-PEs. Afterwards it sends a NEW-

FATHER request to each one of its child-PEs, followed by its PEInfo and the child-PE’s old 

father-PE PEInfo. The child-PEs register the joining PE as their new father and during the 

process the joining PE and its father-PE update their representativeFor and 

sensingCapabilities variables.  
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PER fatherPE(fPE)joiningPE(jPE) childPE1(cPE1) 
JOIN request, jPE 

OK, updated jPE, fPE, cPEs NEWCHILD request, jPE

OK related queries
NEWFATHER request, jPE, oldFatherPE(fPE)

NEWFATHER request, jPE, fPE 

OK 

OK 
OK updated jPE 

FINAL-OK  

Figure 4.1: A typical join procedure without failures 

childPE2(cPE2) 

 

Finally, if everything goes fine, the joining PE sends an OK response to the PER and its 

updated PEInfo (with the new representativeFor and sensingCapabilities variables), the PER 

receives and stores the information in its database, commits the changes and sends a FINAL-

OK response to the joining-PE. After that the joining-PE is part of the architecture and is able 

to receive requests from ACs and other PEs. A typical join procedure is briefly described in 

figure 4.1 and in figure 4.2 we present the PE-side join pseudocode. Failure occurrences are 

not included in these figures as we analyze failure handling in the last section of this chapter.  

PE.join(): 
send JOIN request, PEInfo to the PER 
receive response from PER 
if response=OK{ 
 receive updated PEInfo, father-PE PEInfo, child-PEs 
 send NEW-CHILD request, my PEInfo to father-PE 
 receive response from father-PE 
 if response=OK{ 
  receive related queries (if any) 
 } 
 else{ 
  send FATHER-ERROR response to the PER 
  prompt the PE owner to try to join later 
 } 

for each child-PE{ 
  send NEW-FATHER request to child-PE 
  send previous father-PE PEInfo, new father-PE PEInfo to child-PE 
  receive response from child-PE 
  if response=OK{ 
   update representativeFor variable 
  } 
  else{ 
   delete the child-PE from the child-PEs list 
  } 
 } 

send OK-FINAL response to the PER 
} 
else{ 
 prompt the PE owner to try to join later 
} 

Figure 4.2: The PE-side join-pseudocode 
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The PER is the component which has the complete view of the system, thus it is the one that 

decides which PE is going to be the joining PE’s father-PE. When the PER receives a JOIN 

request it keeps a variable with the joining-PE’s area (fatherArea). Then an iterative 

algorithm is executed in order to find a PE in the database, which is representative for 

fatherArea and will become the joining-PE’s father-PE. At the end of each iteration, the 

fatherArea is reduced by one level.  

If the PE (representingPE) is found on the first iteration (meaning that representingPE is 

already representative for the joining PE’s area) it is checked if the representingPE.area is 

sub-area of joining-PE.area. If so, the joining-PE’s father-PE is set to representingPE.father-

PE and the representingPE.father-PE is then set to the joining-PE. Contrary, if 

representingPE.area is equal to joining-PE.area, representingPE becomes the father-PE of the 

joining-PE. After the father-PE is found, the joining-PE’s child-PEs are discovered. Each 

child-PE found, is added in the child-PEs list.  

If the joining-PE area is “lower” than the father-PE area more than 2 levels, the variable 

checkArea is created, containing the (father-PE.area.levels+1) levels of joining-PE.area (e.g. 

if the joining-PE area is “root.earth.europe.greece.thessaly.volos” and the father-PE area is 

“root.earth.europe”, the checkArea variable is set to “root.earth.europe.greece”). The 

database is queried in order to find how many PE nodes have an area which is sub-area of 

checkArea and are not already the joining-PE’s child-PEs. These PEs are not direct child-PEs 

of the joining-PE and we name them cousin-PEs. If the number of cousin-PEs is greater than 

the maxCousins variable (defined in the PER configuration) the joining-PE becomes 

representative for checkArea and the cousin-PEs are added to the child-PEs list.  

The iterative algorithm stops either when the father-PE is found or the fatherArea variable 

becomes an empty string (in that case the joining-PE must be the first that joins the system 

and becomes the root-PE). Afterwards, the updated PEInfo object (with a possibly updated 

representativeFor variable) is sent to the PE and the father-PE and child-PEs PEInfo objects 

follow. Then, the PER waits for a response from the PE. If an OK response is received, the 

PER receives the updated PEInfo object from the joining-PE (with the representativeFor and 

sensingCapabilities variables possibly updated), the database is updated and the changes are 

committed. If an error occurs, the database changes are rollbacked.   
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onReceive JOIN-REQUEST from a PE (joining-PE): 
if ! (area.startsWith root){ 
 abort join: malformed area 
} 
fatherArea= joining-PE.area 
tries=0 
while(!fatherArea.equals(""){ 
 tries++ 
 search the DB for a PE which is representative for fatherArea(repPE) 
 if found{ 
  if (tries==1){ 
   if(repPE.area is sub-area of joining-PE.area){ 
    father-PE=repPE.father-PE 
    repPE.father-PE= father-PE 
    add repPE to the child-PEs list 
   } 
   else{ 

give a new unique area  
(newPE.area+=".#n" , n=0,1,2,3,....) 

 father-PE=repPE 
} 

  } 
  else{ 
   father-PE=repPE 
  } 
  update status in DB 
  find child-PEs and add them to the child-PEs list 
  if joining-PE.area.levels – father-PE.area.levels>1{ 
   checkArea=newPE.area-(levelsFromFather-1); 
   find all the PEs "under" checkArea which are not the  

joining-PE’s child-PEs(cousin-PEs) 
   if number of cousin-PEs>=maxCousins { 
    newPE becomes representative for checkArea 
    add the cousin-PEs at the child-PEs list 
   } 
  } 
 } 
 fatherArea=cutLevel(fatherArea,1) 
} 
send OK response,updated PEInfo,father-PE PEInfo and child-PEs  to the PE 
receive response from PE 
if response=OK{ 
 receiveupdated PEInfo (representativeFor variable updated) 
 finalRegister of the joining-PE to the database 
 send final OK response to the PE 
 commit changes to the database 
} 
else{ 
 rollback the changes to the database 
} 

Figure 4.3: The PER-side join-pseudocode 

The cousin check feature is vital in the tree hierarchy creation process. As we show in the 

evaluation chapter (section 7.6), if this feature isn’t used, we may have PE nodes with a large 

number of child nodes, or PE nodes with a very high tree depth. By using the cousin check 

feature we not only reduce the number of maximum child-PEs on a PE-node, but we also try 

to preserve the hierarchy information given by the area declaratives.  

We could expand the cousin check feature by setting a limit of child-PEs per PE. This would 

lead to an even more balanced hierarchy where there would be complete control of the PE-

nodes’ branch degree. However if we used a child limit scheme we would cause many 

“fictional” area declaratives which would not provide a clear view of the system status. 
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Additionally, the father-child associations defined by the PE owners would not be preserved. 

In order to respect the hierarchy relationships defined by the owners of sensor networks, 

we chose not to use a child limit feature.  

The first PE which joins the system automatically becomes the root-PE node of the 

architecture. Normally the root-PE must be owned by the system administrator and be located 

in the same host with the PER.  
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4.3. Join Scenarios 
In this section we are going to explain some aspects of the join procedure, using some small 

scale scenarios. Initially we describe a very simple join scenario where the joining-PE 

becomes representative for the area defined in its area declarative and gets 2 child-PEs. Then 

we present a scenario explaining what happens if a PE joins the system and has the same area 

declarative as an already joined PE. After that we present 2 scenarios explaining the cousin 

check feature and finally we present a scenario where the area defined in a joining-PE’s 

declarative is already represented by a PE of a lower area-level.  

