
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ

ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΕΠΙΤΑΧΥΝΣΗ
ΤΜΗΜΑΤΟΠΟΙΗΣΗΣ ΚΑΙ ΑΠΕΙΚΟΝΙΣΗΣ
ΚΑΡΔΙΑΓΓΕΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕΣΩ

ΤΕΧΝΟΛΟΓΙΑΣ CUDA

ΝΙΚΟΛΑΟΣ ΒΕΡΒΕΡΗΣ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

ΑΝΤΩΝΙΟΣ ΟΜ. ΑΑΕΤΡΑΣ

ι

Contents

Introduction...3

Background..4

MRI ... 4

Phase-Contrast MRI...10

Blood Vessel Segmentation.. 12

CUDA.. 15

MATLAB Parallel Computing Toolbox...21

Methods... 22

First parallelization approach... 24

Second parallelization approach... 24

Third parallelization approach..24

Results..25

GPU cores and execution tim e... 27

MEX code compared to CUDA code..28

Discussion..29

Future w ork ..29

Appendix I MATLAB code... 30

Appendix II CUDA kernel code..34

Appendix III MATLAB and MEX C code..54

Sources... 64

2

Introduction

There are several different types of medical imaging; Ultrasound, Computed
Tomography (CT), nuclear imaging and Magnetic Resonance Imaging (MRI). L
Wigstrom introduced three-dimensional Phase Contrast MRI (PC-MRI) with which
one can gain three dimensional velocity data.

One of the most succesful ways to analyse such data and extract information is by
manual segmentation. The downside of this option is that it is time consuming and
operator dependent. Therefore, introducing automatic segmentation in images can
be a huge assistance in analyzing medical data. Even an automated segmentation
approach can require a lot of time.

The image analysis applications that are were used in this thesis visualize and
analyze the cardiovascular tree in a three dimensional way by using flow properties
in four dimensional phase contrast magnetic resonance imaging (4D PC-MRI) flow
data. These applications are Segment and Fourflow. Segment analyzes and
quantifies data from many different medical images and its range of tools include
features like quantification of MRI flow and segmentation of the leftventricle.
Fourflow is an open source software for quantification and visualization of 4D PC-
MRI data that enables development of new quantitative analysis tools. Those
applications' processes are time consuming and require a high computational
power.

This is where CUDA is entailed. CUDA is a parallel programming C-like language that
uses one or multiple graphics processing units of a machine. The idea is simple: if
there is a job to be done, many workers can do it way faster than a single worker if
they cooperate in an appropriate way. Likewise CUDA breaks down a complex job
into smaller,easier tasks and distributes these tasks that have to be done to different
threads or blocks of a GPU.

Therefore, the aim of this thesis is accelerating a high performance vessel
segmentation algorithm that exploits the flow properties of 4D Phase Contrast MRI.
Considering this purpose, accelerating performance of Fourflow through using
Matlab Parallel Computing toolbox and CUDA C was attempted.

3

Background

Magnetic Resonance Imaging

Hu man body is consisted of about 75% water. Water includes one atom of oxygen
and two atoms of hydrogen. Therefore, there is an abundance of hydrogen in the
human body. Each hydrogen atom’s nucleus is a positively charged proton and can
be called as a spin (a small spinning magnet). This little magnet does not spin in a
perfect alignment and there is certain angle at which the atom is spinning with
respect to the axis of B, .

Figure 1: A spin

Spins reside in random positions and random angles inside the human body. When
an MRI examination takes place, the patient is placed on a bed which is able to move
inside a machine that generates an external magnetic field of multiple Tesla(ranging
usually from 1.5 to 7). Higher Tesla values mean higher MRI scanner cost. When the
patient is placed inside the static external field, the hydrogen spins allign with the
direction of the external field in a parallel or anti parallel manner. This alignment
results in a summation of the magnetic dipoles, into a net magnetization vector, Mo
that can create an image if it is handled in the right way.

4

Λ

\j

/
“ mo *

“ bo *

Figure 2: Spins before entering the BO magnetization field (left) and after (right !

When spins are inside the magnetic field they precess with a frequency that is given
by the Larmor equation:

f=Y.,B
where f stands for frequency, y , is for the gyromagnetic ratio of hydrogen and B
is the static magnetic field.

B is an additional magnetic field of radiofrequency(RF) that is applied for a very
short time on the x-y plane in order to rotate the magnetization vector Af 90

degrees from its initial position(the z axis), so it is called a 90 pulse. In order for
this "drop" to happen, B has to rotate at the same frequency as the spins precess.
Once the magnetization vector is on the x-y plane, the RF pulse is removed and M0
rotates on the x-y plane and this way a MRI signal is generated. The spins at this
time are affected by both of the fields. Their movement forms a spiral until it
touches the x-y plane. This movement is being seen by someone who is using the
Laboratory Frame of Reference.

If the observation could be done from the top of the the Bi vector (somehow like the
observer is sitting on the Bi vector), then Bi vector would appear still and the
magnetization vector would be like it was decending until it drops completely on the
x-y plane. This sight of view is called Rotating Frame of Reference point of view.

S

Figure 3: magnetization vector M drops to the x-y plane. Top: Laboratory Frame of Reference Bottom:
Rotating Frame o f Reference

When the magnetization M is on the x-y level, the Free Induction Decay signal is
obtained. From the moment this signal gets created it starts to decrease until it
becomes zero. This decrease of its value is because of the interactions of the spins
that gain different rotational speeds and it is measured by the T2 reralaxation time.
This relaxation time differs for each tissue. B magnetic field is not completely
homogenous cause of design imperfections and moreover disturbance to the field is
added when the patient enters the machine. This is an additional reason for the
signal to decay. The sum of these decay factors is represented by the constant
relaxation time which also depends on the body tissue. The magnetization on the x-y
level Mxyis given by the following formula:

Mxy(t) = Mo e-t/V

where SI is the original magnetization on that starting latitude.
The decrease which is caused by spin-spin interactions is calculated by the

following formula:

A#„ (0 - "Ti

6

Silmutaneously with the signal decay, the magnetization vector M starts to
grow along the x axis. This is because spins retrun the energy they have received to
the lattice and it is called "spin-lattice” relaxation. The rebuilding of the
magnetization on the z axis is given by the following formula:

AM O -A#c * (l - * w·)

Spin-echo is the method used for the calculation of the Γ. value by isolating the
decay reasons to spin-spin interaction only. This method starts when
magnetizationvector lies on the y axis from the 90x pulse that was sent. In TE/2
time the spins dephase because of field heterogeneities and the magnetization starts
to decay. On this point a 180 x is applied andmakes the spins move towards the -y
axis. After another TE/2 time the spins have been completely rebuilt to their initial
status but this time they are placed in parallel to the -y axis. The result of this
procedure is that now the dephasing that occurs to the magnetization is unaffected
by field heterogeneities so the T time constant can be calculated.

Figure 4: The spin-echo sequence

7

Gradients are additional changes in magnetic fields that are applied to the 8
field and cause spins to change their frequency or direction on which they rotate
based on their distance from the center of the magnet. When O' gradient is applied,

spins at the y axis precess at different frequencies based on their distance from the
start of the y-axis. Since the strength of the gradient applied is known, if also the
precessional frequency of a spin is also known, it is possible to calculate its position
on the y-axis, as well as calculate the precessional frequency based on the position
on the y-axis. Gradients can be applied in three axes, that is x, y and z. So the Larmor
equation becomes:

f = Yh (Bo + Gx x + Gy y + Gz z)
where x,y and z are the distances from the center of the magnet.

When a Gz gradient is applied it only affects the rotational speeds of the spins on the
z-axis. This way when a 8 radiofrequency pulse is applied, spins of a certain
distance from the z-axis'starting point can be forced to spin on the same frequency
with the pulse and therefore only those spins will be forced to "drop" to the x-y
plane and generate a signal. This is called "slice selection".

z

Gz

y

Figure 5: Slice selection process; a certain slice of spins is selected

8

G gradient encodes the frequency. That mean that when G is applied, spins at a
specific distance on the x axis have exactly the same preciessional frequency and
this frequency is different for each different location on the y axis. When the signal
that contains these different frequencies is acquired, they can be retrieved by using
the Fourier transform. Afterwards these frequencies can be translated with certain
locations on the x-axis, since the precessional frequency and the x distance are
linearly related as seen by the Larmor equation.

