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Introduction

There are several different types of medical imaging; Ultrasound, Computed 
Tomography (CT), nuclear imaging and Magnetic Resonance Imaging (MRI). L 
Wigstrom introduced three-dimensional Phase Contrast MRI (PC-MRI) with which 
one can gain three dimensional velocity data.

One of the most succesful ways to analyse such data and extract information is by 
manual segmentation. The downside of this option is that it is time consuming and 
operator dependent. Therefore, introducing automatic segmentation in images can 
be a huge assistance in analyzing medical data. Even an automated segmentation 
approach can require a lot of time.

The image analysis applications that are were used in this thesis visualize and 
analyze the cardiovascular tree in a three dimensional way by using flow properties 
in four dimensional phase contrast magnetic resonance imaging (4D PC-MRI) flow 
data. These applications are Segment and Fourflow. Segment analyzes and 
quantifies data from many different medical images and its range of tools include 
features like quantification of MRI flow and segmentation of the leftventricle. 
Fourflow is an open source software for quantification and visualization of 4D PC- 
MRI data that enables development of new quantitative analysis tools. Those 
applications' processes are time consuming and require a high computational 
power.

This is where CUDA is entailed. CUDA is a parallel programming C-like language that 
uses one or multiple graphics processing units of a machine. The idea is simple: if 
there is a job to be done, many workers can do it way faster than a single worker if 
they cooperate in an appropriate way. Likewise CUDA breaks down a complex job 
into smaller,easier tasks and distributes these tasks that have to be done to different 
threads or blocks of a GPU.

Therefore, the aim of this thesis is accelerating a high performance vessel 
segmentation algorithm that exploits the flow properties of 4D Phase Contrast MRI. 
Considering this purpose, accelerating performance of Fourflow through using 
Matlab Parallel Computing toolbox and CUDA C was attempted.
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Background

Magnetic Resonance Imaging

Hu man body is consisted of about 75% water. Water includes one atom of oxygen 
and two atoms of hydrogen. Therefore, there is an abundance of hydrogen in the 
human body. Each hydrogen atom’s nucleus is a positively charged proton and can 
be called as a spin (a small spinning magnet). This little magnet does not spin in a 
perfect alignment and there is certain angle at which the atom is spinning with 
respect to the axis of B, .

Figure 1: A spin

Spins reside in random positions and random angles inside the human body. When 
an MRI examination takes place, the patient is placed on a bed which is able to move 
inside a machine that generates an external magnetic field of multiple Tesla(ranging 
usually from 1.5 to 7). Higher Tesla values mean higher MRI scanner cost. When the 
patient is placed inside the static external field, the hydrogen spins allign with the 
direction of the external field in a parallel or anti parallel manner. This alignment 
results in a summation of the magnetic dipoles, into a net magnetization vector, Mo 
that can create an image if it is handled in the right way.
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Figure 2: Spins before entering the BO magnetization field (left) and after (right !

When spins are inside the magnetic field they precess with a frequency that is given 
by the Larmor equation:

f=Y.,B
where f stands for frequency, y , is for the gyromagnetic ratio of hydrogen and B 
is the static magnetic field.

B is an additional magnetic field of radiofrequency(RF) that is applied for a very 
short time on the x-y plane in order to rotate the magnetization vector Af 90

degrees from its initial position(the z axis), so it is called a 90 pulse. In order for 
this "drop" to happen, B has to rotate at the same frequency as the spins precess. 
Once the magnetization vector is on the x-y plane, the RF pulse is removed and M0 
rotates on the x-y plane and this way a MRI signal is generated. The spins at this 
time are affected by both of the fields. Their movement forms a spiral until it 
touches the x-y plane. This movement is being seen by someone who is using the 
Laboratory Frame of Reference.

If the observation could be done from the top of the the Bi vector (somehow like the 
observer is sitting on the Bi vector), then Bi vector would appear still and the 
magnetization vector would be like it was decending until it drops completely on the 
x-y plane. This sight of view is called Rotating Frame of Reference point of view.
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Figure 3: magnetization vector M drops to the x-y plane. Top: Laboratory Frame of Reference Bottom: 
Rotating Frame o f Reference

When the magnetization M is on the x-y level, the Free Induction Decay signal is 
obtained. From the moment this signal gets created it starts to decrease until it 
becomes zero. This decrease of its value is because of the interactions of the spins 
that gain different rotational speeds and it is measured by the T2 reralaxation time. 
This relaxation time differs for each tissue. B magnetic field is not completely 
homogenous cause of design imperfections and moreover disturbance to the field is 
added when the patient enters the machine. This is an additional reason for the 
signal to decay. The sum of these decay factors is represented by the constant 
relaxation time which also depends on the body tissue. The magnetization on the x-y 
level Mxyis given by the following formula:

Mxy(t) = Mo e-t/V

where SI is the original magnetization on that starting latitude. 
The decrease which is caused by spin-spin interactions is calculated by the

following formula:

A#„ ( 0 - "Ti
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Silmutaneously with the signal decay, the magnetization vector M starts to 
grow along the x axis. This is because spins retrun the energy they have received to 
the lattice and it is called "spin-lattice” relaxation. The rebuilding of the 
magnetization on the z axis is given by the following formula:

AM O -A#c * ( l - * w·)

Spin-echo is the method used for the calculation of the Γ. value by isolating the 
decay reasons to spin-spin interaction only. This method starts when 
magnetizationvector lies on the y axis from the 90x pulse that was sent. In TE/2 
time the spins dephase because of field heterogeneities and the magnetization starts 
to decay. On this point a 180 x is applied andmakes the spins move towards the -y 
axis. After another TE/2 time the spins have been completely rebuilt to their initial 
status but this time they are placed in parallel to the -y  axis. The result of this 
procedure is that now the dephasing that occurs to the magnetization is unaffected 
by field heterogeneities so the T time constant can be calculated.

Figure 4: The spin-echo sequence
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Gradients are additional changes in magnetic fields that are applied to the 8 
field and cause spins to change their frequency or direction on which they rotate 
based on their distance from the center of the magnet. When O' gradient is applied,

spins at the y axis precess at different frequencies based on their distance from the 
start of the y-axis. Since the strength of the gradient applied is known, if also the 
precessional frequency of a spin is also known, it is possible to calculate its position 
on the y-axis, as well as calculate the precessional frequency based on the position 
on the y-axis. Gradients can be applied in three axes, that is x, y and z. So the Larmor 
equation becomes:

f = Yh (Bo + Gx x + Gy y + Gz z )
where x,y and z are the distances from the center of the magnet.

When a Gz gradient is applied it only affects the rotational speeds of the spins on the 
z-axis. This way when a 8 radiofrequency pulse is applied, spins of a certain 
distance from the z-axis'starting point can be forced to spin on the same frequency 
with the pulse and therefore only those spins will be forced to "drop" to the x-y 
plane and generate a signal. This is called "slice selection".

z

Gz

y

Figure 5: Slice selection process; a certain slice of spins is selected
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G gradient encodes the frequency. That mean that when G is applied, spins at a 
specific distance on the x axis have exactly the same preciessional frequency and 
this frequency is different for each different location on the y axis. When the signal 
that contains these different frequencies is acquired, they can be retrieved by using 
the Fourier transform. Afterwards these frequencies can be translated with certain 
locations on the x-axis, since the precessional frequency and the x distance are 
linearly related as seen by the Larmor equation.

Figure 6: Gx applied, each row o f magnetization vector has a different frequency value.

G gradient is applied as phase encoding in order to find the position of the spins on

the y-axis. This happens exactly when RF pulse ends and before signal acquisition 
starts. While the Gy gradient application takes place the magnetization vectors on

the y axis have different precessional frequencies. But this time, at the end of the G 
gradient pulse, every spin has the same precessional frequency but different phase

9



which depends from the distance from the center of the magnet For every location 
on the y-axis, these different spin phases are summed. Fourier transform is not 
capable of extracting the original phases from these sums and it is not possible to 
identify the y location which they come from. This problem is solved by the 
repetition of the experiment several times with linearly increasing the strength of 
the G. gradient This way for every different experiment repetition there is a

different "frequency" for every y location. Fourier transform can now be applied 
along the direction of each experiment so thatthese frequencies can be told one 
from another and provide y position information.

Figure 7: Gy gradient is applied when spins have different precessional frequencies .When it stops they
have same frequencies but different phases

Information received by:[1] and [2]

Phase contrast MRI

Spins that are moving along the direction of a magnetic Field gradient receive a 
phase shift tp.This change is proportional to the velocity of the tissue, u and creates a 
phase shift which is the loss of phase coherence in precessing spins.
Using this phase shift it is possible to construct an image detailing the velocity in any 
specified direction and slice. The phase ofthe signal taken from a single voxel is 
given by:

I

9<r.T) *  β  ,T+ yvj G{r,t )t dt
ύ

=  7B t T  +  γυΟ
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where γ is the gyromagnetic ratio, T is the time, B, is the external magnetic field and 
G(r,t) is the magnetic field gradient. In a phase contrast sequence two data sets with 
a different amount of flow sensitivity are acquired.

Then gradient pairs are applied that sequentially dephase and rephase 
continuously.By applying gradient pairs, two datasets with different phases 
dedending on how far the tissue has moved during the recording are acquired. By 
substracting these phases 
Vl-<p2 = '/υ(0*1 -  G'2)
gradient direction is attained. The gradient pairs are usually applied to produce 
velocity information in the x, y and z direction. This way the 3D velocity for each 
individual voxel in one slice is recorded simutaneously. The velocity is calculated 
with the following method; by comparing the phase of signals from each location in 
the two sequences the exact amount of motion induced phase change can be 
determined to have a map where pixel brightness is proportional to spatial velocity. 
As a result we get a multidiensional data set. For each different slice in this dataset 
there are three different phase images, each one corresponds to a gradient direction, 
while the amplitude of the image show the velocity. These images are time resolved, 
so there is a fourth dimension.

Figure 8: Data from PC-MRI scans and its components.
Source Ober P,(April 8, 2013) Segmentation of cardiovascular tree in 4D from PC-MRI images

Information received by:[3]
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Blood vessel segmentation

Blood vessel segmentation is useful for analysing flow data. There are many 
different methods for segmentation, like level set functions, snakes and active 
contours but these are often limited by initialization parameters and are not 
completely automated, as well as they are limited to one or two blood vessels. By 
using steamlines, it is possible to visualize the flow, but not for the entire 
cardiovascular tree and also a lot of input is required.

A new vessel segmentation algorithm was introduced by Peter Oberg that benefited 
from PC-MR1 images’ velocity data. Through this algorithm the whole cardiovascular 
tree is portrayed.

The first step of this process is to remove the noise from the PC-MRI images.Local 
deviation is calculated for each pixel in each separate phase image. This way the 
erratic behaviour of noise is being identified and isolated. This process is repeated 
for each pixel.

Velocity is calculated as a product of the three different phase images Gi, G2, G3 in a

vector form u= (a,, ,wr_ ,m( ). Magnitude of the velocity is |u|= s u\ + u:c +u 'i> .