 

Join Scenario 1: 

 

root 

root.earth root.mars 

root.earth.europe 

root.earth.europe.greece 
 

root.earth.asia 
root.earth.europe.italy 

joiningPE area: 
root.earth.europe 
 
root.earth PE representativeFor: 
root.earth 
root.earth.europe 
 

root 

root.earth root.mars 

root.earth.europe 

root.earth.europe.greece 
 

root.earth.asia 

root.earth.europe.italy 

joinedPE area: 
root.earth.europe 
 
joined PE representativeFor: 
root.earth.europe 
 
fatherPE: 
root.earth 
 
childPEs: 
root.earth.europe.greece 
root.earth.europe.italy 
 
root.earth PE representativeFor: 
root.earth 
 
 

After PE Join 

Before PE Join

Figure 4.4 : Join Scenario 1 

This is a simple join scenario. The PE nodes with area parameters “root.earth.europe.greece” 

and “root.earth.europe.italy”, previously child-PEs of the “root.earth” PE node, must 

become child-PEs of the joining PE. The “root.earth” node, which was previously 

representative for the areas “root.earth” and “root.earth.europe” (because of its child-PEs), is 

now representative only for “root.earth”, as the new-coming node is representative for its 

own area. The area of the new PE is one-level sub-area of its father PE node, so cousin check 

is not performed.  
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Join Scenario 2: 

 Figure 4.5: Join Scenario 2 
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This is a scenario showing what happens if a PE joins the system with the same area 

parameter as another PE. As we see there is already a PE in the system with area 

“root.earth.europe”. So, when another PE with area “root.earth.europe” joins the system, its 

area parameter has to be altered and escalated per one level. Its new area parameter is 

“root.earth.europe.#1” (if another “root.earth.europe” PE joins, its area will become 

“root.earth.europe.#2” etc), it becomes a child-PE of “root.earth.europe” node and is 

representative for its altered area. Again, cousin check is not performed.  
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Join Scenario 3: 
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Figure 4.6: Join Scenario 3 
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In this scenario the area parameter of the joining PE node (“root.earth.europe.greece”) is 2 

levels “lower” than its father-PE area (“root.earth”). In that case the cousin check scheme is 

performed. The cousin-PEs of the joining node, are the nodes with area parameters 

“root.earth.europe.italy” and “root.earth.europe.germany”, as they are not going to be its 

child-PEs, they are its father-PE’s child-PEs and their area parameters start with  

“root.earth.europe”. The numbers of cousin-PEs is smaller than maxCousins so the cousin-

PEs remain child-PEs of “root.earth” and are not added in the joining node’s child-PEs list. 

The “root.earth” PE which was previously representative for “root.earth”, 

“root.earth.europe” and “root.earth.europe.greece”, is now responsible for “root.earth” and 

“root.earth.europe” areas as the joined PE is representative for its area 

“root.earth.europe.greece”. 
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Join Scenario 4: 

Figure 4.7: Join Scenario 4 
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In this scenario the area parameter of the joining PE node (“root.earth.europe.greece”) is 

again 2 levels “lower” than its father-PE area (“root.earth”), so cousin check is performed. 

The cousin-PEs of the joining node, are the nodes with area parameters 

“root.earth.europe.italy”, “root.earth.europe.france”, “root.earth.europe.italy” and 

“root.earth.europe.germany”, as they are not going to be its child-PEs, they are its father-

PE’s child-PEs and their area parameters start with  “root.earth.europe”. The number of 

cousin-PEs is equal to maxCousins (4) so the joining PE becomes representative for 

“root.earth.europe” and its cousin-PEs become its child-PEs. The “root.earth” PE which was 

previously representative for areas  “root.earth”, “root.earth.europe” and 

“root.earth.europe.greece”, is now representative only for “root.earth” as the joined PE is 

representative for “root.earth.europe.greece” and “root.earth.europe” areas. 

We must denote that the sub-figure in the middle of the previous figure (Cousin Check) does 

not describe the system status at a particular moment. It shows the cousin-check feature 

execution.  
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Join Scenario 5: 
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Figure 4.8: Join Scenario 5 
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In the previous scenario, the joining PE (“root.earth.europe.greece”) becomes representative 

for an area (“root.earth.europe”)   which is in a higher level than its own area parameter. As 

it is described in the PER JOIN request handling pseudocode, if a PE joins later with area 

“root.earth.europe”, it becomes representative for its area and the previous representative for 

its area becomes its child-PE. In figure 4.8 we present the scenario. 
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4.4. Departure Procedure 
Whenever a PE needs to be terminated, it has to be properly unregistered from the system, 

thus to inform the PER, its father-PE and its child-PEs. The departure procedure is 

coordinated by the PER component in order to keep the hierarchy consistent in its database. 

 

PER fatherPE(fPE)departingPE(dPE) childPE1(cPE1)
DEPART request, dPE 

OK, fPE, cPEs 
CHILD-DEPARTrequest, dPE 

OK 

FATHER-DEPART request, oldFatherPE(jPE),new fatherPE(fPE) 

OK 

OK  

Figure 4.9: A typical departure procedure 

childPE2(cPE2) 

NEW-CHILD request, cPE1 
OK  

FATHER-DEPART request, jPE, fPE 

OK  

OK 

NEW-CHILD request, cPE2 

 

Initially the departing-PE sends a DEPART request along with its PEInfo to the PER. The 

PER finds the departing-PE’s hierarchy associations and sends to it its father-PE PEInfo and 

a list of its child-PEs PEInfo objects. After receiving these objects, the departing-PE sends a 

CHILD-DEPARTING request to its father-PE. The father-PE erases the departing-PE from its 

internal list of child-PEs and sends back an OK response. Then the departing-PE sends a 

FATHER-DEPARTING request to each one of its child-PEs along with its PEInfo and their 

new father-PE PEInfo. Each child-PE receives the old and new father-PE PEInfo objects and 

sends a NEW-CHILD request to their new father-PE followed by their PEInfo and any queries 

which were previously sent for the departing-PE. The new father-PE receives the child nodes 

information and any queries of the departing-PE and sends an OK response to its new child 
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nodes. Finally the departing-PE sends an OK response to the PER which erases it from its 

database and commits all the changes made. 

 

PE.depart(): 
send DEPART-REQUEST to PER 
send my PEInfo 
receive response from PER 
if response=OK{ 
 receive father-PE PEInfo  
 receive child-PEs PEInfo 
 send CHILD-TERMINATING-REQUEST to father-PE 

for each child-PE{ 
  send FATHER-TERMINATING-REQUEST to child-PE 
  send departing-father-PE PEInfo 
  send new-father-PE PEInfo 
 } 
 send OK-FINAL to PER 
} 

Figure 4.10: The PE-side departure pseudocode 

The PER sends the father-PE and child-PE PEInfo objects to a departing PE, because the 

departure protocol may be run on behalf of another, failed PE (we explain this feature in the 

failure handling section). Additionally, as it is seen in figure 4.9 the child-PEs respond to the 

departing-PE before sending a NEW-CHILD request to their new father-PE in order to let the 

terminating-PE successfully run the departure protocol without being prevented by other PE 

failures ( e.g. a failure of the new father-PE). For the same reason, in order to avoid 

deadlocks, if a failure is detected by a departing-PE (either the father or a child node) the 

root-PE becomes responsible for checking the status of the PE that seems to have failed, at 

second time. The departing-PE executes with success the departure protocol and the PER 

database is properly updated.  