Figure 6: Gx applied, each row o f magnetization vector has a different frequency value.

G gradient is applied as phase encoding in order to find the position of the spins on

the y-axis. This happens exactly when RF pulse ends and before signal acquisition
starts. While the Gy gradient application takes place the magnetization vectors on

the y axis have different precessional frequencies. But this time, at the end of the G
gradient pulse, every spin has the same precessional frequency but different phase

9

which depends from the distance from the center of the magnet For every location
on the y-axis, these different spin phases are summed. Fourier transform is not
capable of extracting the original phases from these sums and it is not possible to
identify the y location which they come from. This problem is solved by the
repetition of the experiment several times with linearly increasing the strength of
the G. gradient This way for every different experiment repetition there is a

different "frequency" for every y location. Fourier transform can now be applied
along the direction of each experiment so thatthese frequencies can be told one
from another and provide y position information.

Figure 7: Gy gradient is applied when spins have different precessional frequencies .When it stops they
have same frequencies but different phases

Information received by:[1] and [2]

Phase contrast MRI

Spins that are moving along the direction of a magnetic Field gradient receive a
phase shift tp.This change is proportional to the velocity of the tissue, u and creates a
phase shift which is the loss of phase coherence in precessing spins.
Using this phase shift it is possible to construct an image detailing the velocity in any
specified direction and slice. The phase ofthe signal taken from a single voxel is
given by:

I

9<r.T) * β ,T+ yvj G{r,t)t dt
ύ

= 7B t T + γυΟ

10

where γ is the gyromagnetic ratio, T is the time, B, is the external magnetic field and
G(r,t) is the magnetic field gradient. In a phase contrast sequence two data sets with
a different amount of flow sensitivity are acquired.

Then gradient pairs are applied that sequentially dephase and rephase
continuously.By applying gradient pairs, two datasets with different phases
dedending on how far the tissue has moved during the recording are acquired. By
substracting these phases
Vl-<p2 = '/υ(0*1 - G'2)
gradient direction is attained. The gradient pairs are usually applied to produce
velocity information in the x, y and z direction. This way the 3D velocity for each
individual voxel in one slice is recorded simutaneously. The velocity is calculated
with the following method; by comparing the phase of signals from each location in
the two sequences the exact amount of motion induced phase change can be
determined to have a map where pixel brightness is proportional to spatial velocity.
As a result we get a multidiensional data set. For each different slice in this dataset
there are three different phase images, each one corresponds to a gradient direction,
while the amplitude of the image show the velocity. These images are time resolved,
so there is a fourth dimension.

Figure 8: Data from PC-MRI scans and its components.
Source Ober P,(April 8, 2013) Segmentation of cardiovascular tree in 4D from PC-MRI images

Information received by:[3]

11

Blood vessel segmentation

Blood vessel segmentation is useful for analysing flow data. There are many
different methods for segmentation, like level set functions, snakes and active
contours but these are often limited by initialization parameters and are not
completely automated, as well as they are limited to one or two blood vessels. By
using steamlines, it is possible to visualize the flow, but not for the entire
cardiovascular tree and also a lot of input is required.

A new vessel segmentation algorithm was introduced by Peter Oberg that benefited
from PC-MR1 images’ velocity data. Through this algorithm the whole cardiovascular
tree is portrayed.

The first step of this process is to remove the noise from the PC-MRI images.Local
deviation is calculated for each pixel in each separate phase image. This way the
erratic behaviour of noise is being identified and isolated. This process is repeated
for each pixel.

Velocity is calculated as a product of the three different phase images Gi, G2, G3 in a

vector form u= (a,, ,wr_ ,m(). Magnitude of the velocity is |u|= s u\ + u:c +u 'i> .

Magnitude and direction of this velocity makes us able to separate what is coherent
flow and what is not Noise can be confused for coherent flow but generally the
vector field in these areas shows larger angular speed and less coherent magnitude.
So, coherent flow will have a more uniform vector field in both direction and
magnitude than tissue and noise in the image, therefore three different coherence
measures were tested.

Angular spread is one of these measures tested. First a 3x3x3 voxel neighbourhood
is created around each voxel and the angle of each individual 3D vector is compared
with the median angle of the 3D vector neighbourhood. The angles seen in figure 7
are calculated by taking the arcustangens of the x, y and z directions. The angular
spread is defined by:

12

z

Figure 9: a and b angles

VtC = H *V t

K' =
| ·

P ^ U j,O s 5jan/?icr.;3)l
n

Where H is a two dimensional filter, “ denotes the convolution, v is the filter
output for all three directions, n is the number of pixels in the neighbourhood, and
ang is defined as the angles for each 3D vector within the neighbourhood as
presented by Figure 7. This process is repeated for every pixel and every slice in the
whole dataset. The normalized sum for systole of this neighbourhood around each
voxel indicates whether or not the voxel is part of the coherent blood flow. The
need of matching with the other features where a larger value means a larger
probability for coherent flow the values of p . where modified in the following way:

Structure tensor is next measure tested. It is a matix and its eigenvalues indicate
what direction of flow within a volume is most prominent. Mu is a positive semi
definite matrix as defined by:

13

f \ f » \
u'•i U v U,;U(, Ua u,.

Mu - uu = Uc: [1 = uc uc. w*c. ut.,ur.l
u<l *) u, u, uc uc u \

k : ' 3 ‘ ' /

\ f . = Η * \ im Λ

And then Mu is convoluted with an average filter. Its convolution result has 3
eigenvalues; λι, λζ, λ3 one for each direction in space. The size of each eigenvalue is
directly related to the amount of flow in the direction of its eigenvector. If all flow
would flow in the same direction then there would only be one large eigenvalue
λι=1 and its eigenvector would be in the direction of the flow.

In the case of no dominant direction in the neighbourhood, the value of all
eigenvalues will be low, about 0.4. But if there there is coherent flow in the
neighbourhood, a single direction should be more dominant than the others. This
causes one eigenvalue to be much higher than the others. As a result voxels that
have coherent flow, will have eigenvalues much greater than voxels with incoherent
flow. Afterwards the values for these eigenvalues are averaged during systole for
each pixel within the slice. This process is repeated for each pixel for each slice. A
larger value of the feature indicates coherent flow.

p W i= Y m a p ^ « - Υ max{eig{M.))
η ~ n~r{

Projected velocity magnitude is the last but most important feature that uses a
combination ofangle and magnitude. When all 3D vectors within the neighbourhood
project on the median vector of the same neighbourhood an expression for
projected velocity magnitude p (.r.>·./), is achieved which is an indication of

coherent flow.

V.. = H * V ,

K = (^r; ic.^czc M)

P , .
I JTi'P

H is the two dimensional mean filter, * denotes the convolution, vcn is the filter
output for all three gradient directions, n is the number of pixels in the
neighbourhood, v, is the a vector in the neighbourhood, vc is the median 3D vector
and Vj*vc is the scalar product of the two vectors. Exactly like all the other measures,

14

the process is repeated for every pixel and averaged over systole. If the vectors
within the neighbourhood are aligned in a similar direction, they will all project
much of their magnitude or they will project poorly, in case they are aligned in
different directions, onto the median vector direction. During systole the magnitude
of the coherent flow within the vessels is large compared to its surrounding which
further increases the effectiveness of the feature.