Magnitude and direction of this velocity makes us able to separate what is coherent 
flow and what is not Noise can be confused for coherent flow but generally the 
vector field in these areas shows larger angular speed and less coherent magnitude. 
So, coherent flow will have a more uniform vector field in both direction and 
magnitude than tissue and noise in the image, therefore three different coherence 
measures were tested.

Angular spread is one of these measures tested. First a 3x3x3 voxel neighbourhood 
is created around each voxel and the angle of each individual 3D vector is compared 
with the median angle of the 3D vector neighbourhood. The angles seen in figure 7 
are calculated by taking the arcustangens of the x, y and z directions. The angular 
spread is defined by:
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Figure 9: a and b angles

VtC = H *V t

K' =
| ·

P ^ U j,O s 5jan/?icr.;3)l 
n

Where H is a two dimensional filter, “ denotes the convolution, v is the filter 
output for all three directions, n is the number of pixels in the neighbourhood, and 
ang is defined as the angles for each 3D vector within the neighbourhood as 
presented by Figure 7. This process is repeated for every pixel and every slice in the 
whole dataset. The normalized sum for systole of this neighbourhood around each 
voxel indicates whether or not the voxel is part of the coherent blood flow. The 
need of matching with the other features where a larger value means a larger 
probability for coherent flow the values of p . where modified in the following way:

Structure tensor is next measure tested. It is a matix and its eigenvalues indicate 
what direction of flow within a volume is most prominent. Mu is a positive semi 
definite matrix as defined by:
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And then Mu is convoluted with an average filter. Its convolution result has 3 
eigenvalues; λι, λζ, λ3 one for each direction in space. The size of each eigenvalue is 
directly related to the amount of flow in the direction of its eigenvector. If all flow 
would flow in the same direction then there would only be one large eigenvalue 
λι=1 and its eigenvector would be in the direction of the flow.

In the case of no dominant direction in the neighbourhood, the value of all 
eigenvalues will be low, about 0.4. But if there there is coherent flow in the 
neighbourhood, a single direction should be more dominant than the others. This 
causes one eigenvalue to be much higher than the others. As a result voxels that 
have coherent flow, will have eigenvalues much greater than voxels with incoherent 
flow. Afterwards the values for these eigenvalues are averaged during systole for 
each pixel within the slice. This process is repeated for each pixel for each slice. A 
larger value of the feature indicates coherent flow.

p W i=  Y m a p ^  « - Υ  max{eig{M.)) 
η ~  n~r{

Projected velocity magnitude is the last but most important feature that uses a 
combination ofangle and magnitude. When all 3D vectors within the neighbourhood 
project on the median vector of the same neighbourhood an expression for 
projected velocity magnitude p (.r.>·./), is achieved which is an indication of

coherent flow.

V.. = H * V ,

K =  (^r; ic.^czc M )

P , .
I JTi'P

H is the two dimensional mean filter, * denotes the convolution, vcn is the filter 
output for all three gradient directions, n is the number of pixels in the 
neighbourhood, v, is the a vector in the neighbourhood, vc is the median 3D vector 
and Vj*vc is the scalar product of the two vectors. Exactly like all the other measures,

14



the process is repeated for every pixel and averaged over systole. If the vectors 
within the neighbourhood are aligned in a similar direction, they will all project 
much of their magnitude or they will project poorly, in case they are aligned in 
different directions, onto the median vector direction. During systole the magnitude 
of the coherent flow within the vessels is large compared to its surrounding which 
further increases the effectiveness of the feature.

Throughout the previous steps, the product of the projected velocity magnitude 
feature and the actual magnitude image is used to finalize a probability map of the 
cardiovascular tree. It runs through all the slices of the input dataset and returns a 
new dataset

Information received by:[3]

CUDA

The start ofgraphics processing unit(GPU) computing resides on a very simple but 
clever idea. GPUs in the early 2000s were builtthis way to produce a color for every 
pixel on the screen using programmable arithmetic units known as pixel shaders. 
What a pixel shader does is using its (x,y) position on the screen as well as some 
additional information like colors or texture coordinates to produce a final color.
But because the whole process that was performed on the input colors and textures 
was completely controlled by the programmer, researchers found out that input 
colors could actually be any data. So if each color represents a number then 
calculations could be encoded into colors and their results could be as well 
translated from colours back to numbers. This way programmers could "trick” GPU 
into doing whatever calculation they wanted to do. But this model proved to be a bit 
too hard to handle for the widest part of the programming world, limitations on 
where the programmer could write to memory, strange usage of floating-point data 
and lack of debugging methods were only some of the problems that had to be faced.

The first GPU built with CUDA Architecture is GeForce 8800 GTX 
f http://www.geforce.eom/hardware/desktop-gpus/geforce-8800- 
gtx/specificationsl. Cuda architecture aims to solve many of the programming 
issues that were faced initially by the first GPUs. This time GPU does not compute 
through pixel shaders but includes a unified shader pipeline thatallows every 
arithmetic logic unit (ALU) on the chip to be handled by a program intending to 
perform general-purpose computations. Also single-precision floating-point 
arithmetic is now in and this time it can be used for general computation, not only 
for graphics. Moreover GPU could read and write to memory and access likewise a 
software-managed cache known as shared memory.

CUDA starts being used in 2007 assisting a wide variety of applications like medical 
imaging, computational fluid dynamics and enviromental science.

15

http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx/specifications


CUDA offers the opportunity of executing code on the GPU device that is currently 
selected instead of executing it on the CPU.

The following code includes a call to a function named kernel that involves angle 
brackets. Also the function has the identifier _g lo b a l_ . This means that function 
kernel is being called and it will be executed on the GPU device that is currently 
selected instead ofthe CPU.

#include <iostream>
_global_void  kernelQ
{

}
int mainQ
{

kernel<<<l,l>>>0 ; 
printf( "Hello, World!\n"); 
return 0;

}

What makes CUDA a parallel programming language is the option it gives to 
programmers to split a big task into smaller pieces and distribute the pieces to a 
GPU's "workers". These "workers” are called blocks and threads. Blocks are 
something like a grid. This grid can be one, two or three dimensional.

Block 00 BlockOl Block02

BlocklO Blockll Blockl2

Block20 Block21 Block22

Example of 2-dimensional B ock Grid

Each block contains a grid of threads. Exactly like blocks, threads can also be one, 
two or three dimensional. BlockOO's threads would look like this:

BlockOO

ThreadOO ThreadOl Thread02

ThreadlO Threadll Threadl2

Thread20 Thread21 Thread22

16



Let's examine a simple example to show how CUDA works and what can someone 
achieve by exploring the power of parallel computing. Addition of two vectors is the 
case.

A summary of this CUDA code is:
Two vectors(a and b) are created on the CPU and they are filled. Their values are 
copied to arrays that reside on GPU memory. A call to a function that runs in parallel 
on the GPU is made and the result is returned to the host. Finally the results are 
displayed and the memory that was used on the GPU is freed.

In a classic C approach code would look like this:

#define N 10
void add(int *a,int*b,int *c)

{
int spot=0;

while(spot< N)
{

c[spot] =a [spot]+b [spot]; 
spot++;

}
}
int mainQ
{
int a[N],b[N],c[N];

for(int i=0;i<N;i++)
{

a[i]=-i;
b[i]=i*i;

}

add(a,b,c); 

for (i=0;i<N;i++)
I

prints "%d + %d = %d\n", a[i], b[i], c [ i ] );
}
}

CUDA C code to perform the same task is the following:
#define N 10

_global_ void add(int *a,int *b,int *c)
I
inttid=blockldx.x; 

if (tid<N)
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}
c[tid]=a[tid] + b[tid];

int mainQ
{

inta[N],b[N],c[N];
int *dev_a,*dev_b,*dev_c;
cudaMalloc( (void**)&dev_a, N*sizeof(int));
cudaMalloc( (void**)&dev_b, N*sizeof(int));
cudaMalloc( (void**)&dev_c, N*sizeof(int));
for (int i=0;i<N;i++)
{

a[i]=-i;
b[i]=i*i;

}
cudaMemcpy (dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice); 
cudaMemcpy (dev_b, b, N*sizeof(int), cudaMemcpyHostToDevice); 
add«N,l>>(dev_a, dev_b, dev_c);
cudaMemcpy(c, dev_c, N* sizeof(int), cudaMemcpyDeviceToHost); 
for(int i=0; i<N; i++)
{

printf( "%d + %d = %d\n", a[i], b[i], c [i ] );

}
cudaFree( dev_a); 
cudaFree( dev_b); 
cudaFree( dev_c);
}
The really interesting part of the code is: 
add«N,l>>(dev_a, dev_b, dev_c)

This is a call to a function named add. The call to the function is accompanied by
brackets that include some parameters as well as the add function has a_global_
identifier. The combination of this identifier and these brackets means that the code 
that is written in the function will be executed on the GPU device instead of being 
executed on the CPU. The numbers inside the brackets refer to the number of blocks 
that will be launched and the number of threads that each block will include.

inttid=blockldx.x;

blockldx.x gives the index of the block that is currently launched. Since the grid of 
blocks is restricted to 10, it refers only to one dimension and in this case, this 
dimension is x(N could be representing more than just one number and it could for 
example be (10,4,2). In that case blockldx.y and blockldx.z would make sense and 
they would represent the indexing of these blocks on the y and z axis.).

18



So what's really happening is that there are 10 blocks running simultaneously and 
each one uses its index to compute the following code line:

int tid=blockIdx.x; 
if (tid<N)

c[tid]=a[tid] + b[tid];

In a figure itwould look like this:
Block 1 Block 2

_g loba l_  void
add( int *a, int *b, int * c ) { 
inttid = 0; if (tid < N) 
c[tid] = a [tid] + b[tid];
}

_g loba l_ void
add( int *a, int *b, int * c ) { 
inttid = 1; if (tid < N) 
c[tid] = a[tid] + b[tid];
}

Block 3 Block 4

_g loba l_  void
add( int *a, int *b, int * c ) { 
int tid = 2; if (tid < N) 
c[tid] = a[tid] + b[tid];
}

_g loba l_ void
add( int *a, int *b, int *c ) { 
inttid = 3; if (tid < N) 
c[tid] = a[tid] + b[tid];
}

And this continues on the same way to Block 10.

The blocks are being executed in parallel so instead of computing C[10] array by 
using a while loop with 10 iterations, CUDA code launches 10 blocks where each one 
of them computes one spot in the C[10] array. If the assumption thatthe CPU being 
used and the GPU being used have the same computing power is made, then CUDA 
succeeds a lOx speedup.

Let's continue by explaining the main() code. The first line that needs explanation is 

cudaMalloc( (void**)&dev_a, N*sizeof(int)).

This works exactly like standard C malloc function with the difference that it does 
not allocate memory on the computer's memory but it does allocate memory from 
the GPU device that is currently selected. So there are three arrays that are being 
prepared to take some input data and their memory is allocated on the GPU.
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The next line that would look unfamiliar to someone who is not used with CUDA C 
code is

cudaMemcpy (dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice);

This function works like standard C memcpy function but the third parameter 
explains if the copy will be done from the GPU device to the host device ( host device 
is called the CPU side of the machine being used) or if the copy will be done from the 
host device to the GPU (in this case the third parameter would be 
MemcpyDeviceToHost). In this particular scenario array a that resides on host 
memory is being copied into array dev_a that resides on device memory.

cudaFree(dev_a)

This is identical to C free function with the difference that cudaFree frees memory 
allocated on the GPU device and not on the host.