 

4.5 Failure Handling 
Failures may occur in various instances of hierarchy updating procedures. We deal PE 

failures as if a PE leaves the system but doesn’t take the complete departure procedure. Our 

architecture’s target is to detect any failed PE-nodes and remove them properly without 

invalidating the constructed hierarchy. An important parameter we consider is the fact that 

the departure procedure is used in failure handling and for that reason the departing protocol 

must terminate easily. 

Various PE malfunctions may occur or be detected when a PE joins the system.  

If the joining PE detects a failed child-PE, simply does not add it to its child-PEs list. It 

doesn’t try to handle the child-PE failure on its own. It sends a FAILURE request to the PER 

and then, the PER sends to the root-PE a CHECK-PE request in order to run the failure 
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handling protocol which we describe later in this section. The failure is handled by the root-

PE and not by the new-coming PE because is not a stable part of the PE’s hierarchy until the 

join procedure terminates. 

If the joining PE cannot connect with its father-PE, it sends a FAILURE request to the PER 

component, which in turn makes the root-PE responsible for handling the PE failure. The join 

procedure is aborted, thus the new-coming PE does not become part of the system. The PE 

owner is prompted to try to start the component later, when the PE hierarchy will have been 

restored.   

It is also possible that the new-coming PE fails during join procedure. If the joining PE fails 

before receiving the father-PE and child-PE information, the PER does not register it to its 

database, and rollbacks all the database changes. If the joining PE sends a receive 

acknowledgement for the father-PE and child-PE information and afterwards does not send a 

FINAL-OK response to the PER, the PER registers it to the system (it does not abort the join 

procedure immediately in order to avoid inconsistencies with PEs possibly updated before the 

joining-PE’s failure) and then sends a CHECK-PE request to the root-PE. It is possible that 

one of the child-PEs detects its new father-PE failure when it sends a NEW-CHILD request to 

it. In any case the failure of the just-joined-PE is going to be detected (either by one of its 

child-PEs or by the root-PE) and it is going to be properly deleted from the system.  

 

During PE departure, if the departing PE cannot communicate with either the father-PE or 

one of its child-PEs, it informs the PER component (which again sends a CHECK-PE request 

to the root-PE in order to handle the failure) and takes no further failure handling action. This 

is done in order to avoid deadlocks, because, as we describe later, the departing protocol is 

used in failure handling. 

If a PE that received a FATHER-TERMINATING request cannot connect to its new father, it 

creates a FailureHandler thread in order to handle its new father-PE failure. After the failure 

is properly handled, the PE that detected the failure re-registers to the system (thus it runs the 

whole join procedure) in case other ancestor-PEs have also failed.  

When the root-PE receives a CHECK-PE request from the PER, it first tries to communicate 

with the PE for which the CHECK-PE request was sent. If the respective PE doesn’t respond, 

a FailureHandler thread is created in order to run the failure handling procedure.   
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FailureHandler thread(PEInfo notRespondingPE): 
send FAILURE request to the PER 
send the notResponingPE PEInfo 
receive response from the PER 
if response=OK-TERMINATE{  
 depart(notRespondingPE) 
} 

Figure 4.11 The PE FailureHandler thread pseudocode 

The FailureHandler thread is created taking as argument the PEInfo describing the not-

responding PE node. Initially it sends a FAILURE request to the PER followed by the PEInfo 

of the not-responding PE (nrPE). If the FailureHandler receives an OK-TERMINATE 

response, it runs the departure protocol on behalf of the failed PE.  

 When the PER receives a FAILURE request it checks if the nrPE is in the database. If it 

finds it, it sends to it a CHECK-CONNECTION request. If the PE doesn’t respond, the PER 

checks the type of entity that sent the FAILURE request. If the detecting entity is an AC or a 

PE that joins or leaves the system, the PER sends a CHECK-PE request to the root-PE in 

order to handle the failure and an OK response to the detecting entity. If the detecting entity 

is the root-PE or a PE that doesn’t join or leave the system (thus it detected the failure during 

query forwarding or query canceling or result forwarding or sensing capabilities update) the 

PER flags the nrPE as faulty, keeps track of the PE which detected the failure and sends back 

to the detecting PE an OK-TERMINATE. If another PE detects the PE failure during the 

procedure, an IGNORE response is sent by the PER, indicating that the failure is handled by 

another PE. Other possible PER responses to FAILURE requests are the NOT-REGISTERED 

response, showing that the PE is no longer in the system and the PE-ALIVE response, 

indicating that the PE hasn’t really failed. 

  

 

onReceive FAILURE-REQUEST from a PE or AC (detecting entity) 
receive the notRespondingPE PEInfo object 
try to find the related PE (nrPE) in the database 
if the nrPE doesn’t exist in the database{ 
 send a NOTREGISTERED response to the detecting entity 
 return 
} 
if the nrPE is marked by another PE(or AC)  

send back an IGNORE response 
} 
else{ 
 send a CHECKCONNECTION request to the nrPE 
 if the nrPE responds OK { 

send back a PEALIVE response to the detecting entity 
} 
else{ 
 if the detecting entity is an AC, a joining PE or departing-PE{ 
  send a CHECK-PE request to the root-PE 
  send an OK response to the detecting entity 
 } 
 else{  
  mark the PE with the detecting component’s ID 
  send back an OK-TERMINATE response to the detecting entity 
 } 
} 

}  

Figure 4.12 The PER FAILURE request handling pseudocode 
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Chapter 5 

Query Submission and Management 

 

 

In this chapter we present how the system manages the queries it receives from its end users. 

In section 5.1 we describe how PE nodes become aware of the sensing capabilities supported 

by their descendant PEs in order to avoid unneeded query forwarding. In the next two 

sections we present the query forwarding and query canceling mechanism. The way our 

system forwards sensor data to the users that requested them, is described in section 5.4. 

Finally, we describe how our system handles failures occurred during the execution of 

procedures studied in this chapter.   

 

5.1. Awareness of Sensing Capabilities 
An important feature of the architecture is the Awareness of Sensing Capabilities. Each PE is 

aware, at any time, of the sensing capabilities supported by the PE nodes in its sub-tree 

(meaning that the root-PE sensingCapabilities variable contains all the available sensing 

capabilities of the PE network). This feature is very useful, as it prevents unnecessary query 

forwarding to PE nodes which cannot support the desired types of senses. In section 7.5 we 

measure the effectiveness of the sensing capabilities’ awareness scheme. 

The locally available sensing capabilities of a PE may be declared by its owner in its 

configuration. Additionally, whenever a new SNFE component registers to a PE node, it is 

checked if it provides sensing capabilities which were not previously supported by the PE. If 

so, the sensingCapabilities variable of the PE is updated, an ADD-SENSING-CAPABILITIES 

request is sent to the PE’s father-PE and an UPDATE-SENSING-CAPABILITIES request is 

sent to the PER. If a PE departs the system, its father-PE, after handling the CHILD-

TERMINATING request, checks if it was the unique child-PE which supported one, or more, 

of its sensing capabilities. If so, the father-PE sends a SUB-SENSING-CAPABILITIES request 

to its own father-PE and an UPDATE-SENSING-CAPABILITIES request to the PER. 
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When a PE receives an ADD-SENSING-CAPABILITIES request it first checks if it already 

supports the new-coming sensing capabilities due to another child-PE or an SNFE. If the 

capabilities are not supported, it updates its sensingCapabilities variable, sends an ADD-

SENSING-CAPABILITIES request to its father-PE and an UPDATE-SENSING-

CAPABILITIES request to the PER. Finally it checks if there are any unsent queries with the 

newly supported sensing capabilities and forwards them to the PE that sent the ADD-

SENSING-CAPABILITIES request. 