Throughout the previous steps, the product of the projected velocity magnitude
feature and the actual magnitude image is used to finalize a probability map of the
cardiovascular tree. It runs through all the slices of the input dataset and returns a
new dataset

Information received by:[3]

CUDA

The start ofgraphics processing unit(GPU) computing resides on a very simple but
clever idea. GPUs in the early 2000s were builtthis way to produce a color for every
pixel on the screen using programmable arithmetic units known as pixel shaders.
What a pixel shader does is using its (x,y) position on the screen as well as some
additional information like colors or texture coordinates to produce a final color.
But because the whole process that was performed on the input colors and textures
was completely controlled by the programmer, researchers found out that input
colors could actually be any data. So if each color represents a number then
calculations could be encoded into colors and their results could be as well
translated from colours back to numbers. This way programmers could "trick” GPU
into doing whatever calculation they wanted to do. But this model proved to be a bit
too hard to handle for the widest part of the programming world, limitations on
where the programmer could write to memory, strange usage of floating-point data
and lack of debugging methods were only some of the problems that had to be faced.

The first GPU built with CUDA Architecture is GeForce 8800 GTX
f http://www.geforce.eom/hardware/desktop-gpus/geforce-8800-
gtx/specificationsl. Cuda architecture aims to solve many of the programming
issues that were faced initially by the first GPUs. This time GPU does not compute
through pixel shaders but includes a unified shader pipeline thatallows every
arithmetic logic unit (ALU) on the chip to be handled by a program intending to
perform general-purpose computations. Also single-precision floating-point
arithmetic is now in and this time it can be used for general computation, not only
for graphics. Moreover GPU could read and write to memory and access likewise a
software-managed cache known as shared memory.

CUDA starts being used in 2007 assisting a wide variety of applications like medical
imaging, computational fluid dynamics and enviromental science.

15

http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx/specifications

CUDA offers the opportunity of executing code on the GPU device that is currently
selected instead of executing it on the CPU.

The following code includes a call to a function named kernel that involves angle
brackets. Also the function has the identifier _g lo b a l_ . This means that function
kernel is being called and it will be executed on the GPU device that is currently
selected instead ofthe CPU.

#include <iostream>
_global_void kernelQ
{

}
int mainQ
{

kernel<<<l,l>>>0 ;
printf("Hello, World!\n");
return 0;

}

What makes CUDA a parallel programming language is the option it gives to
programmers to split a big task into smaller pieces and distribute the pieces to a
GPU's "workers". These "workers” are called blocks and threads. Blocks are
something like a grid. This grid can be one, two or three dimensional.

Block 00 BlockOl Block02

BlocklO Blockll Blockl2

Block20 Block21 Block22

Example of 2-dimensional B ock Grid

Each block contains a grid of threads. Exactly like blocks, threads can also be one,
two or three dimensional. BlockOO's threads would look like this:

BlockOO

ThreadOO ThreadOl Thread02

ThreadlO Threadll Threadl2

Thread20 Thread21 Thread22

16

Let's examine a simple example to show how CUDA works and what can someone
achieve by exploring the power of parallel computing. Addition of two vectors is the
case.

A summary of this CUDA code is:
Two vectors(a and b) are created on the CPU and they are filled. Their values are
copied to arrays that reside on GPU memory. A call to a function that runs in parallel
on the GPU is made and the result is returned to the host. Finally the results are
displayed and the memory that was used on the GPU is freed.

In a classic C approach code would look like this:

#define N 10
void add(int *a,int*b,int *c)

{
int spot=0;

while(spot< N)
{

c[spot] =a [spot]+b [spot];
spot++;

}
}
int mainQ
{
int a[N],b[N],c[N];

for(int i=0;i<N;i++)
{

a[i]=-i;
b[i]=i*i;

}

add(a,b,c);

for (i=0;i<N;i++)
I

prints "%d + %d = %d\n", a[i], b[i], c [i]);
}
}

CUDA C code to perform the same task is the following:
#define N 10

global void add(int *a,int *b,int *c)
I
inttid=blockldx.x;

if (tid<N)

17

}
c[tid]=a[tid] + b[tid];

int mainQ
{

inta[N],b[N],c[N];
int *dev_a,*dev_b,*dev_c;
cudaMalloc((void**)&dev_a, N*sizeof(int));
cudaMalloc((void**)&dev_b, N*sizeof(int));
cudaMalloc((void**)&dev_c, N*sizeof(int));
for (int i=0;i<N;i++)
{

a[i]=-i;
b[i]=i*i;

}
cudaMemcpy (dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy (dev_b, b, N*sizeof(int), cudaMemcpyHostToDevice);
add«N,l>>(dev_a, dev_b, dev_c);
cudaMemcpy(c, dev_c, N* sizeof(int), cudaMemcpyDeviceToHost);
for(int i=0; i<N; i++)
{

printf("%d + %d = %d\n", a[i], b[i], c [i]);

}
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
}
The really interesting part of the code is:
add«N,l>>(dev_a, dev_b, dev_c)

This is a call to a function named add. The call to the function is accompanied by
brackets that include some parameters as well as the add function has a_global_
identifier. The combination of this identifier and these brackets means that the code
that is written in the function will be executed on the GPU device instead of being
executed on the CPU. The numbers inside the brackets refer to the number of blocks
that will be launched and the number of threads that each block will include.

inttid=blockldx.x;

blockldx.x gives the index of the block that is currently launched. Since the grid of
blocks is restricted to 10, it refers only to one dimension and in this case, this
dimension is x(N could be representing more than just one number and it could for
example be (10,4,2). In that case blockldx.y and blockldx.z would make sense and
they would represent the indexing of these blocks on the y and z axis.).

18

So what's really happening is that there are 10 blocks running simultaneously and
each one uses its index to compute the following code line:

int tid=blockIdx.x;
if (tid<N)

c[tid]=a[tid] + b[tid];

In a figure itwould look like this:
Block 1 Block 2

g loba l void
add(int *a, int *b, int * c) {
inttid = 0; if (tid < N)
c[tid] = a [tid] + b[tid];
}

g loba l void
add(int *a, int *b, int * c) {
inttid = 1; if (tid < N)
c[tid] = a[tid] + b[tid];
}

Block 3 Block 4

g loba l void
add(int *a, int *b, int * c) {
int tid = 2; if (tid < N)
c[tid] = a[tid] + b[tid];
}

g loba l void
add(int *a, int *b, int *c) {
inttid = 3; if (tid < N)
c[tid] = a[tid] + b[tid];
}

And this continues on the same way to Block 10.

The blocks are being executed in parallel so instead of computing C[10] array by
using a while loop with 10 iterations, CUDA code launches 10 blocks where each one
of them computes one spot in the C[10] array. If the assumption thatthe CPU being
used and the GPU being used have the same computing power is made, then CUDA
succeeds a lOx speedup.

Let's continue by explaining the main() code. The first line that needs explanation is

cudaMalloc((void**)&dev_a, N*sizeof(int)).

This works exactly like standard C malloc function with the difference that it does
not allocate memory on the computer's memory but it does allocate memory from
the GPU device that is currently selected. So there are three arrays that are being
prepared to take some input data and their memory is allocated on the GPU.

19

The next line that would look unfamiliar to someone who is not used with CUDA C
code is

cudaMemcpy (dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice);

This function works like standard C memcpy function but the third parameter
explains if the copy will be done from the GPU device to the host device (host device
is called the CPU side of the machine being used) or if the copy will be done from the
host device to the GPU (in this case the third parameter would be
MemcpyDeviceToHost). In this particular scenario array a that resides on host
memory is being copied into array dev_a that resides on device memory.

cudaFree(dev_a)

This is identical to C free function with the difference that cudaFree frees memory
allocated on the GPU device and not on the host.

In this particular example threads were not used. Threads refer to a specific block,
have their own indexing like blocks(threadIdx.x, threadldx.y andthreadldx.z) and
can share some common properties. For example threads within a block can use
some shared memory. There are many comforts that CUDA provides to a
programmer. Shared memory between threads, constant memory, texture memory,
atomics and streams are only some of the benefits that CUDA offers.

Information gained by [4]

20

MATLAB Parallel Computing Toolbox

Parallel computing toolbox makes accelerating applications with GPUs an easy job.
It gives the opportunity to any programmer to enjoy CUDA GPU parallel computing
benefits without the need of in-depth knowledge of CUDA programming language or
GPU architectures.