In this particular example threads were not used. Threads refer to a specific block, 
have their own indexing like blocks(threadIdx.x, threadldx.y andthreadldx.z) and 
can share some common properties. For example threads within a block can use 
some shared memory. There are many comforts that CUDA provides to a 
programmer. Shared memory between threads, constant memory, texture memory, 
atomics and streams are only some of the benefits that CUDA offers.

Information gained by [4]
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MATLAB Parallel Computing Toolbox

Parallel computing toolbox makes accelerating applications with GPUs an easy job.
It gives the opportunity to any programmer to enjoy CUDA GPU parallel computing 
benefits without the need of in-depth knowledge of CUDA programming language or 
GPU architectures.

Combining the ease of MATLAB and the computing power of CUDA one can achieve 
great results from using this toolbox. When CUDA code is needed calls to kernels are 
made; kernels are one or more functions written in CUDA woven together in order 
to be used later. The following is a simple example:

k= parallel.gpu.CUD AKernel("simpleEx.ptx","simpleEx.cu"); 

where simpleEx.cu is:

_global_ void add ToVector(float *pi,float c,int vecLen)
int idx=blockldx.x * blockDim.x+ threadldx.x; 
if (idx<vecLen)
{

pi[idx]+=c;
}

and simpleEx.ptx is the result from compiling simpleEx.cu

The number of threads and blocks that will be launched on this kernel is set by the 
following commands:

k.GridSize=[5 1]; 
k.threadBlockSize=[5 1];

k now acts as a "call object" that someone can use in a feval function in order to 
produce results in a MATLAB code:

0ut(25)=0;
Table(25)=0;
D_Table=gpuArray(single(Table)];
Tablelength=25;
D_Tablelength=gpuArray(Tablelength);
A=8;
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D_A=gpuArray(A);
[Out]=feval(k,D_Table, D_A, D_Tablelength);

Out keeps the result of this kernel call which is array Table with the value 8 added 
on each one of its initial values. As it can be easily figured out by the ,cu file the 
calculations in the array's positions are done in parallel.

gpuArray is a function that saves an array of data on the GPU. Then this data can be 
used either for kernel calls or direct calculations.

As mentioned before, the kernel could include more than just one function. The only 
difference on declaring the kernel object then would be that it'd take a third 
parameter to explain to the system which function to 
execute(k=parallel.gpu.CUDAKernel(ptxfile, cufile, function_name)).

Methods

In this thesis, a previously developed method from Van Pelt et all and Peter Ober 
was improved by implementing GPU technology. The GPU implementation involved 
calculation ofthe propability map for vessel visualization based on 4D PC-MRI data. 
The core of this calculation resides on a MATLAB code.

Figure 10 :Schematic figure showing the data flow from start to finish. This thesis is being focused on 
accelerating the calulations of the Probability Map.

Source: Oberg P. (April 8,2013) Segmentation of cardiovascular tree in 4D from PC-MRI images
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In this MATLAB code three median images are created for each step on the t- 
plane(according to (x,y,t,s) coordinates where t comes from tloop and s from slice). 
Next, the vect3 D table is being created which is the result of the stacked columns of 
the previously created median images. Following, a cscals table is being created that 
is the result of the multiplication of vect3 D and median’s tables’ elements. The mean 
value of this cscals table is being added to a Magnitude Image table which sums up 
all the previous Magnitude Image values. Moreover, the temp table is being 
calculated that is the product of the normalized Magnitude Image table and 
Magnitude mean table which holds all the mean values of the third dimension (t) of 
each image. Finally, the newDataset table is created through repeating the absolute 
and normalized value of temp table.

for slice=l:slices
magmean = mean(squeeze(SET(nom).IM(:,:,:,slice)),3);
MagIM = zeros(SET(nom).YSize, SET(nom).XSize);

for tloop = l:tsize

%Creating medianimage for all directions:
medianPhase = medfilt2(SET(N0phase).IM(:,:,tloop,slice), [neigmneign]);
medianX = medfilt2(SET(N0phaseX).IM(:,:,tloop,slice), [neigmneign]);
medianY = medfilt2(SET(N0phaseY).IM(:,:,tloop,slice), [neigm neign]);

for X = (diffX+l):xsize2 
for Y = (diffY+l):ysize2

vect3D = zeros(3, neigm*negn);
vect3D(l,:) = colstack(squeeze(SET(NOphase).IM((Y-diffY):(Y+diffY), (X- 

diffX):(X+diffX), tloop , slice)))'-0.5;
vect3D(2,:) = colstack(squeeze(SET(NOphaseX).IM((Y-diffY):(Y+diffY), (X- 

diffX):(X+diffX), tloop , slice)))'-0.5;
vect3D(3,:) = colstack(squeeze(SET(NOphaseY).IM((Y-diffY):(Y+diffY), (X- 

diffX):(X+diffX), tloop , slice)))'-0.5;

cscals = [medianPhase(Y, X), medianX(Y, X), medianY(Y, X)] * vect3D;
MagIM(Y,X) = MagIM(Y,X)+mean(cscals);

end
end

end
MagIM = MagIM/(max(MagIM(:))); 
temp = MagIM.*magmean; 
norm = abs(temp/max(temp(:))); 
newDataset(:,:,:,slice) = repmat(norm,[l 1 tsize]); 

end
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Two different computational systems were used mainly for this thesis. Both 
computational systems included Tesla C2075 GPUs, 
f http://www.nvidia.com/docs/10/43395/NV-DS-Tesla-C2 075. pdf)
Our algorithm was also tested and its execution times were calculated on two more 
computational systems including a
Ge Force770f http://www,geforce.com/hardware/desktop-gpus/geforce-gtx- 
770/specifications~l and a Quadro K5000Mfhttp://www.nvidia.com/obiect/quadro- 
kSOOO.htmn

First Parallelization Approach

The first approach was to execute in parallel the two most inner loops of this code, 
that is X and Y for-loops. Considering this approach a CUDA kernel was launched for 
each of the slices*tsize steps of this procedure. In this kernel code the X and Y 
dimensions of the for-loops were replaced by thread and block indexing. This way 
instead of having X*Y loops running, now there are multiple blocks containing 
threads that execute in parallel that aim to calculate a final Magnitude Image 
element The MATLAB code of this approach can be seen on Appendix 1 MATLAB 
code a). The cuda kernel code can be seen on Appendix 11 CUDA kernel code a).

Second Parallelization Approach

After collecting results from this approach, further improvement was attempted by 
further parallelization of the code. In this step, we added into the kernel call the 
third loop of the code (tloop). Now threads and blocks that are launched, calculate 
one slice of the last output Dataset that is being caclulated. The MATLAB code can be 
seen on Appendix I MATLAB code b). The CUDA kernel code can be seen on 
Appendix 11 CUDA Kernel code b ),

Third Parallelization Approach

On the final approach the outer slice loop was distributed on multiple GPUs. This 
way two levels of parallelization are achieved. The first level derives from the 
parallelization that occurs from this GPU distribution implementation, while the 
second level derives from the parallelization that occurs from the CUDA kernel code 
that each GPU calls for each different slice of the dataset

Moreover, a function was created containing all the above, in order to automate the 
whole process. The user can determine the number from the available GPU devices 
that he wants to utilize. A dataset is given to the function as input and the 
corresponding Propability Map and calculation time is the output In this version of 
the code, the input datasets needed to create the output, were divided in smaller 
parts and then sent to the GPUs. The actual number o f parts that each table is split 
to, comes from the available GPU devices that they will be assigned to. Through this 
process better speedup times are achieved because a lot of time is wasted on
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transferring the data from and to the GPU.

In addition, a simple algorithm was implemented in order to determine for every 
different dataset, the number of threads and blocks that each kernel will launch. The 
available number of threads for each GPU is checked and then the largest possible 
number of threads is selected in order to obtain a certain blocks*threads 
combination that will result in a number equal to x*y*t elements. The MATLAB code 
can be seen in Appendix 1 MATLAB code cl.The CUDA kernel code remains almost 
the same as the previous version with some minor changes.

This last parallelization approach was implemented but where were some serious 
drawbacks in using it for so small datasets as the ones that were used in this thesis. 
Dividing the iterations of the last outer loop on to multiple GPUs includes some 
calculation time overhead which is too high for these relatively small datasets. For 
example, the whole parallelization procedure for one dataset needed 1-1.5 seconds 
when the overhead for this procedure was more than a couple of seconds, making 
this method not acceptable to use. This means that we had to abandon this approach 
and return to a more simplified method. Therefore, we returned to the previous 
approach which included two levels of parallelization, but this time it is 
implemented in an automated away which could be used for any available dataset. 
Moreover we removed some unecessary transfers to the GPU that we figured out 
that existed in our code.The MATLAB code for this approach can be seen in 
Appendix I MATLAB code cl. The changed kernel code without the redundant GPU 
transfers can be seen on Appendix 11 CUDA kernel code c),

Results

In this thesis we accelerated the MATLAB code of the computational core of 
Fourflow application’s tool. We achieved speedup times up to 2500x decreasing the 
computational time from decades of minutes to a couple of seconds or even less. 
More precisely the CPU MATLAB code execution time and the corresponding 
parallel approach that were using GPU calculation times for each dataset used in this 
thesis are presented here. The results are being presented for the code execution on 
different computational systems that included different GPUs. These are a 
TeslaC2075, a Quadro K5000M and a GeForce 770.

First dataset: 80*80*40*52 Elements

Tesla C2075
CPU MATLAB Code computational time: ~1900 seconds 
Parallelized approach computational time 1.15 seconds 
Speedup achieved~1650x
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GeForce 770
CPU MATLAB Code computational time: ~2650 seconds 
Parallelized approach computational time 0.5 seconds 
Speedup achieved:~ 5000x

Quadro K5000M
CPU MATLAB Code computational time:~1400 seconds 
Parallelized approach computational time:~ 0.75 seconds 
Speedup achieved:~ 5000x

Second dataset: 96*96*40*44 Elements

Tesla C2075
CPU MATLAB Code computational time: ~ 2300 seconds 
Parallelized approach computational time: ~ 1.4 seconds 
Speedup achieved:~1650x

GeForce 770
CPU MATLAB Code computational time: ~3000 seconds 
Parallelized approach computational time :~ 0.6 seconds 
Speedup achieved:~ 5000x

Quadro K5000M
CPU MATLAB Code computational time:~1700 seconds 
Parallelized approach computational time:~ 0.9 seconds 
Speedup achieved:~ 2000x

Third dataset: 144*144*40*44 Elements:

Tesla C2075
CPU MATLAB Code computational time: ~ 4900 seconds 
Parallelized approach computational time: ~ 3 seconds 
Speedup achieved:~1650x

GeForce 770
CPU MATLAB Code computational time: ~7500 seconds 
Parallelized approach computational time :~ 1.5 seconds 
Speedup achieved:~ 5000x

Quadro K5000M
CPU MATLAB Code computational time:~3900 seconds 
Parallelized approach computational time:~ 1.9 seconds 
Speedup achieved:~ 2000x
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GPU cores utilized