 

on receive ADD-SENSING-CAPABILITIES request from a child-PE: 
receive the new sensing capabilities (one or more) 
if one or more of the new capabilities are not already supported{ 
 update sensingCapabilities variable 
 send an ADD-SENSING-CAPABILITIES request to the father-PE followed by  

the newly supported capabilities 
 send an UPDATE-SENSING-CAPABILITIES request to the PER 
} 
for each qeury in the SubmittedQueriesList{ 
 if the sense type of the query is one of the new sensing capabilities { 
  forward the query to the child-PE which sent the request 
 } 
} 

Figure 5.1: The ADD-SENSING-CAPABILITIES request handling 
d d

When a PE receives a SUB-SENSING-CAPABILITIES request it first checks if it is able to 

support the removed sensing capabilities through another child-PE. If the capabilities are not 

any more supported by any of its child-PEs, it updates its sensingCapabilities variable, sends 

a SUB-SENSING-CAPABILITIES request to its father-PE and an UPDATE-SENSING-

CAPABILITIES request to the PER. 

 

 

on receive SUB-SENSING-CAPABILITIES request from a child-PE: 
receive the subbed senses (one or more) 
if one or more of the new senses are not any more supported by other PEs{ 
 update senses variable 
 send a proper SUB-SENSING-CAPABILITIES request to the father-PE followed by 

   the not supported senses 
 send an UPDATE-SENSING-CAPABILITIES request to the PER 
} 
for each pendingQuery in the PendingQueriesList{ 
 if the sense type of the query is one of the new senses{ 
  forward the query to the child-PE which sent the request 
 } 
} 

Figure 5.2: The SUB-SENSING-CAPABILITIES request handling 
d d

Obviously when the PER receives an UPDATE-SENSING-CAPABILITIES request, it updates 

the PE’s record in the database.  

The ADD-SENSING-CAPABILITIES and SUB-SENSING-CAPABILITIES requests are 

Hierarchy Updating requests and cannot be executed simultaneously with other such requests, 

in order to avoid hierarchy inconsistencies.  
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5.2. Query Forwarding 
The architecture we propose uses the constructed hierarchy tree in order to deliver the user 

defined queries to the actual sensor networks. Users interact with an application (or service) 

which uses an AC entity. For each query a user submits, the AC-API’s sendQuery method is 

invoked. The users define the desired sense and aggregation type, the target area (i.e. the area 

of interest from which sensor data need to be delivered), the total time the query must run and 

the time interval between sensor readings. The AC first communicates with the PER to find 

the PE which is representative for the query targetArea. If there isn’t a representing PE for the 

desired area, a proper response is sent to the AC. The PEInfo describing the representative PE 

(which is the first PE of the system to receive this specific query) is sent to the AC entity. The 

AC forms a query object containing all the query parameters and sends it to the first-PE. The 

first-PE checks if it has a similar query running on its scope, from which it can share data and 

forwards the query to any child-PEs and SNFEs which can provide data for the desired sense 

type. The queries are forwarded to the lower-level PEs, following the area hierarchy. During 

the query delivery an acknowledgement scheme is applied in order to detect failed PE or 

SNFE components.  

 

on receive QueryObject: 
if Q1 comes from an AC define a unique queryID 
create a QueryInPEObject with the received query’s parameters (Q1) 
if a similar query exists (Q2){ 
 if Q2.endTime is after Q1.endTime{ 
  if Q2.timeInterval>Q1.timeInterval{ 
   update Q2 timeInterval on local SNFEs 

} 
  Q1 is linked to Q2 
  if Q1 came from an AC mark it as resultForwarding 
 } 
 else{ 
  cancel Q2 on local SNFEs it was sent 
  Q1 becomes running  
  send Q1 to all local SNFEs with Q1.senseType  
  if an SNFE doesn’t respond delete it and update sensing capabilities
  any queries linked to Q2 become linked to Q1 

Q2 is linked to Q1 
if Q1 came from an AC mark Q2 as resultForwarding 

} 
} 
else{ 
 Q1 status becomes running  
 send Q1 to all local SNFEs with Q1.senseType 
 if an SNFE doesn’t respond delete it and update sensing capabilities 
 
} 
forward Q1 to all the child-PEs which support Q1.senseType 
if an PE doesn’t respond create a FailureHandler thread to handle its failure  
store Q1 in the PendingQueriesList

Figure 5.3: The PE-side query forwarding pseudocode 

In figure 5.3 we present the query forwarding algorithm as it is implemented in the PE 

component. When a PE receives a queryObject it first checks if it is sent by a PE or an AC 
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entity. If the queryObject comes from an AC (meaning that the receiving PE is the first PE 

which received the query) a unique, per system, id is given to the query (a combination of the 

PE id and a unique, per PE, local id). Then the PE checks if there is a similar query running 

on its scope. If such a query exists, the PE has to decide which of the two queries is going to 

be the running query and which is going to be linked to the other’s resources. If the old 

query’s end time is after the new one’s, the new-query is linked to the old and if the new 

query’s time interval is smaller than the old’s the updated time interval is sent to any SNFEs 

serving the old query. If the new query is received from an AC, it is marked as 

“resultForwarding”. If the new query’s end time is after the old one’s the old query and any 

queries previously linked to it become linked to the new query. The updated end time is sent 

to any SNFEs serving the old query. The smallest between the queries’ time intervals is 

adopted and if the new query is received from an AC, the old query is marked as 

“resultForwarding”. If a similar query doesn’t exist, the query object is marked as running 

and it is forwarded to any SNFEs which declared that they provide data for the desired sense 

type. Regardless of being running or linked, the received query object is forwarded to any 

PEs which declared that they (or one or more of its progeny-PEs) can provide data of the 

desired sense type. Finally the state of the query is stored in the form of the QueryInPEObject 

in the SubmittedQueries List.  

The created QueryInPEObject has one of the three levels of result forwarding: 

running: A query which is forwarded to all the available SNFEs and forwards its results to 

the father-PE or an AC. Other queries may be linked to it, sharing the result data it holds. A 

running query is also a result forwarding query. 

linked and result forwarding: The query is linked to another query object, thus it is not 

additionally forwarded to the local SNFEs and uses any available data from the running query 

it is linked to. It has to forward result data to the father-PE or an AC. 

linked and not result forwarding: The pending query is linked to another query, thus it is 

not forwarded to the SNFEs. Additionally it doesn’t have to forward any result data to its 

father-PE because it is served by the query it is linked to.  

A query is similar to another when they have the same sense and aggregation type. The total 

time, the time interval and the target area parameters may differ.  

The sensing capabilities’ awareness feature is very useful in that point as it prevents 

unnecessary query forwarding to sub-trees which cannot provide various types of sensor data 

at a particular time point. As we explained in section 5.1, if an SNFE with a new sensing 

capability is registered to a PE, the fact is publicized upwards the tree hierarchy. If 
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unsupported queries exist in a PE and a new sense-update event is received from one of its 

child-PEs (matching with the inactive queries’ sense type), they are forwarded downwards 

the hierarchy to request data from the new-coming sensor devices (represented by the 

previously mentioned SNFE component(s)).   

We must denote that if a PE receives a query from an AC for a sense type that is not yet 

supported in its sub-tree, it properly informs the sending AC. The end user has the choice to 

either cancel the unsupported query or leave it in the PE scope in case the desired sense type 

becomes supported by a new-coming SNFE.  