Combining the ease of MATLAB and the computing power of CUDA one can achieve
great results from using this toolbox. When CUDA code is needed calls to kernels are
made; kernels are one or more functions written in CUDA woven together in order
to be used later. The following is a simple example:

k= parallel.gpu.CUD AKernel("simpleEx.ptx","simpleEx.cu");

where simpleEx.cu is:

global void add ToVector(float *pi,float c,int vecLen)
int idx=blockldx.x * blockDim.x+ threadldx.x;
if (idx<vecLen)
{

pi[idx]+=c;
}

and simpleEx.ptx is the result from compiling simpleEx.cu

The number of threads and blocks that will be launched on this kernel is set by the
following commands:

k.GridSize=[5 1];
k.threadBlockSize=[5 1];

k now acts as a "call object" that someone can use in a feval function in order to
produce results in a MATLAB code:

0ut(25)=0;
Table(25)=0;
D_Table=gpuArray(single(Table)];
Tablelength=25;
D_Tablelength=gpuArray(Tablelength);
A=8;

21

D_A=gpuArray(A);
[Out]=feval(k,D_Table, D_A, D_Tablelength);

Out keeps the result of this kernel call which is array Table with the value 8 added
on each one of its initial values. As it can be easily figured out by the ,cu file the
calculations in the array's positions are done in parallel.

gpuArray is a function that saves an array of data on the GPU. Then this data can be
used either for kernel calls or direct calculations.

As mentioned before, the kernel could include more than just one function. The only
difference on declaring the kernel object then would be that it'd take a third
parameter to explain to the system which function to
execute(k=parallel.gpu.CUDAKernel(ptxfile, cufile, function_name)).

Methods

In this thesis, a previously developed method from Van Pelt et all and Peter Ober
was improved by implementing GPU technology. The GPU implementation involved
calculation ofthe propability map for vessel visualization based on 4D PC-MRI data.
The core of this calculation resides on a MATLAB code.

Figure 10 :Schematic figure showing the data flow from start to finish. This thesis is being focused on
accelerating the calulations of the Probability Map.

Source: Oberg P. (April 8,2013) Segmentation of cardiovascular tree in 4D from PC-MRI images

22

In this MATLAB code three median images are created for each step on the t-
plane(according to (x,y,t,s) coordinates where t comes from tloop and s from slice).
Next, the vect3 D table is being created which is the result of the stacked columns of
the previously created median images. Following, a cscals table is being created that
is the result of the multiplication of vect3 D and median’s tables’ elements. The mean
value of this cscals table is being added to a Magnitude Image table which sums up
all the previous Magnitude Image values. Moreover, the temp table is being
calculated that is the product of the normalized Magnitude Image table and
Magnitude mean table which holds all the mean values of the third dimension (t) of
each image. Finally, the newDataset table is created through repeating the absolute
and normalized value of temp table.

for slice=l:slices
magmean = mean(squeeze(SET(nom).IM(:,:,:,slice)),3);
MagIM = zeros(SET(nom).YSize, SET(nom).XSize);

for tloop = l:tsize

%Creating medianimage for all directions:
medianPhase = medfilt2(SET(N0phase).IM(:,:,tloop,slice), [neigmneign]);
medianX = medfilt2(SET(N0phaseX).IM(:,:,tloop,slice), [neigmneign]);
medianY = medfilt2(SET(N0phaseY).IM(:,:,tloop,slice), [neigm neign]);

for X = (diffX+l):xsize2
for Y = (diffY+l):ysize2

vect3D = zeros(3, neigm*negn);
vect3D(l,:) = colstack(squeeze(SET(NOphase).IM((Y-diffY):(Y+diffY), (X-

diffX):(X+diffX), tloop , slice)))'-0.5;
vect3D(2,:) = colstack(squeeze(SET(NOphaseX).IM((Y-diffY):(Y+diffY), (X-

diffX):(X+diffX), tloop , slice)))'-0.5;
vect3D(3,:) = colstack(squeeze(SET(NOphaseY).IM((Y-diffY):(Y+diffY), (X-

diffX):(X+diffX), tloop , slice)))'-0.5;

cscals = [medianPhase(Y, X), medianX(Y, X), medianY(Y, X)] * vect3D;
MagIM(Y,X) = MagIM(Y,X)+mean(cscals);

end
end

end
MagIM = MagIM/(max(MagIM(:)));
temp = MagIM.*magmean;
norm = abs(temp/max(temp(:)));
newDataset(:,:,:,slice) = repmat(norm,[l 1 tsize]);

end

23

Two different computational systems were used mainly for this thesis. Both
computational systems included Tesla C2075 GPUs,
f http://www.nvidia.com/docs/10/43395/NV-DS-Tesla-C2 075. pdf)
Our algorithm was also tested and its execution times were calculated on two more
computational systems including a
Ge Force770f http://www,geforce.com/hardware/desktop-gpus/geforce-gtx-
770/specifications~l and a Quadro K5000Mfhttp://www.nvidia.com/obiect/quadro-
kSOOO.htmn

First Parallelization Approach

The first approach was to execute in parallel the two most inner loops of this code,
that is X and Y for-loops. Considering this approach a CUDA kernel was launched for
each of the slices*tsize steps of this procedure. In this kernel code the X and Y
dimensions of the for-loops were replaced by thread and block indexing. This way
instead of having X*Y loops running, now there are multiple blocks containing
threads that execute in parallel that aim to calculate a final Magnitude Image
element The MATLAB code of this approach can be seen on Appendix 1 MATLAB
code a). The cuda kernel code can be seen on Appendix 11 CUDA kernel code a).

Second Parallelization Approach

After collecting results from this approach, further improvement was attempted by
further parallelization of the code. In this step, we added into the kernel call the
third loop of the code (tloop). Now threads and blocks that are launched, calculate
one slice of the last output Dataset that is being caclulated. The MATLAB code can be
seen on Appendix I MATLAB code b). The CUDA kernel code can be seen on
Appendix 11 CUDA Kernel code b),

Third Parallelization Approach

On the final approach the outer slice loop was distributed on multiple GPUs. This
way two levels of parallelization are achieved. The first level derives from the
parallelization that occurs from this GPU distribution implementation, while the
second level derives from the parallelization that occurs from the CUDA kernel code
that each GPU calls for each different slice of the dataset

Moreover, a function was created containing all the above, in order to automate the
whole process. The user can determine the number from the available GPU devices
that he wants to utilize. A dataset is given to the function as input and the
corresponding Propability Map and calculation time is the output In this version of
the code, the input datasets needed to create the output, were divided in smaller
parts and then sent to the GPUs. The actual number o f parts that each table is split
to, comes from the available GPU devices that they will be assigned to. Through this
process better speedup times are achieved because a lot of time is wasted on

24

http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-C2075.pdf
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-770/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-770/specifications
http://www.nvidia.com/object/quadro-k5000.html
http://www.nvidia.com/object/quadro-k5000.html

transferring the data from and to the GPU.

In addition, a simple algorithm was implemented in order to determine for every
different dataset, the number of threads and blocks that each kernel will launch. The
available number of threads for each GPU is checked and then the largest possible
number of threads is selected in order to obtain a certain blocks*threads
combination that will result in a number equal to x*y*t elements. The MATLAB code
can be seen in Appendix 1 MATLAB code cl.The CUDA kernel code remains almost
the same as the previous version with some minor changes.