GPU Cores and execution time

The number of GPU cores that are utilized everytime a CUDA kernel is called derives 
from the number of threads and blocks that each kernel is specified to be launched 
with. In all the previous sections in this thesis the maximum number of GPU cores 
were used in order to achieve maximum speedup results. Computational times for 
for lower number of used GPU cores tested on a computational system with Tesla 
C2075 are being presented here:

First dataset:
Maximum possible number of threads and blocks (~440 GPU cores used) 
Parallelized approach computational time: 1.15 seconds

Medium number of threads and blocks ( ~220 GPU cores used)
Parallelized approach computaitonal time: 2.80 seconds

Low number of threads and blocks (~100 GPU cores used)
Parallelized approach computational time: 4 seconds

Second dataset:
Maximum possible number of threads and blocks (~440 GPU cores used) 
Parallelized approach computational time: 1.4 seconds

Medium number of threads and blocks ( ~220 GPU cores used)
Parallelized approach computational time: 3 seconds

Low number of threads and blocks (~100 GPU cores used)
Parallelized approach computational time: 4.4 seconds
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Third dataset:
Maximum possible number of threads and blocks (~440 GPU cores used) 
Parallelized approach computational time: 3 seconds

Medium number of threads and blocks ( ~220 GPU cores used) 
Parallelized approach computational time: 6.5 seconds

Low number of threads and blocks (~100 GPU cores used) 
Parallelized approach computational time: 12.8 seconds

MEX Code compared to CUDA Code

The main goal of this thesis was to accelerate the execution time of a MATLAB code. 
As it was explained in the speedup results, this acceleration was achieved by 
implementing calls to CUDA kernels from MATLAB code through MATLAB Parallel 
Computing Toolbox. Therefore speedup results were so high due to one more 
reason. MATLAB code hides some latencies compared to a C code. When turning 
MATLAB code into CUDA C code, the acceleration derives from two different levels. 
The first level is the acceleration from spreading the work that needs to be done on 
different threads on the GPU and the second level is the acceleration that occurs 
from calling C code instead of MATLAB code which is always faster. A MATLAB 
function is always more time consuming compared to a C function that performs the 
same tasks. MATLAB is not as low level programming language as C and offers some 
ease to use, but includes some overhead time in execution.

In order to presentthe speedup difference thatwould occur ifC code was 
accelerated into CUDA C code, the implementation of a MEX file was needed. MEX 
functions are MATLAB functions that are used for caling C, C++ or Fortran files. A C 
file was created that executed the same task as the CUDA C code and was called 
through the MATLAB code. Now execution times to compare were from a MATLAB 
code that called a C function and a MATLAB code that scalled a CUDA function.

Speedup results that were accomplished on the computational system including a 
Tesla C2075 are the following:

First dataset

MATLAB code that calls MEX C code computational time: ~ 500 seconds 
MATLAB code that calls CUDA C code computational time: ~1.15 seconds

Second Dataset

MATLAB code that calls MEX C code computational time: ~ 580 seconds
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MATLAB code that calls CUDA C code computational time: ~  1.4 seconds 

Third Dataset

MATLAB code that calls MEX C code computational time:~ 1280 seconds 
MATLAB code that calls CUDA C code computational time: ~3 seconds

Matlab code calling the MEX function and the correspoding MEX function can be 
seen in Appendix 111 MATLAB and MEX C code.

Discussion

In this thesis, we implemented CUDA code and MATLAB Parallel Toolbox in order to 
develop a high performance, fully automatic vessel segmentation algorithm that 
exploits the flow properties of 4D Phase Contrast MRI (PC-MRI) in the absence of 
gadolinium administration.

We succeeded in accelerating the performance of such an algorithm by having 
impressive speedup results, reducing the execution time of the initial algorithm in 
certain situations from more than half an hour to less than a second. Moreover the 
results that the GPU based code produced, in comparison with the results that the 
CPU based code produced never had a maximum error that was significant enough 
to be considered.

Based on the aforementioned results, we consider that now the algorithm is 
significantly more efficient and much closer to clinical use.

Future work

There are several ways thatsomeone can use CUDA in order to achieve greater 
speedup results.

• The implementation of texture and shared memory and maybe even the 
design of a faster algorithm could lead into better acceleration of the initial 
MATLAB code.

• Furthermore, nVIDIA Profiler fhttps://developer.nvidia,com/nvidia-visual- 
profilerl was used in order to evaluate the performance of our CUDA kernel 
code algorithm. nVIDIA profiler is a toolkit thatevaluates the performance of 
your code and suggests possible solutions for better results.The results show 
that there can be better performance if shared and texture memory are used. •

• A more efficient and sophisticated way to calculate the threads and blocks for 
each thread can be implemented on the MATLAB scrip that calls the kernel 
since our implementation is rather simplistic.
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Appendix I MATLAB code

a) First approach MATLAB code:
t = cputime; 
load work.mat
k=parallel.gpu.CUDAKernel('loop.ptx71oop.cu'); 
k.GridSize=[threads 1 1]; 
k.ThreadBlockSize=[blocks 11];
MagIMR(6400)=0;
MagIMR=single(MagIMR);
D_NoPhase=gpuArray(reshape(NoPhase,l,13312000)); 
D_NoPhaseX=gpuArray(reshape(NoPhaseX, 1,13 312000)); 
D_NoPhaseY=gpuArray(reshape(NoPhaseY, 1,13 312000));

for slice=l:slices 
magmean = mean(I(:,:,:,slice),3);
MaglMR(:)=0; 
for tloop = litsize
medianPhaseR = gpuArray(reshape(medfilt2(NoPhase(:,:,tloop,slice), [neigm 

neign]),1,6400));
medianXR = gpuArray(reshape(medfilt2(NoPhaseX(:,:,tloop,slice), [neigm 

neign]),1,6400));
medianYR = gpuArray(reshape(medfilt2(NoPhaseY(:,:,tloop,slice), [neigm 

neign]),1,6400));

[ Magi M R]=feval(k, Magi MR,D_NoPhase,D_NoPhaseX,D_NoPhaseY,diffX,diffY,sizex,siz 
ey,tloop,slice,medianPhase R,medianXR,medianYR); 
end
MaglM=reshape((gather(MaglMR)),80,80);
MagIM = MagIM/(max(MaglM(:))); 

temp = MagIM.*magmean; 
norm = abs(temp/max(temp(:))); 
newDataset[:,:,:,slice) = repmat(norm,[l 1 tsize]); 
end
e = cputime-t;
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b)Second approach MATLAB code:

t=cputime;
load secondwork.mat;
k=parallel.gpu.CUDAKernel('completeKernel2A.ptx','completeKernel2A.cu'); 
k.GridSize=[threads]; 
k.ThreadBlockSize= [blocks];
MagIM=gpuArray(MagIM); 
for slice=l:52;
magmean = mean(I(:,:,:,slice),3);
[ MAG] = feval(k,MagIM,D_median Phase, D_medianX,D_medianY,D_NoPhaseR,D_NoPh 
aseXR,D_NoPhaseYR,slice,sizeX,sizeY,tsize,diffX);
MagIM2=reshape[ gather (MAG),sizeX,sizeY);
MagIM2=double(MagIM2);
MagIM2 = MagIM2/(max(MagIM2(:))); 
temp = MagIM2 *magmean 
norm = abs(temp/max(temp(:))) 
newDataset(:,:,:,slice) = repmat(norm,[l 1 tsize]); 
end
q=cputime-t;
disp(num2str(q));

c) Third approach MATLAB code:

function [data,total_time] = par3(setstruct,correction_value)
%Setting up the variables

I = setstruct(l).IM; 
sizeX = setstruct(l).XSize; 
sizeY = setstruct(l).YSize; 
tsize = setstruct[l).TSize; 
slices = setstruct(l).ZSize;

mediansize = sizeX*sizeY*tsize;

File = fopen('size.h','W);
fprintf(file,'int const mediansize=%d;’,mediansize); 
fclose(file);

system('nvcc -arch=sm_20 -ptx completeKernel3_l.cu'); 
disp('COMPILER CALLED')

k = parallel.gpu.CU DAKernelCcompleteKernelS.l.ptxVcompleteKernelS.l.cu');
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diffX = 1;
D_NoPhaseR = reshape(setstruct(2).IM,l,sizeX*sizeY*tsize*slices); 
D_NoPhaseXR = reshape(setstruct(3).IM,l,sizeX*sizeY*tsize*slices); 
D_NoPhaseYR = reshape(setstruct(4).IM,l,sizeX*sizeY*tsize*slices); 
MagIM(sizeX*sizeY) = 0;
MagIM = single(MaglM); 
totalthreads = sizeX*sizeY*tsize; 
threads = k.MaxThreadsPerBlock;

result = mod(totalthreads, threads); 
while(result~=0)

threads = threads-1;
result = mod(totalthreads,threads);

end

blocks = totalthreads/threads;

k.GridSize = blocks; 
k.ThreadBlockSize = threads;

disp(['Blocks: ',num2str(blocks),' - Threads: ',num2str(threads)])

D_NoPhaseR = gpuArray(single(D_NoPhaseR));
D_NoPhaseXR = gpuArray(single(D_NoPhaseXR));
D_NoPhaseYR = gpuArray(single(D_NoPhaseYR));
MagIM = gpuArray(single(MagIM));

total_kernel_time = 0; 
gputime = tic; 
for slice=l:slices

magmean = mean(I(:,:,:,slice),3);

% Kernel call
kernel_time = tic; [MAG] = feval(k,MagIM,D_NoPhaseR,D_NoPhaseXR,... 

D_NoPhaseYR,uint32(slice),uint32(sizeX),uint32(sizeY),uint32(tsize),... 
uint32(diffX),single(correction_value));

% See the last paragraph in this link
% http://www.mathworks.se/support/solutions/en/data/l- 

HSZ26C/?product=DM&solution=l-HSZ26C 
wait(gpuDevice); % This work only for MATLAB version higher than 2012

total_kernel_time = total_kernel_time + toc(kernel_time);
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% END Kernel call

MagIM2 = reshape( gather (MAG),sizeX,sizeY);

MagIM2 = MagIM2/max(((MagIM2 (:)))); 
temp = MagIM2.*magmean; 
norm = abs(temp/max(temp(:)));

% replicate for all timeframes.... 
newDataset(:,:,:,slice) = repmat(norm,[l 1 tsize]);

end
total_time = toc(gputime); 
data = newDataset;

disp(['Kernel time (clean): ',num2str(total_kernel_time),'sec'])
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a) First approach CUDA kernel code:

_g loba l_ void function(float *MagIM,float *NoPhase,float*NoPhaseX,float 
*NoPhaseY,int diffx,int diffy,int xsize2,intysize2,int tloop,int slice,float 
*medianPhase,float *medianX,float *medianY]
i
int i,j,ystarbxstart,xend,idx,idy,spot;
int yend,yrange,j limit, starting_spot,counter,sizey;
float mean,sum,vect3D[27],cscals[9];

sizey=ysize2+diffy;
idx=blockIdx.x;
idy=threadldx.x;

if(((idx>(diffx-l))&&(idx<xsize2))&&((idy>(diffy-l))&&(idy<ysize2)))
{

sum=0;

xstart=idx-diffx;
ystart=idy-diffy;
xend=idx+diffx;
yend=idy+diffy;
y ra nge =y e n d-y sta rt;
jlimit=xend-xstart;
starting_spot=(slice-l)*80*80*40+(tloop-l)*80*80+(xstart)*80+ystart;
counter=0;
for(j=0;j<=jlimit;j++)
{

for (i=starting_spot+j*(sizey);i<=starting_spot+j*(sizey)+(yrange);i++)
{

vect3D[0*9+counter]=NoPhase[i]-0.50;
vect3D[l*9+counter]=NoPhaseX[i]-0.50;
vect3D[2*9+counter]=NoPhaseY[i]-0.50;
counter++;