 

5.3. Query Canceling 

The users of the system are able to cancel a query they sent to the system via the client 

application. The query canceling request travels through the hierarchy tree following the 

same route as the original query, in order to reach to all the PEs, and their SNFE components, 

which participate in the query.   

 

on receive CANCEL-QUERY request: 
receive the queryID(QID) of the query to cancel 
if there is a query in the SubmittedQueries list(PQ) with PQ.quertID=QID { 
 for each PEInfo in the sentToPEs list{ 
  forward the CANCEL-QUERY request to the PEInfo   

wait for response 
  if not received within a fixed time space{ 
   manage child-PE failure 
  } 

} 
for each SNFEInfo in the sentToSNFEs list{ 

send the CANCEL-QUERY request to the SNFE 
  wait for response 
  if not received within a fixed time space{ 
   delete the SNFE from the SNFEs list 
   update available senses 
  } 

} 
delete the query 
if there are any queries linked to it{ 
 find the one which lasts longer 
 make it running query 
 link the others to it 
send an acknowledgment response to the sending PE (or AC) 

} 
else{ 
 send a NO-SUCH-QUERY response to the sending PE (or AC) 
} 

Figure 5.4: The PE-side query forwarding pseudocode 

As we show in figure 5.4, when a PE receives a CANCEL-QUERY request (CQ) it first 

checks if there is a QueryInPEObject with the CQ.queryID. If such a query exists it deletes it 

from its SubmittedQueries list and then forwards the CANCEL-QUERY request to the SNFEs 

and the PEs it had sent the cancelled query. The component waits for proper 

acknowledgements from the PEs and SNFEs in order to detect failures.  
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5.4. Result Forwarding  

Result forwarding follows the hierarchy tree reversely to the query forwarding route. Thus, 

the result objects must be sent from every participating, per query, PE to the first PE that 

received the query (PE1) through the constructed hierarchy. PE1 finally sends the sensor data 

to the AC which originally posted the query. Result forwarding upwards the tree hierarchy is 

asynchronously performed. Result objects, coming from an SNFE or another PE, are received 

by the PERequestHandler thread. Then the related QueryInPEObject is found in the 

SubmittedQueries list of the PE, and the received sensor data is properly stored.  

 

on receive ResultObject (RO): 
for each QueryInPEObject(QIPO) in the SubmittedQueries list { 

if (QIPO.queryId==RO.queryID) OR  
(QIPO.linkedToID== RO.queryID AND QIPO=resultForwarding){ 

  store the RO.resultData to the QIPO.data list 
 } 
} 

Figure 5.5: The result receiving pseudocode 

As it is described in figure 5.5, when a PE receives a ResultObject, it runs through all the 

queries in its SubmittedQueries list. If a QueryInPEObject having the same queryID with the 

ResultObject (the ResultObjects keep state of the query for which they are produced, on their 

creation time in the SNFE) is found, the ResultData of the QueryObject is stored in the 

pending query’s result data list. The result data is also stored in pending queries which are 

linked to the query with  RO.queryID and are marked as resultForwarding.   

 

 

PendingQueriesManager thread: 
while(true){ 

sleep(checkTime) 
for each QueryInPEObject(QIPO)in the SubmittedQueries list { 
 ... 
 if (QIPO.resultForwarding==true) AND (QIPO.data is not empty){ 
  if QIPO.lastTimeSent+ QIPO.timeInterval before currentTime{ 
   create a ResultObject 
   send it to QIPO.sentFrom (PE or AC) 
   wait to receive a receive ack for a fixed time 
   if ack is received{ 
    clear the PQO data queue 
   } 
   else{ 
    if QIPO.sentFrom is not an AC{ 

handle father-PE failure 
] 

    } 
  } 
 } 
 ... 
} 

} 

Figure 5.6: The result forwarding pseudocode 
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Another thread running in the PE, the SubmittedQueriesManager, checks at specific time 

intervals all the pending queries of the PE, to find any available sensor data and forwards it 

either to the father-PE or to an AC component, from which the related query came from.  Its 

functionality is described in figure 5.6. In fixed time intervals (defined in the PE 

configuration) the SubmittedQueriesManager thread runs through all the query objects in the 

SubmittedQueries list and, among other things, checks if they have any ResultData in their 

data list. If ResultData is found in a query object, and the last time a ResultObject was sent 

for this query was at least a timeInterval time space before the current time, a ResultObject is 

created containing the result data and the query’s parameters and is sent to the fatherPE, or 

the AC which invoked the query. When an acknowledgement is received, the pending query’s 

data list is cleared. The thread’s access over the SubmittedQueries list object is protected to 

achieve mutual exclusion.  

If an aggregation mode is requested by the user, the aggregation is performed on SNFE level, 

thus no aggregation is performed within the PEs of the hierarchy. Each SNFE aggregates the 

data, when it is created, and sends the aggregated value and its weight. If further aggregation 

is desired, it may be performed on client application level.  

 

5.5 Failure Handling 
PE nodes running the procedures described in this chapter may detect failed PE nodes. As we 

denoted in the previous chapter we deal PE failures as if a PE leaves the system but doesn’t 

take the complete departure procedure.  

At sensing capabilities update functions (either ADD-SENSING-CAPABILITIES or SUB-

SENSING-CAPABILITIES) if the father-PE doesn’t respond, a FailureHandler2 thread is 

created in order to handle the detected failure. The sensing capabilities of the PE nodes, 

above in the hierarchy, will be updated when the hierarchy is fixed.  

At query forwarding, if a PE forwarding a new query, cannot communicate with one of its 

child-PEs it keeps state of the fact that one of its child-PEs didn’t receive a query and creates 

FailureHandler thread which has to run the departing protocol on behalf of the non 

responding PE after taking permission from the PER. In case the non responding child-PE 

hasn’t really failed (for example if a very temporary network disconnection occurred), the 

query is sent properly to it by the PendingQueriesManager thread, which periodically checks 

for unsent queries and follows the same failure handling strategy.  
                                                 
2 We describe the FailureHandler functionality along with the PER FAILURE request handling 
pseudocode in section 4.5 .  
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At query canceling, the exact procedure is followed as in query forwarding. 

At result forwarding, if a PE cannot communicate with its father-PE, the 

PendingQueriesManager thread keeps any result data found in a QueryInPE object, and 

creates a FailureHandler thread in order to reinstate the tree hierarchy. Any result data 

collected during the failure handling procedure will be eventually forwarded by the 

PendingQueriesManager thread, when the tree hierarchy is fixed. If a PE cannot 

communicate with an AC component, it takes no action and just keeps the result data in its 

scope until the related query expires, in case the AC reconnects.  

If an AC node cannot communicate with a PE (in order to send one of its queries) it sends a 

FAILURE request to the PER and a proper error value will be returned to the client 

application.  
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Chapter 6 

Implemented Sensor Gateways 

 

 

In order to test the system we proposed, we created a simple Client Application using the AC 

component and we also developed two classes implementing the SensorNetworkGateway 

Interface. The first is a very simple sensor network simulator (SimulatingGateway), which 

produces random values. 

The other one is a real sensor network gateway that connects to a network of sensing devices 

(Smart-Its [2]) and acquires real time data (SmartItsGateway).  

In this chapter we present the real sensor motes’ platform used in our tests and then we 

describe the SmartItsGateway component.  