This last parallelization approach was implemented but where were some serious
drawbacks in using it for so small datasets as the ones that were used in this thesis.
Dividing the iterations of the last outer loop on to multiple GPUs includes some
calculation time overhead which is too high for these relatively small datasets. For
example, the whole parallelization procedure for one dataset needed 1-1.5 seconds
when the overhead for this procedure was more than a couple of seconds, making
this method not acceptable to use. This means that we had to abandon this approach
and return to a more simplified method. Therefore, we returned to the previous
approach which included two levels of parallelization, but this time it is
implemented in an automated away which could be used for any available dataset.
Moreover we removed some unecessary transfers to the GPU that we figured out
that existed in our code.The MATLAB code for this approach can be seen in
Appendix I MATLAB code cl. The changed kernel code without the redundant GPU
transfers can be seen on Appendix 11 CUDA kernel code c),

Results

In this thesis we accelerated the MATLAB code of the computational core of
Fourflow application’s tool. We achieved speedup times up to 2500x decreasing the
computational time from decades of minutes to a couple of seconds or even less.
More precisely the CPU MATLAB code execution time and the corresponding
parallel approach that were using GPU calculation times for each dataset used in this
thesis are presented here. The results are being presented for the code execution on
different computational systems that included different GPUs. These are a
TeslaC2075, a Quadro K5000M and a GeForce 770.

First dataset: 80*80*40*52 Elements

Tesla C2075
CPU MATLAB Code computational time: ~1900 seconds
Parallelized approach computational time 1.15 seconds
Speedup achieved~1650x

25

GeForce 770
CPU MATLAB Code computational time: ~2650 seconds
Parallelized approach computational time 0.5 seconds
Speedup achieved:~ 5000x

Quadro K5000M
CPU MATLAB Code computational time:~1400 seconds
Parallelized approach computational time:~ 0.75 seconds
Speedup achieved:~ 5000x

Second dataset: 96*96*40*44 Elements

Tesla C2075
CPU MATLAB Code computational time: ~ 2300 seconds
Parallelized approach computational time: ~ 1.4 seconds
Speedup achieved:~1650x

GeForce 770
CPU MATLAB Code computational time: ~3000 seconds
Parallelized approach computational time :~ 0.6 seconds
Speedup achieved:~ 5000x

Quadro K5000M
CPU MATLAB Code computational time:~1700 seconds
Parallelized approach computational time:~ 0.9 seconds
Speedup achieved:~ 2000x

Third dataset: 144*144*40*44 Elements:

Tesla C2075
CPU MATLAB Code computational time: ~ 4900 seconds
Parallelized approach computational time: ~ 3 seconds
Speedup achieved:~1650x

GeForce 770
CPU MATLAB Code computational time: ~7500 seconds
Parallelized approach computational time :~ 1.5 seconds
Speedup achieved:~ 5000x

Quadro K5000M
CPU MATLAB Code computational time:~3900 seconds
Parallelized approach computational time:~ 1.9 seconds
Speedup achieved:~ 2000x

26

GPU cores utilized

GPU Cores and execution time

The number of GPU cores that are utilized everytime a CUDA kernel is called derives
from the number of threads and blocks that each kernel is specified to be launched
with. In all the previous sections in this thesis the maximum number of GPU cores
were used in order to achieve maximum speedup results. Computational times for
for lower number of used GPU cores tested on a computational system with Tesla
C2075 are being presented here:

First dataset:
Maximum possible number of threads and blocks (~440 GPU cores used)
Parallelized approach computational time: 1.15 seconds

Medium number of threads and blocks (~220 GPU cores used)
Parallelized approach computaitonal time: 2.80 seconds

Low number of threads and blocks (~100 GPU cores used)
Parallelized approach computational time: 4 seconds

Second dataset:
Maximum possible number of threads and blocks (~440 GPU cores used)
Parallelized approach computational time: 1.4 seconds

Medium number of threads and blocks (~220 GPU cores used)
Parallelized approach computational time: 3 seconds

Low number of threads and blocks (~100 GPU cores used)
Parallelized approach computational time: 4.4 seconds

27

Third dataset:
Maximum possible number of threads and blocks (~440 GPU cores used)
Parallelized approach computational time: 3 seconds

Medium number of threads and blocks (~220 GPU cores used)
Parallelized approach computational time: 6.5 seconds

Low number of threads and blocks (~100 GPU cores used)
Parallelized approach computational time: 12.8 seconds

MEX Code compared to CUDA Code

The main goal of this thesis was to accelerate the execution time of a MATLAB code.
As it was explained in the speedup results, this acceleration was achieved by
implementing calls to CUDA kernels from MATLAB code through MATLAB Parallel
Computing Toolbox. Therefore speedup results were so high due to one more
reason. MATLAB code hides some latencies compared to a C code. When turning
MATLAB code into CUDA C code, the acceleration derives from two different levels.
The first level is the acceleration from spreading the work that needs to be done on
different threads on the GPU and the second level is the acceleration that occurs
from calling C code instead of MATLAB code which is always faster. A MATLAB
function is always more time consuming compared to a C function that performs the
same tasks. MATLAB is not as low level programming language as C and offers some
ease to use, but includes some overhead time in execution.

In order to presentthe speedup difference thatwould occur ifC code was
accelerated into CUDA C code, the implementation of a MEX file was needed. MEX
functions are MATLAB functions that are used for caling C, C++ or Fortran files. A C
file was created that executed the same task as the CUDA C code and was called
through the MATLAB code. Now execution times to compare were from a MATLAB
code that called a C function and a MATLAB code that scalled a CUDA function.

Speedup results that were accomplished on the computational system including a
Tesla C2075 are the following:

First dataset

MATLAB code that calls MEX C code computational time: ~ 500 seconds
MATLAB code that calls CUDA C code computational time: ~1.15 seconds

Second Dataset

MATLAB code that calls MEX C code computational time: ~ 580 seconds

28

MATLAB code that calls CUDA C code computational time: ~ 1.4 seconds

Third Dataset

MATLAB code that calls MEX C code computational time:~ 1280 seconds
MATLAB code that calls CUDA C code computational time: ~3 seconds

Matlab code calling the MEX function and the correspoding MEX function can be
seen in Appendix 111 MATLAB and MEX C code.

Discussion

In this thesis, we implemented CUDA code and MATLAB Parallel Toolbox in order to
develop a high performance, fully automatic vessel segmentation algorithm that
exploits the flow properties of 4D Phase Contrast MRI (PC-MRI) in the absence of
gadolinium administration.

We succeeded in accelerating the performance of such an algorithm by having
impressive speedup results, reducing the execution time of the initial algorithm in
certain situations from more than half an hour to less than a second. Moreover the
results that the GPU based code produced, in comparison with the results that the
CPU based code produced never had a maximum error that was significant enough
to be considered.

Based on the aforementioned results, we consider that now the algorithm is
significantly more efficient and much closer to clinical use.

Future work

There are several ways thatsomeone can use CUDA in order to achieve greater
speedup results.

• The implementation of texture and shared memory and maybe even the
design of a faster algorithm could lead into better acceleration of the initial
MATLAB code.

• Furthermore, nVIDIA Profiler fhttps://developer.nvidia,com/nvidia-visual-
profilerl was used in order to evaluate the performance of our CUDA kernel
code algorithm. nVIDIA profiler is a toolkit thatevaluates the performance of
your code and suggests possible solutions for better results.The results show
that there can be better performance if shared and texture memory are used. •

• A more efficient and sophisticated way to calculate the threads and blocks for
each thread can be implemented on the MATLAB scrip that calls the kernel
since our implementation is rather simplistic.