}
}
spot=((slice-l)*80*80*40+(tloop-l)*80*80+(idx)*80+idy)%6400;
counter=0;
for(i=0;i<9;i++)
i

cscals[i]=medianPhase[spot]*vect3D[i]+medianX[spot]*vect3D[i+9]+medianY[spot]
*vect3D[i+18];

Appendix II CUDA Kernel Code
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sum=sum+cscals[i];
}
mean=sum/9;
Magi M[spot]=Magi M[spot]+mean;

}

b) Second approach CUDA kernel code:

_global_ void function(float *MagIM, float *med ia nPhase, float *medianX, float 
*medianY,float *NoPhase,float *NoPhaseX, float *NoPhaseY,int slice, int sizeX,int 
sizeY,int tsize,int diffX)
{

int id;
int k,j,i,spot;
float Bl[9],B2[9],B3[9],swap,sum,mean,cscals[9]; 
float vect3D[27];

id=threadldx.x + blockldx.x * blockDim.x; //1000 blocks 256 threads 
id=id+(slice-l)*sizeX*sizeY*tsize; //ayta einai ta sizex sizey tsize

if(id<sizeX*sizeY*tsize*slice)
{
spot=id%(sizeX*sizeY);
if(spot%sizeX==0)
{

if(spot/sizeY==0]
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
B1 [3]=0;
B1 [4]=0;
Bl[5] = NoPhase[id];
B1 [6]=NoPhase [id+sizeX];
Bl[7]=NoPhase[id+l];
B1 [8]=NoPhase [id+sizeX+1];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+sizeX];
B2[7]=NoPhaseX[id+l];
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B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+sizeX];
B3[7]=NoPhaseY[id+l];
B3[8]=NoPhaseY[id+sizeX+l];

}
else if(spot/sizeY==sizeY-l)

{
B1 [0]=0;
B1[1]=0;
B1 [2]=0;
B1 [3]=0;
B1 [4]=0;
Bl[5]=NoPhase[id];
Bl[6]=NoPhase[id-sizeX];
Bl[7]=NoPhase[id-(sizeX-l)];
Bl[8]=NoPhase[id+l];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id-sizeX];
B2[7]=NoPhaseX[id-(sizeX-l)];
B2[8]=NoPhaseX[id+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-sizeX];
B3[7]=NoPhaseY[id-(sizeX-l)];
B3[8]=NoPhaseY[id+l];

}
else
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B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=NoPhase[id-sizeX];
Bl[4]=NoPhase[id];
Bl[5]=NoPhase[id+sizeX];
Bl[6]=NoPhase[id-(sizeX-l)];
Bl[7]=NoPhase[id+l];
Bl[8]=NoPhase[id+(sizeX+l)];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-sizeX];
B2[4]=NoPhaseX[id];
B2[5]=NoPhaseX[id+sizeX];
B2[6]=NoPhaseX[id-(sizeX-l)];
B2[7]=NoPhaseX[id+l];
B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-sizeX];
B3[4]=NoPhaseY[id];
B3[5]=NoPhaseY[id+sizeX];
B3[6]=NoPhaseY[id-(sizeX-l)];
B3[7]=NoPhaseY[id+l];
B3[8]=NoPhaseY[id+(sizeX+l)];

}
else if(spot/sizeY==0)
{

if(spot%sizeX==(sizeX-l))
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=0;
Bl[4]=0;
Bl[5]=NoPhase[id]; 
Bl[6]=NoPhase[id-l]; 
Bl[7]=NoPhase[id+(sizeX-l)]; 
B1 [8]=NoPhase [id+sizeX];

B2[0]=0;



B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id-l];
B2[7]=NoPhaseX[id+(sizeX-l)];
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-l];
B3[7]=NoPhaseY[id+(sizeX-l)];
B3[8]=NoPhaseY[id+sizeX];

else
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=NoPhase[id];
Bl[4]=NoPhase[id-l];
Bl[5]=NoPhase[id+l];
Bl[6]=NoPhase[id+(sizeX-l)];
Bl[7]=NoPhase[id+sizeX];
Bl[8]=NoPhase[id+sizeX+l];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=NoPhaseX[id];
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id+l];
B2[6]=NoPhaseX[id+(sizeX-l)];
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;



B3[3]=NoPhaseY[id];
B3[4]=NoPhaseY[id-l];
B3[5]=NoPhaseY[id+l];
B3[6]=NoPhaseY[id+sizeX-l];
B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+l];
}

}
else if(spot%sizeX==sizeX-l)
{

if(spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=0;
Bl[4]=0;
Bl[5]=NoPhase[id-l];
Bl[6]=NoPhase[id];
Bl[7]=NoPhase[id-sizeX];
Bl[8]=NoPhase[id-(sizeX+l)];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id-l];
B2[6]=NoPhaseX[id];
B2[7]=NoPhaseX[id-sizeX];
B2[8]=NoPhaseX[id-(sizeX+l)];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id-l];
B3[6]=NoPhaseY[id];
B3[7]=NoPhaseY[id-sizeX];
B3[8]=NoPhaseY[id-(sizeX+l)];
}

else
{

B1[0]=0;
B1[1]=0;
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Bl[2]=0;
Bl[3]=NoPhase[id-l];
Bl[4]=NoPhase[id-sizeX];
Bl[5]=NoPhase[id-(sizeX+l)];
Bl[6]=NoPhase[id+(sizeX-l)];
Bl[7]=NoPhase[id];
B1 [8]=NoPhase [id+sizeX];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-l];
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+l)];
B2[6]=NoPhaseX[id+(sizeX-l)];
B2[7]=NoPhaseX[id];
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-l];
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+l)];
B3[6]=NoPhaseY[id+(sizeX-l)];
B3[7]=NoPhaseY[id];
B3[8]=NoPhaseY[id+sizeX];

}
}
else if(spot/sizeY==sizeY-l)
{

B1 [0]=0;
B1[1]=0;
B1 [2]=0;
Bl[3]=NoPhase [id-(sizeX+l)]; 
Bl[4]=NoPhase [id-1]; 
Bl[5]=NoPhase [id]; 
Bl[6]=NoPhase [id+1]; 
Bl[7]=NoPhase [id-(sizeX-l)]; 
Bl[8]=NoPhase [id-sizeX];

B2[0]=0;
B2[l]=0;
B2[2]=0;
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B2[3]=NoPhaseX[id-(sizeX+l)];
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+l];
B2[7]=NoPhaseX[id-(sizeX-l)];
B2[8]=NoPhaseX[id-sizeX];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-(sizeX+l)];
B3[4]=NoPhaseY[id-l];
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+l];
B3[7]=NoPhaseY[id-(sizeX-l)];
B3[8]=NoPhaseY[id-sizeX];

}
else
{

Bl[0]=NoPhase [id]; 
Bl[l]=NoPhase [id-1]; 
Bl[2]=NoPhase [id+1]; 
Bl[3]=NoPhase [id-(sizeX-l)]; 
Bl[4]=NoPhase [id-sizeX]; 
Bl[5]=NoPhase [id-(sizeX+l)]; 
Bl[6]=NoPhase [id+(sizeX-l)]; 
Bl[7]=NoPhase [id+sizeX]; 
Bl[8]=NoPhase [id+sizeX+1];

B2[0]=NoPhaseX[id];
B2[l]=NoPhaseX[id-l];
B2[2]=NoPhaseX[id+l];
B2[3]=NoPhaseX[id-(sizeX-l)];
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+l)];
B2[6]=NoPhaseX[id+(sizeX-l)];
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=NoPhaseY[id];
B3[l]=NoPhaseY[id-l];
B3[2]=NoPhaseY[id+l];
B3[3]=NoPhaseY[id-(sizeX-l)];
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+l)];
B3[6]=NoPhaseY[id+(sizeX-l)];
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B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+l];

}
for(k=0;k<8;k++)

{
for(j=0;j<8-k;j++)
{

if(B l[j]>B l[j+ l])
{

swap=Bl[j];
B l[j]=B l[j+ l];
Bl[j+l]=swap;

}
if(B2[j]>B2[j+l])
{

swap=B2[j];
B2[j]=B2[j+l];
B2[j+l]=swap;

}
if(B3[j]>B3[j+l])
{

swap=B3[j];
B3[j]=B3[j+l];
B3[j+l]=swap;

}
}

medianPhase [id]=B 1 [4]; 
medianX[id] =B 2 [4]; 
medianY[id]=B3[4];

if( (spot%sizeX!=0) && (spot/sizeY!=0) && (spot%sizeX!=(sizeX-l)) && 
(spot/sizeY!=(sizeY-l)))

{
vect3D[0]=NoPhase[id-(sizeX+l)]-0.5;
vect3D[l]=NoPhaseX[id-(sizeX+l)]-0.5;
vect3D[2]=NoPhaseY[id-(sizeX+l)]-0.5;

vect3 D [3]=NoPhase [id-sizeX] -0.5; 
vect3D[4]=NoPhaseX[id-sizeX]-0.5; 
vect3 D [5]=NoPhaseY[id-sizeX] -0.5;

vect3D[6]=NoPhase[id-(sizeX-l)]-0.5;
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vect3D[7]=NoPhaseX[id-(sizeX-l)]-0.5; 
vect3 D [8]=NoPhaseY[id-(sizeX-l)] -0.5;

vect3D[9]=NoPhase[id-l]-0.5;
vect3D[10]=NoPhaseX[id-l]-0.5;
vect3D[ll]=NoPhaseY[id-l]-0.5;

vect3D[12]=NoPhase[id]-0.5;
vect3D[13]=NoPhaseX[id]-0.5;
vect3D[14]=NoPhaseY[id]-0.5;

vect3D[15]=NoPhase[id+l]-0.5;
vect3D[16]=NoPhaseX[id+l]-0.5;
vect3D[17]=NoPhaseY[id+l]-0.5;

vect3D[18]=NoPhase[id+(sizeX-l)]-0.5; 
vect3 D [19]=NoPhaseX[id+(sizeX-l)] -0.5; 
vect3 D [2 0]=NoPhaseY[id+(sizeX-l)] -0.5;

vect3 D [21]=NoPhase [id+sizeX] -0.5;
vect3D[22]=NoPhaseX[id+sizeX]-0.5;
vect3D[23]=NoPhaseY[id+sizeX]-0.5;

vect3D[24]=NoPhase[id+(sizeX+l)]-0.5; 
vect3D[25]=NoPhaseX[id+(sizeX+l)]-0.5; 
vect3D[26]=NoPhaseY[id+(sizeX+l)]-0.5; 

cscals [0] =me dianPhase [id] *vect3 D [0] +medianX[id] *vect3 D [1] +medianY[id] *vect3 
D [2];

cscals [1] =me dianPhase [id] *vect3 D [3] +medianX[id] *vect3 D [4] +medianY[id] *vect3 
D [5];

cscals[2]=medianPhase[id]*vect3D[6]+medianX[id]*vect3D[7]+medianY[id]*vect3 
D [8];

cscals [3] =me dianPhase [id] *vect3 D [9] +medianX[id] *vect3 D [10] +medianY[id] *vect3 
D [ll];

cscals[4]=medianPhase[id]*vect3D[12]+medianX[id]*vect3D[13]+medianY[id]*vect
3D[14];

cscals [5] =me dianPhase [id] *vect3 D [15] +medianX[id] *vect3 D [16] +medianY[id] *vect 
3 D [17];

cscals[6]=medianPhase[id]*vect3D[18]+medianX[id]*vect3D[19]+medianY[id]*vect
3 [2 0];
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cscals[7]=medianPhase[id]*vect3D[21]+medianX[id]*vect3D[22]+medianY[id]*vect 
3 D [23];

cscals[8]=medianPhase[id]*vect3D[24]+medianX[id]*vect3D[25]+medianY[id]*vect 
3D [26];

for(i=0;i<9;i++)
sum=sum+cscals[i];

mean=sum/9;

atomicAdd(&(MagI M [spot]],mean);
} ’