 

6.1. The Smart-Its Platform 
In order to create and deploy a simple sensor network with a corresponding Sensor Gateway, 

we used Smart-Its sensor motes. Smart-Its are simple sensing devices that are able to produce 

sensor data of various types and send them over the air to other Smart-Its devices or a PC. 

The platform’s key building block is the particle (Figure 6.1.a), a board equipped with a 

microcontroller, a short range wireless communication interface, and a conventional battery. 

The particle is extended by plugging different sensor boards on it (Figure 6.1.b). In order to 

collect data from a set of Smart-Its nodes and store them to a PC, a USBBridge (Figure 6.1.c) 

or an X-Bridge (Figure 6.1.d) must be used. These devices are similar to a particle device 

except that they have an extra communication interface and convert Smart-Its packets into 

UDP packets and vice versa. 
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Figure 6.1.a : The Smart-Its particle Figure 6.1.b : A sensor board 

 

                          
Figure 6.1.c : The USBBridge Figure 6.1.d : The XBridge 

Figure 6.1: The Smart-Its platform 
 

 

A custom runtime system is preinstalled in the particles. Each packet is broadcast over the air 

and is received by all nodes in range. Packets are filtered on receive, based on a subject 

interest mask.  

In our setup we used a particle with the default Particle Software installed on it, a sensor 

board and a USBBridge. In order to collect data to the PC that hosted the PE and SNFE 

components, we used the USB PC Software provided by the Smart-Its web site[2]. We also 

used the Java libparticle API in order to send and receive messages from the 

SmartItsGateway Class.  

  

6.2. The SmartItsGateway Component 
The SmartItsGateway component is a Class that implements the SensorNetworkGateway 

Interface. We will describe the implemented methods: 

 

void sendQuery (String queryID, long totalTime, int timeInterval, String senseType): 
This function initiates the query. When invoked a Query object(containing the start moment, 

the time interval, the end moment, the queryID, the sense type and an empty list of 

SensorValue objects) is created and stored in the RrunningQueries list. If no query with the 

same sense type runs in the gateway, the proper libparticle methods are used in order to 

create a SmartIts packet which will be sent to all the particles in range and make them 

produce data for the requested sense type.  If another query is running on the gateway with 
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the same sense type and greater time interval, a packet is sent that updates the query time 

interval in the particles.  

List<SensorValue> getValues(String queryID): This method returns available SensorValue 

objects for a Query object with ID equal to queryID from the RrunningQueries list. Null is 

returned if there are no data available. 

int cancelQuery(String _queryID): When this function is invoked, the Query object with the 

corresponding queryID is erased from the RunningQueries list. If no other query with the 

same sense type is running on the gateway, the proper libparticle methods are used in order 

to create a SmartIts packet which will be sent to all the particles in range and force them to 

stop producing data for the cancelled query’s sense type.  

Apart from the Sensor Network Gateway API, some internal entities are implemented: 

The ResultListener thread uses the libparticle library and listens (through the USBBridge) for 

result packets. Each time a result packet is received a PacketHandler thread is created that 

clears the packet data, transforms them to SensorValue object(s) and stores them in the proper 

Query object. 

There is also the GatewayManager thread which runs through the RunningQueries list, erases 

any expired queries and sends query-terminating packets if needed. Additionally it re-sends 

query-setup packets in fixed time intervals in case new particles come in range.  
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Chapter 7 

System evaluation 

 

In this chapter we present some experiments we conducted that either explain some of our 

design options or show the efficiency gain we get from the self-organized peer hierarchy. 

Initially we present the simulator component we created in order to evaluate our system and 

describe its basic parameters and the variables it measures. Afterwards we present 

experiments evaluating the cousin-check, sensing capabilities’ awareness and query 

multiplexing features.  

 

7.1. The Simulator Component 
In order to evaluate the system, we created a simple simulator with which we measured the 

system performance. The simulator component creates a number of fictional PE nodes, 

simulates the join protocol for each one of them and forms their hierarchy tree. Then it 

creates some fictional queries and simulates their processing. Each PE is described by its area 

and available sensing capabilities and each query is described by the requested sense type, the 

target area and the (fictional and random) end time. Variables which describe the system 

performance are probed during the simulation.  

 Figure 7.1: A small-scale simulation scenario 

root PE

vacant slot

joining PE 

number of PEs: 20 
branch degree: 3 
probability of Join:0.5 
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7.2. The Simulation Parameters 
The simulator parameters we describe in this section can be set during the simulator 

configuration:  

number of PEs: The number of PE descriptions that the area creator is going to produce.  

branch degree: In order to simplify the simulation, we consider the environment in which the 

simulated architecture is deployed, as a set of areas which are organized in a tree hierarchy. If 

we take the earth as an example environment, the hierarchy levels may comprise of a 

continents level, a sub-continents level, a countries level, a regions level, a prefectures level, 

a cities level and so on. This attribute is the maximum number of the sub-areas each area has 

in the next layer.  

probability of join(pJoin): This attribute is the probability that an area is going to participate 

in the system by deploying a PE. Areas are created according to the “branch-degree” attribute 

and for each area a PE is created with the defined probability of join. The procedure stops 

when “number of PEs” PE descriptions are created.  

available sensing capabilities: The totally available number of sensing capabilities in the 

simulated set of PEs. 

maximum sensing capabilities per PE(maxSC): The number of sensing capabilities each PE 

gets is random and is between 0 and maxSC.  

number of queries: The number of queries simulated. 

join method: The method by which the PE nodes join the system, with the cousin check 

feature either activated or deactivated.   

maxCousins: The homonymous variable of the cousin-check feature (if activated).  

processing mode: The way the random queries are processed, either with the sensing 

capabilities’ awareness scheme and query multiplexing enabled or not. Three processing 

modes are available: 1 is without sensing capabilities awareness and without query 

multiplexing, 2 is with sensing capabilities awareness enabled and without query 

multiplexing and 3 is with both features enabled.   

 

7.3. The System Status Variables 
In this section we describe the system variables that are measured by our simulator and are 

used to evaluate the architecture.  
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In order to analyze the PE joining procedure the simulator measures: 

maximum number of child-PEs(on some PE-node): The simulator tracks the number of 

child-PEs on every PE-node. This variable is the number of child-PEs in the most child-

loaded node (the node with the most child-PEs).  

maximum tree depth: The maximum depth of the constructed tree of PE-nodes.  

 

 

In order to analyze query processing the simulator measures: 

total QueryInPE objects (TQ): The number of submitted queries in all the PE nodes of the 

system. As we showed in chapter 5 whenever a QueryObject is received, a QueryInPEObject 

is created and stored in the scope of the PE. 

unsupported QueryInPE objects (UQ): This variable shows the unsupported query objects in 

the set of simulating PEs. In chapter 5 we denoted that if sensing capabilities’ awareness is 

enabled, a query that is received by a PE which cannot support the requested sensing 

capability (meaning that neither its SNFEs nor its descendant-PEs support it), is not 

forwarded to any of the PE’s SNFEs or PEs and is stored internally in case the required sense 

type becomes available by a new SNFE. These query objects are named as unsupported. No 

data are received from, or forwarded by, such query objects.  

supported QueryInPE objects (UQ): The set of total QueryInPE objects that are not 

unsupported.  

linked QueryInPE objects(LQ): The number of QueryInPE objects which are linked to 

another pending query. As we described in chapter 5 linked query objects are the ones that 

aren’t forwarded to SNFEs and reuse data from other queries with the same sense and 

aggregation type attributes (running QueryInPE objects).  

running QueryInPE objects(RQ): The number of query objects which are not linked to 

another and receive data from SNFEs and PEs to which were previously forwarded.  

result forwarding QueryInPE objects(RFQ): The number of QueryInPE objects which are 

marked as result-forwarding, in all the nodes of the system. As we described in section 5.2, 

the set of result-forwarding QueryInPEs comprises of all the running QueryInPE objects and 

a subset of the linked QueryInPE objects, which have to send result data to an AC or a PE 

regardless if they primarily use or reuse sensor data. This variable is an important metric of 
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the system status as it shows the query objects that produce network traffic amongst the PE 

components. 