29

https://developer.nvidia.com/nvidia-visual-

Appendix I MATLAB code

a) First approach MATLAB code:
t = cputime;
load work.mat
k=parallel.gpu.CUDAKernel('loop.ptx71oop.cu');
k.GridSize=[threads 1 1];
k.ThreadBlockSize=[blocks 11];
MagIMR(6400)=0;
MagIMR=single(MagIMR);
D_NoPhase=gpuArray(reshape(NoPhase,l,13312000));
D_NoPhaseX=gpuArray(reshape(NoPhaseX, 1,13 312000));
D_NoPhaseY=gpuArray(reshape(NoPhaseY, 1,13 312000));

for slice=l:slices
magmean = mean(I(:,:,:,slice),3);
MaglMR(:)=0;
for tloop = litsize
medianPhaseR = gpuArray(reshape(medfilt2(NoPhase(:,:,tloop,slice), [neigm

neign]),1,6400));
medianXR = gpuArray(reshape(medfilt2(NoPhaseX(:,:,tloop,slice), [neigm

neign]),1,6400));
medianYR = gpuArray(reshape(medfilt2(NoPhaseY(:,:,tloop,slice), [neigm

neign]),1,6400));

[Magi M R]=feval(k, Magi MR,D_NoPhase,D_NoPhaseX,D_NoPhaseY,diffX,diffY,sizex,siz
ey,tloop,slice,medianPhase R,medianXR,medianYR);
end
MaglM=reshape((gather(MaglMR)),80,80);
MagIM = MagIM/(max(MaglM(:)));

temp = MagIM.*magmean;
norm = abs(temp/max(temp(:)));
newDataset[:,:,:,slice) = repmat(norm,[l 1 tsize]);
end
e = cputime-t;

30

b)Second approach MATLAB code:

t=cputime;
load secondwork.mat;
k=parallel.gpu.CUDAKernel('completeKernel2A.ptx','completeKernel2A.cu');
k.GridSize=[threads];
k.ThreadBlockSize= [blocks];
MagIM=gpuArray(MagIM);
for slice=l:52;
magmean = mean(I(:,:,:,slice),3);
[MAG] = feval(k,MagIM,D_median Phase, D_medianX,D_medianY,D_NoPhaseR,D_NoPh
aseXR,D_NoPhaseYR,slice,sizeX,sizeY,tsize,diffX);
MagIM2=reshape[gather (MAG),sizeX,sizeY);
MagIM2=double(MagIM2);
MagIM2 = MagIM2/(max(MagIM2(:)));
temp = MagIM2 *magmean
norm = abs(temp/max(temp(:)))
newDataset(:,:,:,slice) = repmat(norm,[l 1 tsize]);
end
q=cputime-t;
disp(num2str(q));

c) Third approach MATLAB code:

function [data,total_time] = par3(setstruct,correction_value)
%Setting up the variables

I = setstruct(l).IM;
sizeX = setstruct(l).XSize;
sizeY = setstruct(l).YSize;
tsize = setstruct[l).TSize;
slices = setstruct(l).ZSize;

mediansize = sizeX*sizeY*tsize;

File = fopen('size.h','W);
fprintf(file,'int const mediansize=%d;’,mediansize);
fclose(file);

system('nvcc -arch=sm_20 -ptx completeKernel3_l.cu');
disp('COMPILER CALLED')

k = parallel.gpu.CU DAKernelCcompleteKernelS.l.ptxVcompleteKernelS.l.cu');

31

diffX = 1;
D_NoPhaseR = reshape(setstruct(2).IM,l,sizeX*sizeY*tsize*slices);
D_NoPhaseXR = reshape(setstruct(3).IM,l,sizeX*sizeY*tsize*slices);
D_NoPhaseYR = reshape(setstruct(4).IM,l,sizeX*sizeY*tsize*slices);
MagIM(sizeX*sizeY) = 0;
MagIM = single(MaglM);
totalthreads = sizeX*sizeY*tsize;
threads = k.MaxThreadsPerBlock;

result = mod(totalthreads, threads);
while(result~=0)

threads = threads-1;
result = mod(totalthreads,threads);

end

blocks = totalthreads/threads;

k.GridSize = blocks;
k.ThreadBlockSize = threads;

disp(['Blocks: ',num2str(blocks),' - Threads: ',num2str(threads)])

D_NoPhaseR = gpuArray(single(D_NoPhaseR));
D_NoPhaseXR = gpuArray(single(D_NoPhaseXR));
D_NoPhaseYR = gpuArray(single(D_NoPhaseYR));
MagIM = gpuArray(single(MagIM));

total_kernel_time = 0;
gputime = tic;
for slice=l:slices

magmean = mean(I(:,:,:,slice),3);

% Kernel call
kernel_time = tic; [MAG] = feval(k,MagIM,D_NoPhaseR,D_NoPhaseXR,...

D_NoPhaseYR,uint32(slice),uint32(sizeX),uint32(sizeY),uint32(tsize),...
uint32(diffX),single(correction_value));

% See the last paragraph in this link
% http://www.mathworks.se/support/solutions/en/data/l-

HSZ26C/?product=DM&solution=l-HSZ26C
wait(gpuDevice); % This work only for MATLAB version higher than 2012

total_kernel_time = total_kernel_time + toc(kernel_time);

32

http://www.mathworks.se/support/solutions/en/data/1-HSZ26C/?product=DM&solution=1-HSZ26C
http://www.mathworks.se/support/solutions/en/data/1-HSZ26C/?product=DM&solution=1-HSZ26C

% END Kernel call

MagIM2 = reshape(gather (MAG),sizeX,sizeY);

MagIM2 = MagIM2/max(((MagIM2 (:))));
temp = MagIM2.*magmean;
norm = abs(temp/max(temp(:)));

% replicate for all timeframes....
newDataset(:,:,:,slice) = repmat(norm,[l 1 tsize]);

end
total_time = toc(gputime);
data = newDataset;

disp(['Kernel time (clean): ',num2str(total_kernel_time),'sec'])

33

a) First approach CUDA kernel code:

g loba l void function(float *MagIM,float *NoPhase,float*NoPhaseX,float
*NoPhaseY,int diffx,int diffy,int xsize2,intysize2,int tloop,int slice,float
*medianPhase,float *medianX,float *medianY]
i
int i,j,ystarbxstart,xend,idx,idy,spot;
int yend,yrange,j limit, starting_spot,counter,sizey;
float mean,sum,vect3D[27],cscals[9];

sizey=ysize2+diffy;
idx=blockIdx.x;
idy=threadldx.x;

if(((idx>(diffx-l))&&(idx<xsize2))&&((idy>(diffy-l))&&(idy<ysize2)))
{

sum=0;

xstart=idx-diffx;
ystart=idy-diffy;
xend=idx+diffx;
yend=idy+diffy;
y ra nge =y e n d-y sta rt;
jlimit=xend-xstart;
starting_spot=(slice-l)*80*80*40+(tloop-l)*80*80+(xstart)*80+ystart;
counter=0;
for(j=0;j<=jlimit;j++)
{

for (i=starting_spot+j*(sizey);i<=starting_spot+j*(sizey)+(yrange);i++)
{

vect3D[0*9+counter]=NoPhase[i]-0.50;
vect3D[l*9+counter]=NoPhaseX[i]-0.50;
vect3D[2*9+counter]=NoPhaseY[i]-0.50;
counter++;

}
}
spot=((slice-l)*80*80*40+(tloop-l)*80*80+(idx)*80+idy)%6400;
counter=0;
for(i=0;i<9;i++)
i

cscals[i]=medianPhase[spot]*vect3D[i]+medianX[spot]*vect3D[i+9]+medianY[spot]
*vect3D[i+18];

Appendix II CUDA Kernel Code

34

sum=sum+cscals[i];
}
mean=sum/9;
Magi M[spot]=Magi M[spot]+mean;

}

b) Second approach CUDA kernel code:

global void function(float *MagIM, float *med ia nPhase, float *medianX, float
*medianY,float *NoPhase,float *NoPhaseX, float *NoPhaseY,int slice, int sizeX,int
sizeY,int tsize,int diffX)
{

int id;
int k,j,i,spot;
float Bl[9],B2[9],B3[9],swap,sum,mean,cscals[9];
float vect3D[27];

id=threadldx.x + blockldx.x * blockDim.x; //1000 blocks 256 threads
id=id+(slice-l)*sizeX*sizeY*tsize; //ayta einai ta sizex sizey tsize

if(id<sizeX*sizeY*tsize*slice)
{
spot=id%(sizeX*sizeY);
if(spot%sizeX==0)
{

if(spot/sizeY==0]
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
B1 [3]=0;
B1 [4]=0;
Bl[5] = NoPhase[id];
B1 [6]=NoPhase [id+sizeX];
Bl[7]=NoPhase[id+l];
B1 [8]=NoPhase [id+sizeX+1];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+sizeX];
B2[7]=NoPhaseX[id+l];