}
}

c) Changes that happened to last CUDA code version

#include " s i z e .h "

__ g l o b a l ___ v o i d  f u n c t i o n ( f l o a t  * M a g l M , f l o a t  * N o P h a s e . f l o a t
* N o P h a s e X , f l o a t  * N o P h a s e Y , i n t  s l i c e . i n t  s i z e X . i n t  s i z e Y . i n t  
t s i z e . i n t  d i f f x , f l o a t  v a l u e )
{

i n t  i d ;
i n t  k , j , i . s p o t ;  
f l o a t

B l [ 9 ] , B2[ 9 ] ,B3[9].swap,sum,mean,cscals[9],medianPhase[mediansize] 
, medianx[mediansize],medianY[mediansize]; 

f l o a t  vect3D[27];

i d = t h r e a d l d x . x  +  b l o c k l d x . x  * b l o c k D i m . x ;
i d = i d + ( s l i c e - l ) * s i z e X * s i z e Y * t s i z e ;  / /  s o  t h a t  i d  i s  u p d a t e d  

a b o u t  how m an y s l i c e s  h a v e  p a s s e d

sum=0;
s p o t = i d % ( s i z e x * s i z e Y ) ; / / m a s k s  t h e  i n i t i a l  i d  i n t o  t h e  r i g h t  

c o o r d i n a t e s

i f ( s p o t % s i z e x = = 0 )

i f ( s p o t / s i z e Y = = 0 )  / / u p p e r  l e f t  c o r n e r

B l [ 0 ]
B l T
B l '2
B l ’ 3"
B l "4"
B l '5'
B l
B l 7 '

=0
=0=0
=0
=0
= N o P h a s e
= N o P h a s e
-N o P h a s e

[ i d ] ;  
i d + s i z e X ]
!i d + 1 ];
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Bl[8]=NoPhase[id+sizex+l];

B2 [0] =0;
B2 " Ϊ =0;
B2 "2" =0;
B2 '5' =0;
B2 '4' =0;
B2 '5' =NoPhaseX !i d ] ;
B2 6==NoPhaseX _i d+si zex];
B2 7' =NoPhaseX !i d+1];
B2 8==NoPhaseX _i d+si zex+l];

B3 [0] =0;
B3 T =0;
B3 '2' =0;
B3 3==0;
B3 "4" =0;
B3 '5' =NoPhaseY j  d ] ;
B3 '6' =NoPhaseY _i d+si zex];
B3 7' =NoPhaseY ;i d+1];
B3 8==NoPhaseY _i d+si zex+l];

}

else if(spot/sizeY==sizeY-1) //upper 
{

B l [0] =0;
B l T =0;
B l '2' =0;
B l '3' =0;
B l "4" =0;
B l "5" = N o P h a s e  [ i  d ] ;
B l '6' = N o P h a s e [ i d - s i z e x ] ;
B l 7' = N o P h a s e [ i d - ( s i z e x - l ) ] ;
B l '8' = N o P h a s e  [ i  d+1];

right corner

B2 [0] =0;
B2 Ί' =0;
B2 '2' =0;
B2 '3' =0;
B2 "4" =0;
B2 '5' =NoPhaseX
B2 6==NoPhaseX
B2 7' =NoPhaseX
B2 8==NoPhaseX

i d ] ;
id-sizex]; 
id-(sizex-l)]; 
id + 1 ] ;

B3 [0] =0;
B3 Ί' =0;
B3 '2' =0;
B3 "3" =0;
B3 '4' =0;
B3 '5' =NoPhaseY
B3 '6' =NoPhaseY
B3 Ύ =NoPhaseY

i d ] ;
id-sizex]; 
id-(sizex-l)];
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BB[8]=NoPhaseY[id+1];

}
el se
{

// any upper spot but not corners

Bl[0]=0 
Bl[l]=0 
Bl[2]=0 
Bl[3]=NoPhase 
Bl[4]=NoPhase 
Bl[5]=NoPhase 
Bl[6]=NoPhase 
Bl[7]=NoPhase 
Bl[8]=NoPhase[id+(sizex+l)]

i d - s i z e x ] ;
i d ] ;
i d + s i z e x ] ; 
i d - ( s i z e x - l ) ]  
i  d + 1 ]

B2[0]=0 
B2[l]=0 
B 2 [2]=0
B2[3]=NoPhaseX 
B2[4]=NoPhaseX 
B2[5]=NoPhaseX 
B2[6]=NoPhaseX 
B2[7]=NoPhaseX 
B2[8]=NoPhaseX[id+sizex+l]

i d - s i z e x ] ; 
i d ] ;
i d + s i z e x ] ; 
i d - ( s i z e x - l ) ]  
i  d + 1 ]

B3 [0] =0;
B3 " Ϊ =0;
B3 '2' =0;
B3 3== N o P h a s e Y \i d - s i  z e x ] ;
B3 '4' = N o P h a s e Y j  d ] ;
B3 '5' = N o P h a s e Y _i d + s i  z e x ] ;
B3 '6' = N o P h a s e Y ' i  d -  ( s i  z e x - l ) ]
B3 " r = N o P h a s e Y ; i  d + 1 ] ;
B3 8== N o P h a s e Y _i d + ( s i  z e x + l ) ]

}

lse if(spot/sizeY==0)

if(spot%sizex==(sizex-l)) //lower left corner

B l [0 ] = 0 ;
B l T = 0 ;
B l '2 ' = 0 ;
B l T = 0 ;
B l '4 ' = 0 ;
B l '5 ' = N o P h a s e . i d ] ;
B l '6 ' = N o P h a s e . i d - 1 ] ;
B l " r = N o P h a s e _ i d + ( s i z e x - l ) ] ;
B l 8 = = N o P h a s e i d + s i z e x ] ;

B2
B2
B2

=0
=0
=0
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B2 [3] =0;
B2 '4' =0;
B2 '5' =NoPhaseX .i d ] ;
B2 6==NoPhaseX .id-1];
B2 " r =NoPhaseX _i d+(si
B2 ;s; =NoPhaseX 'i d+si z

BB [0] =0;
BB " r =0;
B3 '2' =0;
B3 3==0;
B3 '4' =0;
B3 = 5 ==NoPhaseY[id];
B3 '6' =NoPhaseY[id-1];
B3 Ύ =NoPhaseY[i d+(si
B3 '8' =NoPhaseY[i d+si z

zex-l)] 
ex];

zex-1)] 
ex];

}
el
{

se // any left spot but not corner

Bl [0] =0;
Bl Ί' =0;
Bl '2' =0;
Bl T =NoPhase .id];
Bl '4' =NoPhase li d-1]
Bl = 5 ==NoPhase 'i d+1'
Bl '6' =NoPhase ' i d+(sizex-1)];
Bl " r =NoPhase Ί d+sizex];
Bl '8' =NoPhase 'i d+si zex+l];

B2 [0] =0;
B2 " Ϊ =0;
B2 '2' =0;
B2 '3' =NoPhaseX
B2 '4' =NoPhaseX
B2 = 5 ==NoPhaseX
B2 6==NoPhaseX
B2 Ύ =NoPhaseX
B2 Ύ =NoPhaseX

B3 [0] =0;
B3 Ί' =0;
B3 '2' =0;
B3 '3' =NoPhaseY
B3 "4" =NoPhaseY
B3 '5' =NoPhaseY
B3 '6' =NoPhaseY
B3 Ύ =NoPhaseY
B3 8==NoPhaseY

i d ] ;
id-1]; 
id+1];
i d + ( s izex-1)] ; 
id + s izex] ; 
id + s izex+l] ;

id-1]; 
i d+1];
id+sizex-1]; 
id+sizex]; 
id+sizex+l];

}
}
else if(spot%sizeX==sizex-1) // lower right corner
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{
if(spot/sizeY==sizeY-1) 
{

B l [0 ] = 0 ;
B l T = 0 ;
B l '2 ' = 0 ;
B l '3 ' = 0 ;
B l '4 ' = 0 ;
B l = 5 = = N o P h a s e . i d - 1 ] ;
B l '6 ' = N o P h a s e . i d ] ;
B l Ύ = N o P h a s e _i d - s i  z e x ] ;
B l '8 ' = N o P h a s e Ί d - ( s i z e x + l ) ] ;

B2 [0 ] = 0 ;
B2 T = 0 ;
B2 '2 ' = 0 ;
B2 3 = = 0 ;
B2 "4" = 0 ;
B2 '5 ' = N o P h a s e X . i d - 1 ] ;
B2 '6 ' = N o P h a s e X . i  d ] ;
B2 7' = N o P h a s e X _i d - s i  z e x ] ;
B2 8 = = N o P h a s e X Ί d - ( s i z e x + l ) ] ;

B3 [0] =0;
B3 T =0;
B3 '2' =0;
B3 3==0;
B3 '4' =0;
B3 = 5 == N o P h a s e Y
B3 '6' = N o P h a s e Y
B3 Ύ = N o P h a s e Y
B3 '8' = N o P h a s e Y

i d - 1 ] ; 
i d ] ;
id-sizex]; 
id-(sizex+l)];

}
e] se
{

B l
B l
B l
B l
B l
B l
B l
B l
B l

// any lower spot but not corner

[0] =0;
Ί' =0;
'2' =0;
T =NoPhase .id-1];
"4" =NoPhase _i d-si zex];
'5' =NoPhase Ί d-(sizex+l)];
'6' =NoPhase Ί d+(si zex-l)];
7' =NoPhase j d j ;
8==NoPhase _i d+si zex];

B2 [0] =0;
B2 " Ϊ =0;
B2 '2' =0;
B2 '3' =NoPhaseX .id-1];
B2 '4' =NoPhaseX _i d-si zex];
B2 = 5 ==NoPhaseX i d-(sizeX+1)^
B2 6==NoPhaseX i d+(sizex-l)^
B2 7' =NoPhaseX !i d ] ;
B2 '8' =NoPhaseX _i d+si zex];