QueryInSNFE objects(SNFEQ): The number of SNFE query objects (thus the actual queries 

that keep the sensor devices busy). This is another important performance metric as it shows 

the physical wireless sensor networks’ load.  

 

7.4. Cousin Check Scheme Evaluation 
In order to evaluate the cousin check scheme that is used whenever a PE joins the system, we 

simulated the join procedure of a set of PEs, first without the cousin check feature and then 

with this feature enabled.  

During the first testing simulations we noticed that if the system doesn’t perform cousin 

check, the root-PE of the system has too many child-PE nodes. If such a thing happens to a 

real system, the root-PE would become representative for many areas, thus receiving a large 

number of queries from AC components and hierarchy requests from PE components, which 

could cause a network and memory overload in its host PC. In order to avoid child-

overloaded nodes, we introduced the cousin check scheme and in order to measure the 

improvement we get from it, we conducted experiments for various sets of PEs with different 

numbers of PEs and probabilities of join measuring the maximum number of child-PEs in the 

constructed hierarchy for the two different join modes (cousin check enabled or not).   

In the next page we present 4 graphs from an experiment showing that if cousin check scheme 

is not used, the smaller the pJoin is, the greatest maximum number of child PEs we have in 

the set of PEs. Contrary, when cousin check is used, the maximum number of child-PEs 

remains relatively stable. 

The varying simulation parameter in each one of the experiments presented on the next page, 

is the probability of join (pJoin). The parameter which is different among the experiments is 

the number of PEs (500, 1000, 2000 and 4000 nodes). The branch degree parameter is set to 

7 to all 4 experiments, as it is a fairly plausible value describing a real environment. The 

maxCousins parameter is set as equal to branch degree (7) (simulations with greater 

maxCousins showed smaller improvements). The simulation is run in both PE join modes. 
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Figure 7.2.a:The simulation parameters of the following graphs 

number of PEs:  500/1000/2000/4000 
branch degree: 7  
probability of join(pJoin):  varying (0.1:0.1:1.0)  
available sensing capabilities: unconcerned parameter  
maximum sensing capabilities per PE: unconcerned parameter 
number of queries:  unconcerned parameter 
join method:  cousin check inactive / cousin check active 
processing mode:  unconcerned parameter 
maxCousins: 7 
 

Figure 7.2.b: Experiment 1.1: Number of PEs: 500
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Figure 7.2.c: Experiment 1,2: Number of PEs: 1000
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Figure 7.2.d: Experiment 1.3: Number of PEs: 2000
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Figure 7.2.e: Experiment 1.4:Number of PEs: 4000
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Figure 7.2 : Experiment 1 (Cousin check Evaluation) 
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As we see in the previous graphs, the maximum number of child PE nodes rises excessively 

when we don’t use the cousin check scheme and we have an environment with small join 

probability. However, when cousin check is performed, the maximum number of child-PEs is 

much smaller and remains at the same order of magnitude regardless of the probability of 

join. We also denote that the maximum number of child-PEs is highly depended on the 

number of PEs parameter if cousin check is not used.  

The maximum depth among the PE nodes of the system is also a good metric for the 

hierarchy quality, but in simulations for number of PEs of this scale we don’t have big 

differences. 

 

7.5. Sensing Capabilities’ Awareness Scheme Evaluation 
In section 5.1 we described the sensing capabilities’ awareness scheme used in our system, 

thus how each PE node becomes aware of the sensing capabilities supported by all the PEs in 

the sub-tree below it. If this feature is not used, when a query arrives to the PE which is 

representative for the defined target area, it has to be forwarded to all the PEs which are 

hierarchy descendants of the first PE, regardless of the fact that maybe the desired sense type 

is not supported by any of it. Obviously this can cause many unnecessary query requests and 

unsupported query objects in the PE components. 

We conducted simulations in order to measure the gain we get from the adoption of the 

sensing capabilities’ awareness scheme and we present a representative example which refers 

to a PE and query set which can be mapped to a real-life sensing environment scenario. 

In the experiment presented on the next page, the join probability parameter varies from 0.1 

to 1 (with a step of 0.1). The branch degree parameter is set to 7 and so does the maxCousins 

parameter. 10000 PEs are created and each one of them has a random number of sensing 

capabilities between 0 and 2 (maxSC=2) choosing from a set of 8 available capabilities. There 

are 200000 queries created choosing a target sense type from the available sensing 

capabilities set. The simulation is first run with sensing capabilities’ awareness feature 

deactivated and then with the feature activated. Query multiplexing is not enabled in both 

cases.  

In the first graph we show the percent of the total QueryInPEs objects, with sensing 

capabilities’ awareness enabled, which are unsupported QueryInPEs objects. In the second 
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graph we show the number of total QueryInPE objects for each probability of join with the 

sensing capabilities’ awareness feature either activated or not.  

Figure 7.3.a:The simulation parameters of the following graphs 

number of PEs:  10000 
branch degree: 7  
probability of join(pJoin):  varying (0.1:0.1:1.0) with a step of 0.1)  
available sensing capabilities: 8  
maximum sensing capabilities per PE: 2 
number of queries:  200000 
join method:  cousin check activated  
processing mode:  1(sensing capabilities awareness deactivated)/ 
 2(sensing capabilities awareness activated) 
maxCousins: 7 
 

Figure 7.3.b: Percent of Unsupported QueryInPE objects w ith sensor awareness enabled 
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Figure 7.3.c:  Total QueryInPE objects w ith and without sensor awareness
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Figure 7.3 : Experiment 2 (Sensing Capabilities’ Awareness feature evaluation) 
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In graph 7.3.b we show the percent of the total queries, with sensing capabilities’ awareness, 

which are unsupported (i.e. query objects whom sense-types are not yet supported by the 

containing PEs’ sensing capabilities)  

The unneeded forwarding of the unsupported queries, if sensing capabilities’ awareness is not 

enabled, causes a bigger number of total QueryInPE objects as we show in graph 7.3.c.  As 

we see in this graph, the number of the total QueryInPE objects in the system is much smaller 

(about 80-83% in this PE/query set) when sensing capabilities’ awareness is used, than when 

we forward all the queries, regardless of the supported capabilities. The number of excessive 

query objects not only shows the unnecessary overload of the PE nodes, but it also implies 

the unneeded query requests sent from PE nodes to descendant PEs which cannot support the 

desired sensing capabilities.   

The fact that the number of total query objects for both processing modes, does not range a 

lot due to different join probabilities, shows that the constructed hierarchy is efficient as the 

system seems to work well regardless of the rate the environment areas decide to join.  

 

7.6 Query Multiplexing Evaluation 
In section 5.2 we described how our system supports query multiplexing and result data 

reuse. Whenever a new query request arrives to a PE node, either by an AC or another PE, it 

is checked if there is a similar query running on the node. If such a query exists, either the 

new-coming query, or the already running one, becomes linked to the other and share results. 