35

B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+sizeX];
B3[7]=NoPhaseY[id+l];
B3[8]=NoPhaseY[id+sizeX+l];

}
else if(spot/sizeY==sizeY-l)

{
B1 [0]=0;
B1[1]=0;
B1 [2]=0;
B1 [3]=0;
B1 [4]=0;
Bl[5]=NoPhase[id];
Bl[6]=NoPhase[id-sizeX];
Bl[7]=NoPhase[id-(sizeX-l)];
Bl[8]=NoPhase[id+l];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id-sizeX];
B2[7]=NoPhaseX[id-(sizeX-l)];
B2[8]=NoPhaseX[id+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-sizeX];
B3[7]=NoPhaseY[id-(sizeX-l)];
B3[8]=NoPhaseY[id+l];

}
else

36

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=NoPhase[id-sizeX];
Bl[4]=NoPhase[id];
Bl[5]=NoPhase[id+sizeX];
Bl[6]=NoPhase[id-(sizeX-l)];
Bl[7]=NoPhase[id+l];
Bl[8]=NoPhase[id+(sizeX+l)];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-sizeX];
B2[4]=NoPhaseX[id];
B2[5]=NoPhaseX[id+sizeX];
B2[6]=NoPhaseX[id-(sizeX-l)];
B2[7]=NoPhaseX[id+l];
B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-sizeX];
B3[4]=NoPhaseY[id];
B3[5]=NoPhaseY[id+sizeX];
B3[6]=NoPhaseY[id-(sizeX-l)];
B3[7]=NoPhaseY[id+l];
B3[8]=NoPhaseY[id+(sizeX+l)];

}
else if(spot/sizeY==0)
{

if(spot%sizeX==(sizeX-l))
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=0;
Bl[4]=0;
Bl[5]=NoPhase[id];
Bl[6]=NoPhase[id-l];
Bl[7]=NoPhase[id+(sizeX-l)];
B1 [8]=NoPhase [id+sizeX];

B2[0]=0;

B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id-l];
B2[7]=NoPhaseX[id+(sizeX-l)];
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-l];
B3[7]=NoPhaseY[id+(sizeX-l)];
B3[8]=NoPhaseY[id+sizeX];

else
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=NoPhase[id];
Bl[4]=NoPhase[id-l];
Bl[5]=NoPhase[id+l];
Bl[6]=NoPhase[id+(sizeX-l)];
Bl[7]=NoPhase[id+sizeX];
Bl[8]=NoPhase[id+sizeX+l];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=NoPhaseX[id];
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id+l];
B2[6]=NoPhaseX[id+(sizeX-l)];
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=0;
B3[l]=0;
B3[2]=0;

B3[3]=NoPhaseY[id];
B3[4]=NoPhaseY[id-l];
B3[5]=NoPhaseY[id+l];
B3[6]=NoPhaseY[id+sizeX-l];
B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+l];
}

}
else if(spot%sizeX==sizeX-l)
{

if(spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
Bl[2]=0;
Bl[3]=0;
Bl[4]=0;
Bl[5]=NoPhase[id-l];
Bl[6]=NoPhase[id];
Bl[7]=NoPhase[id-sizeX];
Bl[8]=NoPhase[id-(sizeX+l)];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id-l];
B2[6]=NoPhaseX[id];
B2[7]=NoPhaseX[id-sizeX];
B2[8]=NoPhaseX[id-(sizeX+l)];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id-l];
B3[6]=NoPhaseY[id];
B3[7]=NoPhaseY[id-sizeX];
B3[8]=NoPhaseY[id-(sizeX+l)];
}

else
{

B1[0]=0;
B1[1]=0;

39

Bl[2]=0;
Bl[3]=NoPhase[id-l];
Bl[4]=NoPhase[id-sizeX];
Bl[5]=NoPhase[id-(sizeX+l)];
Bl[6]=NoPhase[id+(sizeX-l)];
Bl[7]=NoPhase[id];
B1 [8]=NoPhase [id+sizeX];

B2[0]=0;
B2[l]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-l];
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+l)];
B2[6]=NoPhaseX[id+(sizeX-l)];
B2[7]=NoPhaseX[id];
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-l];
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+l)];
B3[6]=NoPhaseY[id+(sizeX-l)];
B3[7]=NoPhaseY[id];
B3[8]=NoPhaseY[id+sizeX];

}
}
else if(spot/sizeY==sizeY-l)
{

B1 [0]=0;
B1[1]=0;
B1 [2]=0;
Bl[3]=NoPhase [id-(sizeX+l)];
Bl[4]=NoPhase [id-1];
Bl[5]=NoPhase [id];
Bl[6]=NoPhase [id+1];
Bl[7]=NoPhase [id-(sizeX-l)];
Bl[8]=NoPhase [id-sizeX];

B2[0]=0;
B2[l]=0;
B2[2]=0;

40

B2[3]=NoPhaseX[id-(sizeX+l)];
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+l];
B2[7]=NoPhaseX[id-(sizeX-l)];
B2[8]=NoPhaseX[id-sizeX];

B3[0]=0;
B3[l]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-(sizeX+l)];
B3[4]=NoPhaseY[id-l];
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+l];
B3[7]=NoPhaseY[id-(sizeX-l)];
B3[8]=NoPhaseY[id-sizeX];

}
else
{

Bl[0]=NoPhase [id];
Bl[l]=NoPhase [id-1];
Bl[2]=NoPhase [id+1];
Bl[3]=NoPhase [id-(sizeX-l)];
Bl[4]=NoPhase [id-sizeX];
Bl[5]=NoPhase [id-(sizeX+l)];
Bl[6]=NoPhase [id+(sizeX-l)];
Bl[7]=NoPhase [id+sizeX];
Bl[8]=NoPhase [id+sizeX+1];

B2[0]=NoPhaseX[id];
B2[l]=NoPhaseX[id-l];
B2[2]=NoPhaseX[id+l];
B2[3]=NoPhaseX[id-(sizeX-l)];
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+l)];
B2[6]=NoPhaseX[id+(sizeX-l)];
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+l];

B3[0]=NoPhaseY[id];
B3[l]=NoPhaseY[id-l];
B3[2]=NoPhaseY[id+l];
B3[3]=NoPhaseY[id-(sizeX-l)];
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+l)];
B3[6]=NoPhaseY[id+(sizeX-l)];

41

B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+l];

}
for(k=0;k<8;k++)

{
for(j=0;j<8-k;j++)
{

if(B l[j]>B l[j+ l])
{

swap=Bl[j];
B l[j]=B l[j+ l];
Bl[j+l]=swap;

}
if(B2[j]>B2[j+l])
{

swap=B2[j];
B2[j]=B2[j+l];
B2[j+l]=swap;

}
if(B3[j]>B3[j+l])
{

swap=B3[j];
B3[j]=B3[j+l];
B3[j+l]=swap;

}
}

medianPhase [id]=B 1 [4];
medianX[id] =B 2 [4];
medianY[id]=B3[4];

if((spot%sizeX!=0) && (spot/sizeY!=0) && (spot%sizeX!=(sizeX-l)) &&
(spot/sizeY!=(sizeY-l)))

{
vect3D[0]=NoPhase[id-(sizeX+l)]-0.5;
vect3D[l]=NoPhaseX[id-(sizeX+l)]-0.5;
vect3D[2]=NoPhaseY[id-(sizeX+l)]-0.5;

vect3 D [3]=NoPhase [id-sizeX] -0.5;
vect3D[4]=NoPhaseX[id-sizeX]-0.5;
vect3 D [5]=NoPhaseY[id-sizeX] -0.5;

vect3D[6]=NoPhase[id-(sizeX-l)]-0.5;