B3 [0]=0;
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ifD

B3[l 
B3 [2 
B3 [3 
B3 [4 
B3 [5 
b3 [6;
B3 [7]=NoPhaseY[i d] 
B3 [8 "

= 0 ;
= 0 ;
=NoPhaseY
=NoPhaseY
=NoPhaseY
=NoPhaseY

= N o P h a s e Y

id-1]; 
id-sizex]; 
id-(sizex+l)] 
id+(sizex-l)]

i d + s i z e x ]

}

]se if(spot/sizeY==sizeY-1) // any right spot but not corner

B l
B l
B l
B l
B l
B l
B l
B l
B l

B2
B2
B2
B2
B2
B2
B2
B2
B2

B3
B3
B3
B3
B3
B3
B3
B3
B3

] se

B l
B l
B l
B l
B l
B l
B l
B l
B l

[0] =0;
T =0;
'2' =0;
'3' =NoPhase[
'4' =NoPhase[
'5' =NoPhase[
6 =NoPhase[

Ύ =NoPhase[
\8\ =NoPhase[

[0] =0;
" Ϊ =0;
'2' =0;
3 ==NoPhaseX
'4' =NoPhaseX
= 5 ==NoPhaseX
'6' =NoPhaseX
7' =NoPhaseX
;8; =NoPhaseX

[0] =0;
Ί' =0;
'2' =0;
'3' =NoPhaseY
"4" =NoPhaseY
"5" =NoPhaseY
'6' =NoPhaseY
7' =NoPhaseY
;e ; =NoPhaseY

[0] =NoPhase[
T =NoPhase[
'2' =NoPhase[
'3' =NoPhase[
'4' =NoPhase[
= 5 ==NoPhase[
6 =NoPhase[

Ύ =NoPhase[
'8' =NoPhase[

id-(sizex+l)] 
i d - 1 ] ; 
id ] ; 
id + 1 ] ;
i d- (si zex-l)] 
id-sizex];

id-
id-

( s i z e x + l ) ]
l ] ;

i d + l ] ; 
i d - ( s i z e x -  
i d - s i z e x ] ;

1 )]

id-
id-

( s i z e x + l ) ]
l ] ;

i d + l ] ; 
i d - ( s i z e x -  
i d - s i z e x ] ;

1 )]

//any other spot not near the table limits

id ] ;
id-1];

i d- (si zex-l)] 
id-sizex]; 
id-(sizex+l)i 

(si zex-1)^ 
id+sizex];

B2 [0]=NoPhaseX[id];
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B2 [1] =NoPhaseX[
B2 '2' =NoPhaseX[
B2 '3' =NoPhaseX[
B2 "4" =NoPhaseX[
B2 "5" =NoPhaseX[
B2 '6' =NoPhaseX[
B2 7' =NoPhaseX[
B2 ;8; =NoPhaseX[

B3 [0] =NoPhaseY[
B3 " ϊ =NoPhaseY[
B3 '2' =NoPhaseY[
B3 3 ==NoPhaseY[
B3 '4' =NoPhaseY[
B3 '5' =NoPhaseY[
B3 '6' =NoPhaseY[
B3 Ύ =NoPhaseY[
B3 8 =NoPhaseY[

i d - 1 ]  
i  d + 1 ]  
i d - ( s i z e x - l ) ]  
i d - s i z e x ] ; 
i d - ( s i z e x + l ) ]  
i d + ( s i z e x - l ) ]  
i d + s i z e x ] ; 
i d + s i z e x + l ] ;

i d ] ;
τ d - 1 ] ;
1 d + 1 ] ;
i d - ( s i z e x - l ) ]  
i d - s i z e x ] ; 
i d - ( s i z e x + l ) ]  
i d + ( s i z e x - l ) ]  
i d + s i z e x ] ; 
i d + s i z e x + l ] ;

}

for(k=0;k<8;k++) //sorting the tables
{

for(j=0;j<8-k;j++)
{

if(Bl[j]>Bl[j+l])
{

swap=Bl[j];
B l [j]=Bl[j +1]; 
Bl[j+l]=swap;

}
i f (B2 [j]>B2 [j+l])

swap=B2[j];
B2 [j]=B2 [j+l]; 
B2 [j+l]=swap;

i f (BB [ j ] > B 3 [j+l])
{

swap=B3[j];
B3 [j]=BB[j+l]; 
B3 [j+l]=swap;

}

}

}

medianPhase[id]=Bl[4] ; //taking each median value 
medi anx[i d]=B2 [4]; 
medianY[id]=B3 [4];

50



i f (  ( s p o t % s i z e x ! = 0 )  && ( s p o t / s i z e Y ! = 0 )  && 
( s p o t % s i z e x ! = ( s i z e x - l ) )  && ( s p o t / s i z e Y ! = ( s i z e Y - l ) )  )

vect3D[0]=NoPhase[id-(sizex+l)]-value; 
vect3D[1]=NoPhaseX[id-(sizex+l)]-value; 
vect3D[2]=NoPhaseY[id-(sizex+l)]-val ue;

vect3D
vect3D
vect3D

= N o P h a s e [ i d - s i z e x ]
= N o P h a s e X
= N o P h a s e Y

id-
id-

si zex 
si zex

value; 
-value; 
-value:

vect3D[6]=NoPhase[id-(sizex-l)]-value; 
vect3D[7]=NoPhaseX[id-(sizex-l)]-value; 
vect3D[8]=NoPhaseY[id-(sizex-l)]-val ue;

vect3D
vect3D
vect3D

^9]=NoPhase [id-1] -val u e ; 
^10]=NoPhaseX[i d-1] -val u e ; 
H]=NoPhaseY[i d-1] -val u e ;

vect3D
vect3D
vect3D

12 
13 
14:

= N o P h a s e  [ i  d ]
= N o P h a s e X
= N o P h a s e Y

id  
i d

value; 
-val u e ; 
-val u e ;

vect3D
vect3D
vect3D

vect3D
vect3D
vect3D

15
16 
17!

18
19
20

=NoPhase[id+1]-value;
= N o P h a s e X
= N o P h a s e Y

i d+1 
i d+1

-value; 
-value:

= N o P h a s e [ i d + ( s i z e x - l ) ] - v a l u e ; 
= N o P h a s e X [ i d + ( s i z e x - l ) ] - v a l  u e ; 
= N o P h a s e Y [ i d + ( s i z e x - l ) ] - v a l u e ;

vect3D
vect3D
vect3D

21] = N o P h a s e [ i d + s i z e x ]
22] = N o P h a s e X [ i  d + s i  z e x :
23] = N o P h a s e Y [ i d + s i z e x

value; 
-value; 
-value;

vect3D[24]=NoPhase[id+(sizex+l)]-value; 
vect3D[25]=NoPhaseX[id+(sizex+l)]-value; 
vect3D[26]=NoPhaseY[id+(sizex+l)]-value;

//vectors multiplication

cscals[0]=medianPhase[id]*vect3D[0]+medianx[id]*vect3D[l]+medianY 
[id]*vect3D[2];

cscals[l]=medianPhase[id]*vect3D[3]+medianx[id]*vect3D[4]+medianY 
[id]*vect3D[5];

cscals[2]=medianPhase[id]*vect3D[6]+medianx[id]*vect3D[7]+medianY 
[id]*vect3D[8];

cscals[3]=medianPhase[id]*vect3D[9]+medianx[id]*vect3D[10]+median 
Y[id]*vect3D[ll];

cscals[4]=medianPhase[id]*vect3D[12]+medianx[id]*vect3D[13]+media 
nY[id]*vect3D[14];
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cscals[5]=medianPhase[id]*vect3D[15]+medianx[id]*vect3D[16]+media 
n Y  [i d] *vect3D [17];

cscals[6]=medianPhase[id]*vect3D[18]+medianx[id]*vect3D[19]+media 
n Y  [id]*vect3D[20];

cscals[7]=medianPhase[id]*vect3D[21]+medianx[id]*vect3D[22]+media 
nY[id]*vect3D[23];

cscals[8]=medianPhase[id]*vect3D[24]+medianx[id]*vect3D[2 5]+media 
nY[i d] *vect3D[26];

for(i=0;i<9;i++) 
sum=sum+cscals[i];

mean=sum/9;

atomicAdd(&(MaglM[spot]) ,mean);

}

}

Appendix III MATLAB and MEX C code

a) MATLAB code that called the MEX C code

load data.mat;

diffX-1; 
diffY-1; 
neigm=3; 
neign=3;
newDatasetA(80,80,40,52)=0;
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I=setstruct(1). IM;
NoPhasel=setstruct(2). IM;
NoPhaseXl=setstruct(3). IM;
NoPhaseYl=setstruct(4). IM; 
sizeX=setstruct(1).XSize; 
sizeY=setstruct(1).YSize; 
sizeT=setstruct(1).TSize; 
slices=setstruct(1).ZSize;
NoPhase=reshape(NoPhasel,1,sizeX*sizeY*sizeT*slices); 
NoPhaseX=reshape(NoPhaseXl,1,sizeX*sizeY*sizeT*slices); 
NoPhaseY=reshape(NoPhaseYl,1,sizeX*sizeY*sizeT*slices);

t=cputime;

for slice=l:slices;
magmean = mean(I s l i c e ) ,3);
MagIMout=zeros(sizeX*sizeY);

[MagIM2]=changed(MaglMout,NoPhase,NoPhaseX,NoPhaseY,slice,si 
zeX,sizeY,sizeT,diffX);

MagIM2=reshape(MagIM2,sizeX,sizeY);
MaglMl = MagIM2/(max(MagIM2(:)));
temp = MaglMl.*magmean;
norm = abs(temp/max(temp(:)));
n e w D a t a s e t A s l i c e )  — repmat(norm,[1 1 sizeT]); 

%replicate for all timeframes.... 
end
timeA=cputime-t;

b) MEX C code that is being called from MATLAB

#include <stdint.h> 
typedef uintl6_t charl6_t;
#include <mex.h>
#include <matrix.h>
#include <stdlib.h>
#include <stdio.h>

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const 
mxArray *prhs[])
{
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float
*MagIM,*medianPhase,*medianX,*medianY,*NoPhase,*NoPhaseX,*NoPhase 
Y,*MagIMout;

int slice,sizeX,sizeY,tsize,diffX;

int id,start,end,sizeMagIM; 
int k,j,i,spot,position;
float B1[9],B2[9],B3[9],swap,sum,mean,cscals[9],vect3D[27];

medianPhase=(float *)malloc(sizeX*sizeY*tsize); 
medianX=(float *)malloc(sizeX*sizeY*tsize); 
medianY=(float *)malloc(sizeX*sizeY*tsize);

MagIM=(float *)(mxGetPr(prhs[0]));
NoPhase=(float *)(mxGetPr(prhs[1]));
NoPhaseX=(float *)(mxGetPr(prhs[2]));
NoPhaseY=(float *)(mxGetPr(prhs[3]));

slice=(int)mxGetScalar(prhs[4]); 
sizeX=(int)mxGetScalar(prhs[5]); 
sizeY=(int)mxGetScalar(prhs[6]); 
tsize=(int)mxGetScalar(prhs[7]); 
diffX=(int)mxGetScalar(prhs[8]);

plhs[0]=mxCreateNumericMatrix(sizeX*sizeY, 1, mxSINGLE_CLASS, 
mxREAL);