So, if query multiplexing is enabled, the total QueryInPE objects are divided into two subsets, 

the linked QueryInPE objects and the running QueryInPE objects. As we showed in section 

7.5, the running queries and some of the linked queries form another subset of QueryInPE 

objects, the result forwarding QueryInPE objects. This category of query objects is very 

important as it gives us an idea of the query processing status of the whole system. If query 

multiplexing feature is not enabled, the number of result forwarding QueryInPE objects is 

equal to the number of supported QueryInPE objects (total – unsupported query objects).  

In the next figure we present the results of an experiment we run in order to measure the 

performance gain we get from the use of query multiplexing for varying join probabilities. In 

the first graph we present the percentage of result forwarding query objects when query 

multiplexing is used to result forwarding query objects when it is not. In the next graph we 

present the percentage of SNFE query objects when query multiplexing is used to SNFE 

query objects when it is not. 
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In the presented experiment the join probability parameter varies from 0.1 to 1 (with a step of 

0.1. The branch degree parameter is set to 7 and so does the maxCousins parameter. 10000 

PEs are created and each one of them has a random number of sensing capabilities between 0 

and 2 (maxSC=2) choosing from a set of 8 available capabilities. There are 200000 queries 

created choosing a target sense from the available sensing capabilities set. The simulation is 

first run with query multiplexing deactivated and then with the feature activated. Sensing 

capabilities’ awareness is enabled in both cases.  

Figure 7.4.a:The simulation parameters of the following graphs 

number of PEs:  10000 
branch degree: 7  
probability of join(pJoin):  varying (0.1:0.1:1.0)  
available sensing capabilities: 8  
maximum sensing capabilities per PE: 2 
number of queries:  200000 
join method:  cousin check activated  
processing mode:  2(query multiplexing deactivated) /  
 3(query multiplexing activated) 
maxCousins: 7 
 

Figure 7.4.b: Percent of Result Forw arding QueryInPE objects w hen query multiplexing is 
used to Result Forw arding QueryInPE objects w hen query multiplexing is not used 
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Figure 7.4.b: Percent of SNFE query objects w hen query multiplexing is used to SNFE 
query objects w hen query multiplexing is not used 
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Figure 7.4 : Experiment 3  

(Query Multiplexing feature evaluation for varying join probabilities) 
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As we see in the first graph, we have an important decrement of the result forwarding queries 

when query multiplexing is used, which leads to more efficient query processing. The 

observed decrement doesn’t seem to link with the changes in probability of join, a fact that 

shows the efficiency of the constructed tree hierarchy. 

In the second graph we notice that the SNFE query objects, are decreased when query 

multiplexing is used.  

It is obvious that query multiplexing is very efficient as it not only reduces network traffic 

amongst PE-nodes but it also leads to fewer queries to the available sensor devices that 

consume less energy and produce less communication messages. 

 

Finally we present an experiment that shows the performance gain from the use of query 

multiplexing in PE sets with varying maximum sensing capabilities per PE. In order to study 

the gain we get from the query multiplexing feature, we measure the percent of result 

forwarding QueryInPE objects percentage to supported QueryInPE objects (RFQ/ (TQ –

UQ)). When query multiplexing isn’t used the percentage is 100% as result forwarding 

queries are equal to supported queries.  

number of PEs:  10000 
branch degree: 7  
probability of join(pJoin):  0.7  
available sensing capabilities: 8  
maximum sensing capabilities per PE: varying (1-8) 
number of queries:  200000 
join method:  cousin check activated  
processing mode:  3(query multiplexing activated) 
maxCousins: 7 

Figure 7.5.a:The simulation parameters of the following graph 

Figure 7.5.b: The result forwarding queries/supported queries ratio with 
varying maximum sensing capabilities per PE
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Figure 7.5 : Experiment 4  

(Query Multiplexing feature evaluation for varying maximum sensing capabilities)  
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The join probability parameter is set to 0.7. The branch degree parameter is set to 7 and so 

does the maxCousins parameter. 10000 PEs are created. There are 200000 queries created 

choosing a target sense from the available sensing capabilities set. The varying parameter is 

the maximum number of (random) sensing capabilities per PE. It varies from 1 to 8. The 

simulation is run with the query multiplexing and sensing capabilities’ awareness features 

enabled.  

As we see in the graph we have better performance as the PEs acquire more sensing 

capabilities.  

 

We must denote that all the simulations presented in this chapter present a view of the system 

in a particular moment with a particular set of queries running on a particular set of PEs. 
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Chapter 8 

Conclusions and Future work 

 
 

8.1. Conclusions 
In the last few years there has been a lot of interest in the field of sensor networks. It is 

accepted that in the next years, networks of sensors are going to be present in various areas of 

our planet.  In chapter 2 we presented some projects which aim in the collection of data from 

different sensor networks.  

The objective of this thesis was to provide a distributed, self-organized framework for 

querying multiple sensor networks through the Internet with area criteria that will face the 

challenges of sensor data collecting overlay networks. The most important feature of our 

system is the automatic organization of the participating peers, that represent the actual 

sensor networks, and the utilization of the constructed, area based, hierarchy to send, in an 

efficient and transparent way, the users’ queries to the edges of the architecture, where the 

actual sensing devices receive them through a simple interface. As we showed in the 

evaluation chapter, the hierarchy self-organizing algorithms along with the query 

multiplexing and sense awareness scheme we propose, enable efficient result data reuse in 

peers’ and sensors’ levels, which leads in less power consumption, smaller memory footprints 

and fewer communication messages.   We paid a lot of attention in the transparent and 

dynamic entrance and departure of peers in the system. Any peer failures are properly 

handled and do not affect the status of the properly running nodes’ hierarchy.   

The major innovation of the system we propose is its self-organization scheme. In other 

similar projects mentioned in Chapter 2, which aim in the collection of data from different 

sensor networks, either no hierarchy structure is used, or the hierarchy is static and defined a 

priori.  
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8.2. Future work 
The system we propose is quiet efficient as it not only provides a transparent interface 

between client applications and sparse sensor networks, but it also succeeds in reducing the 

consumed resources both in the peers’ hierarchy and in the actual sensor networks. However, 

its functionality can be further enhanced and expanded.  

The self-organization algorithm is currently performed only during the join of each 

participating peer to the system. More efficient hierarchy organization will be achieved if an 

extra, distributed re-organization algorithm is executed in all the peers during runtime. 

Excessive child-peers or large tree depths would be detected and confronted with peers’ shift 

in upper or lower levels. Of course, something like that would presuppose an updated failure 

handling scheme in order to achieve distributed consensus throughout the peers’ set. 

As we described, query and result data are represented as Java Objects. In order to be more 

easily handled by client applications (or web pages) they could be represented in XML 

format possibly in a widely adopted data representation language like SensorML [40], EEML 

[31] or TML [41]. The exchanged messages between peers would become bigger, but we 

could achieve more manipulation options and maybe reduce the processing time in client 

applications.  

In order to make the system more reliable, a distributed version of the Peer Elements Registry 

could be implemented. This would also reduce the PER request processing time. The 

distributed version of the component could be implemented either with a custom-made 

protocol or with an off-the-self distributed registry solution. 

The classes we developed implementing the SensorNetworkGateway Interface are rather 

simple. A more advanced smart-its gateway could be added to the system, with support for 

multiple sense types and possibly advanced query and result routing between the particles. 

TinyDB could also be used in order to create a gateway class communicating with TinyOS-

enabled sensor motes. Of course, custom gateway classes can be developed for any sensing 

device that can be accessed through a host PC. 

Finally, advanced client interfaces can be created that will use the provided Application 

Client component API. They may be either classic Java applications or JSP-enabled web-

pages used for system monitoring and query submission. 
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