MagIMout=(float *)mxGetPr(plhs[0]);

start=(slice-1)*sizeX*sizeY*tsize; 
end=slice*sizeX*sizeY*tsize ;

for (id=start;id<end;id++)
{

position=id%sizeX*sizeY*tsize;

spot=id%(sizeX*sizeY);

if (spot%sizeX==0)
{

if (spot/sizeY==0)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id];
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B1[6]=NoPhase[id+sizeX];
B1[7]=NoPhase[id+1];
B1[8]=NoPhase[id+sizeX+1];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+sizeX];
B2[7]=NoPhaseX[id+1];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+sizeX];
B3[7]=NoPhaseY[id+1];
B3[8]=NoPhaseY[id+sizeX+1];

}
else if (spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id]; 
Bl[6]=NoPhase[id-sizeX];
B1[7]=NoPhase[id-(sizeX-1)]; 
B1[8]=NoPhase[id+1];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id]; 
B2[6]=NoPhaseX[id-sizeX];
B2[7]=NoPhaseX[id-(sizeX-1)] 
B2[8]=NoPhaseX[id+1];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;



B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-sizeX];
B3[7]=NoPhaseY[id-(sizeX-1)] 
B3[8]=NoPhaseY[id+1];

}
else
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=NoPhase[id-sizeX];
B1[4]=NoPhase[id];
B1[5]=NoPhase[id+sizeX];
B1[6]=NoPhase[id-(sizeX-1)]; 
B1[7]=NoPhase[id+1];
B1[8]=NoPhase[id+(sizeX+1)];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-sizeX];
B2[4]=NoPhaseX[id];
B2[5]=NoPhaseX[id+sizeX];
B2[6]=NoPhaseX[id-(sizeX-1)] 
B2[7]=NoPhaseX[id+1];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-sizeX];
B3[4]=NoPhaseY[id];
B3[5]=NoPhaseY[id+sizeX];
B3[6]=NoPhaseY[id-(sizeX-1)] 
B3[7]=NoPhaseY[id+1];
B3[8]=NoPhaseY[id+(sizeX+1)]

}
}
else if (spot/sizeY==0)
{

if(spot%sizeX==(sizeX-1))
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id]; 
Bl[6]=NoPhase[id-l] ;
B1[7]=NoPhase[id+(sizeX-1)]; 
B1[8]=NoPhase[id+sizeX];



B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id]; 
B2[6]=NoPhaseX[id-l];
B2[7]=NoPhaseX[id+(sizeX-1)] 
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id]; 
B3[6]=NoPhaseY[id-l];
B3[7]=NoPhaseY[id+(sizeX-1)] 
B3[8]=NoPhaseY[id+sizeX];

}
else
{

B1[0]=0;
B1 [1]=0;
B1[2]=0;
B1[3]=NoPhase[id]; 
Bl[4]=NoPhase[id-l];
B1[5]=NoPhase[id+1];
B1[6]=NoPhase[id+(sizeX-1)]; 
B1[7]=NoPhase[id+sizeX];
B1[8]=NoPhase[id+sizeX+1];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id]; 
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id+1];
B2[6]=NoPhaseX[id+(sizeX-1)] 
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=0;
B3 [1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id];
B3[4]=NoPhaseY[id-1];
B3[5]=NoPhaseY[id+1];



B3[6]=NoPhaseY[id+sizeX-1]; 
B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+1];

}
}
else if (spot%sizeX==sizeX-l)
{

if (spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id-1];
B1[6]=NoPhase[id];
B1[7]=NoPhase[id-sizeX];
B1[8]=NoPhase[id-(sizeX+1)];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id-l];
B2[6]=NoPhaseX[id];
B2[7]=NoPhaseX[id-sizeX];
B2[8]=NoPhaseX[id-(sizeX+1)]

B3[0]=0;
B3 [1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id-1]; 
B3[6]=NoPhaseY[id];
B3[7]=NoPhaseY[id-sizeX];
B3[8]=NoPhaseY[id-(sizeX+1)]

}
else
{

B1[0]=0;
B1 [ 1]=0;
B1[2]=0;
B1[3]=NoPhase[id-1]; 
Bl[4]=NoPhase[id-sizeX];
B1[5]=NoPhase[id-(sizeX+1)]; 
B1[6]=NoPhase[id+(sizeX-1)]; 
B1[7]=NoPhase[id];
B1[8]=NoPhase[id+sizeX];



B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-l]; 
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+1)] 
B2[6]=NoPhaseX[id+(sizeX-1)] 
B2[7]=NoPhaseX[id];
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-1];
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+1)] 
B3[6]=NoPhaseY[id+(sizeX-1)] 
B3[7]=NoPhaseY[id];
B3[8]=NoPhaseY[id+sizeX];

}
}
else if (spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=NoPhase[id-(sizeX+1)]; 
B1[4]=NoPhase[id-1];
B1[5]=NoPhase[id];
B1[6]=NoPhase[id+1];
B1[7]=NoPhase[id-(sizeX-1)]; 
B1[8]=NoPhase[id-sizeX];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-(sizeX+1)]; 
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+1];
B2[7]=NoPhaseX[id-(sizeX-1)]; 
B2[8]=NoPhaseX[id-sizeX];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-(sizeX+1)]; 
B3[4]=NoPhaseY[id-1];
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+1];



B3[7]=NoPhaseY[id-(sizeX-1)] 
B3[8]=NoPhaseY[id-sizeX];

else
{

B1[0]=NoPhase[id];
B1[1]=NoPhase[id-1];
B1[2]=NoPhase[id+1];
B1[3]=NoPhase[id-(sizeX-1)]; 
B1[4]=NoPhase[id-sizeX];
B1[5]=NoPhase[id-(sizeX+1)]; 
B1[6]=NoPhase[id+(sizeX-1)]; 
B1[7]=NoPhase[id+sizeX];
B1[8]=NoPhase[id+sizeX+1];

B2[0]=NoPhaseX[id];
B2[l]=NoPhaseX[id-l];
B2[2]=NoPhaseX[id+l];
B2[3]=NoPhaseX[id-(sizeX-1)] 
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+1)] 
B2[6]=NoPhaseX[id+(sizeX-1)] 
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=NoPhaseY[id];
B3[1]=NoPhaseY[id-1];
B3[2]=NoPhaseY[id+1];
B3[3]=NoPhaseY[id-(sizeX-1)] 
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+1)] 
B3[6]=NoPhaseY[id+(sizeX-1)] 
B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+1];

}

}

for (k=0;k<8;k++)
{

f o r ( j =0 ; j <8 -k ; j  ++)
{

if(B1[j]>B1[j +1] )
{

swap=Bl[j];
B1 [ j ] =B1[ j + 1] ;  
B1 [ j + 1]=swap;

}
if (B2 [j ] >B2 [j+1] )
{

swap=B2[j ] ;
B2 [j]=B2[j + 1] ;



B2[ j+1]=swap;
}
if (B3 [ j ] >B3 [j+1] )
{

swap=B3[ j ] ;
B3[j]=B3[j + 1] ;
B3 [j + 1]=swap;

}
}

}

medianPhase[position] =B1[4] ; 
medianX[position] =B2[ 4] ; 
medianY[position]=B3[4] ;

if( (spotisizeX!=0) && (spot/sizeY!=0) &&
(spotisizeX!=(sizeX-1)) && (spot/sizeY!=(sizeY-1)) )

{
sum=(float)0;

vect3D[0]=NoPhase[id-(sizeX+1)]-0.5; 
vect3D[l]=NoPhaseX[id-(sizeX+1)]-0.5; 
vect3D[2]=NoPhaseY[id-(sizeX+1)]-0.5;

vect3D[3]=NoPhase[id-sizeX]-0.5;
vect3D[4]=NoPhaseX[id-sizeX]-0.5;
vect3D[5]=NoPhaseY[id-sizeX]-0.5;

vect3D[6]=NoPhase[id-(sizeX-1)]-0.5; 
vect3D[7]=NoPhaseX[id-(sizeX-1)]-0.5; 
vect3D[8]=NoPhaseY[id-(sizeX-1)]-0.5;

vect3D[9]=NoPhase[id-1]-0.5; 
vect3D[10]=NoPhaseX[id-1]-0.5; 
vect3D[11]=NoPhaseY[id-1]-0.5;

vect3D[12]=NoPhase[id]-0.5; 
vect3D[13]=NoPhaseX[id]-0.5; 
vect3D[14]=NoPhaseY[id]-0.5;

vect3D[15]=NoPhase[id+1]-0.5; 
vect3D[16]=NoPhaseX[id+1]-0.5; 
vect3D[17]=NoPhaseY[id+1]-0.5;

vect3D[18]=NoPhase[id+(sizeX-1)]-0.5; 
vect3D[19]=NoPhaseX[id+(sizeX-1)]-0.5; 
vect3D[20]=NoPhaseY[id+(sizeX-1)]-0.5;

vect3D[21]=NoPhase[id+sizeX]-0.5; 
vect3D[22]=NoPhaseX[id+sizeX]-0.5; 
vect3D[23]=NoPhaseY[id+sizeX]-0.5;
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vect3D[24]=NoPhase[id+(sizeX+1)]-0.5; 
vect3D[25]=NoPhaseX[id+(sizeX+1)]— 0.5; 
vect3D[26]=NoPhaseY[id+(sizeX+1)]— 0.5;

cscals[0]=(medianPhase[position]*vect3D[0]+medianX[position]*vect 
3D[1]+medianY[position]*vect3D[2]);

cscals[l]=(medianPhase[position]*vect3D[3]+medianX[position]*vect 
3D[4]+medianY[position]*vect3D[5]);

cscals[2]=(medianPhase[position]*vect3D[6]+medianX[position]*vect 
3D[7]+medianY[position]*vect3D[8]);

cscals[3]=(medianPhase[position]*vect3D[9]+medianX[position]*vect 
3D[10]+medianY[position]*vect3D[11]);

cscals[4]=(medianPhase[position]*vect3D[12]+medianX[position]*vec 
t3D[13]+medianY[position]*vect3D[14]);

cscals[5]=(medianPhase[position]*vect3D[15]+medianX[position]*vec 
t3D[16]+medianY[position]*vect3D[17]);

cscals[6]=(medianPhase[position]*vect3D[18]+medianX[position]*vec 
t3D[19]+medianY[position]*vect3D[20]);

cscals[7]=(medianPhase[position]*vect3D[21]+medianX[position]*vec 
t3D[22]+medianY[position]*vect3D[23]);

cscals[8]=(medianPhase[position]*vect3D[24]+medianX[position]*vec 
t3D[25]+medianY[position]*vect3D[26]);

sum=sum+cseals[0]+cscals[1]+cscals[2]+cscals[3]+cscals[4]+cscals[ 
5]+cscals[6]+cscals[7]+cscals[8];

mean=sum/9;

MagIM[spot]=MagIM[spot]+mean; 
MaglMout[spot]=MagIM[spot];

free(medianPhase); 
free(medianX); 
free(medianY);

}

}
}
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