42

vect3D[7]=NoPhaseX[id-(sizeX-l)]-0.5;
vect3 D [8]=NoPhaseY[id-(sizeX-l)] -0.5;

vect3D[9]=NoPhase[id-l]-0.5;
vect3D[10]=NoPhaseX[id-l]-0.5;
vect3D[ll]=NoPhaseY[id-l]-0.5;

vect3D[12]=NoPhase[id]-0.5;
vect3D[13]=NoPhaseX[id]-0.5;
vect3D[14]=NoPhaseY[id]-0.5;

vect3D[15]=NoPhase[id+l]-0.5;
vect3D[16]=NoPhaseX[id+l]-0.5;
vect3D[17]=NoPhaseY[id+l]-0.5;

vect3D[18]=NoPhase[id+(sizeX-l)]-0.5;
vect3 D [19]=NoPhaseX[id+(sizeX-l)] -0.5;
vect3 D [2 0]=NoPhaseY[id+(sizeX-l)] -0.5;

vect3 D [21]=NoPhase [id+sizeX] -0.5;
vect3D[22]=NoPhaseX[id+sizeX]-0.5;
vect3D[23]=NoPhaseY[id+sizeX]-0.5;

vect3D[24]=NoPhase[id+(sizeX+l)]-0.5;
vect3D[25]=NoPhaseX[id+(sizeX+l)]-0.5;
vect3D[26]=NoPhaseY[id+(sizeX+l)]-0.5;

cscals [0] =me dianPhase [id] *vect3 D [0] +medianX[id] *vect3 D [1] +medianY[id] *vect3
D [2];

cscals [1] =me dianPhase [id] *vect3 D [3] +medianX[id] *vect3 D [4] +medianY[id] *vect3
D [5];

cscals[2]=medianPhase[id]*vect3D[6]+medianX[id]*vect3D[7]+medianY[id]*vect3
D [8];

cscals [3] =me dianPhase [id] *vect3 D [9] +medianX[id] *vect3 D [10] +medianY[id] *vect3
D [ll];

cscals[4]=medianPhase[id]*vect3D[12]+medianX[id]*vect3D[13]+medianY[id]*vect
3D[14];

cscals [5] =me dianPhase [id] *vect3 D [15] +medianX[id] *vect3 D [16] +medianY[id] *vect
3 D [17];

cscals[6]=medianPhase[id]*vect3D[18]+medianX[id]*vect3D[19]+medianY[id]*vect
3 [2 0];

43

cscals[7]=medianPhase[id]*vect3D[21]+medianX[id]*vect3D[22]+medianY[id]*vect
3 D [23];

cscals[8]=medianPhase[id]*vect3D[24]+medianX[id]*vect3D[25]+medianY[id]*vect
3D [26];

for(i=0;i<9;i++)
sum=sum+cscals[i];

mean=sum/9;

atomicAdd(&(MagI M [spot]],mean);
} ’

}
}

c) Changes that happened to last CUDA code version

#include " s i z e .h "

__ g l o b a l ___ v o i d f u n c t i o n (f l o a t * M a g l M , f l o a t * N o P h a s e . f l o a t
* N o P h a s e X , f l o a t * N o P h a s e Y , i n t s l i c e . i n t s i z e X . i n t s i z e Y . i n t
t s i z e . i n t d i f f x , f l o a t v a l u e)
{

i n t i d ;
i n t k , j , i . s p o t ;
f l o a t

B l [9] , B2[9] ,B3[9].swap,sum,mean,cscals[9],medianPhase[mediansize]
, medianx[mediansize],medianY[mediansize];

f l o a t vect3D[27];

i d = t h r e a d l d x . x + b l o c k l d x . x * b l o c k D i m . x ;
i d = i d + (s l i c e - l) * s i z e X * s i z e Y * t s i z e ; / / s o t h a t i d i s u p d a t e d

a b o u t how m an y s l i c e s h a v e p a s s e d

sum=0;
s p o t = i d % (s i z e x * s i z e Y) ; / / m a s k s t h e i n i t i a l i d i n t o t h e r i g h t

c o o r d i n a t e s

i f (s p o t % s i z e x = = 0)

i f (s p o t / s i z e Y = = 0) / / u p p e r l e f t c o r n e r

B l [0]
B l T
B l '2
B l ’ 3"
B l "4"
B l '5'
B l
B l 7 '

=0
=0=0
=0
=0
= N o P h a s e
= N o P h a s e
-N o P h a s e

[i d] ;
i d + s i z e X]
!i d + 1];

44

Bl[8]=NoPhase[id+sizex+l];

B2 [0] =0;
B2 " Ϊ =0;
B2 "2" =0;
B2 '5' =0;
B2 '4' =0;
B2 '5' =NoPhaseX !i d] ;
B2 6==NoPhaseX _i d+si zex];
B2 7' =NoPhaseX !i d+1];
B2 8==NoPhaseX _i d+si zex+l];

B3 [0] =0;
B3 T =0;
B3 '2' =0;
B3 3==0;
B3 "4" =0;
B3 '5' =NoPhaseY j d] ;
B3 '6' =NoPhaseY _i d+si zex];
B3 7' =NoPhaseY ;i d+1];
B3 8==NoPhaseY _i d+si zex+l];

}

else if(spot/sizeY==sizeY-1) //upper
{

B l [0] =0;
B l T =0;
B l '2' =0;
B l '3' =0;
B l "4" =0;
B l "5" = N o P h a s e [i d] ;
B l '6' = N o P h a s e [i d - s i z e x] ;
B l 7' = N o P h a s e [i d - (s i z e x - l)] ;
B l '8' = N o P h a s e [i d+1];

right corner

B2 [0] =0;
B2 Ί' =0;
B2 '2' =0;
B2 '3' =0;
B2 "4" =0;
B2 '5' =NoPhaseX
B2 6==NoPhaseX
B2 7' =NoPhaseX
B2 8==NoPhaseX

i d] ;
id-sizex];
id-(sizex-l)];
id + 1] ;

B3 [0] =0;
B3 Ί' =0;
B3 '2' =0;
B3 "3" =0;
B3 '4' =0;
B3 '5' =NoPhaseY
B3 '6' =NoPhaseY
B3 Ύ =NoPhaseY

i d] ;
id-sizex];
id-(sizex-l)];

45

r̂
(D

 '-
ν'

BB[8]=NoPhaseY[id+1];

}
el se
{

// any upper spot but not corners

Bl[0]=0
Bl[l]=0
Bl[2]=0
Bl[3]=NoPhase
Bl[4]=NoPhase
Bl[5]=NoPhase
Bl[6]=NoPhase
Bl[7]=NoPhase
Bl[8]=NoPhase[id+(sizex+l)]

i d - s i z e x] ;
i d] ;
i d + s i z e x] ;
i d - (s i z e x - l)]
i d + 1]

B2[0]=0
B2[l]=0
B 2 [2]=0
B2[3]=NoPhaseX
B2[4]=NoPhaseX
B2[5]=NoPhaseX
B2[6]=NoPhaseX
B2[7]=NoPhaseX
B2[8]=NoPhaseX[id+sizex+l]

i d - s i z e x] ;
i d] ;
i d + s i z e x] ;
i d - (s i z e x - l)]
i d + 1]

B3 [0] =0;
B3 " Ϊ =0;
B3 '2' =0;
B3 3== N o P h a s e Y \i d - s i z e x] ;
B3 '4' = N o P h a s e Y j d] ;
B3 '5' = N o P h a s e Y _i d + s i z e x] ;
B3 '6' = N o P h a s e Y ' i d - (s i z e x - l)]
B3 " r = N o P h a s e Y ; i d + 1] ;
B3 8== N o P h a s e Y _i d + (s i z e x + l)]

}

lse if(spot/sizeY==0)

if(spot%sizex==(sizex-l)) //lower left corner

B l [0] = 0 ;
B l T = 0 ;
B l '2 ' = 0 ;
B l T = 0 ;
B l '4 ' = 0 ;
B l '5 ' = N o P h a s e . i d] ;
B l '6 ' = N o P h a s e . i d - 1] ;
B l " r = N o P h a s e _ i d + (s i z e x - l)] ;
B l 8 = = N o P h a s e i d + s i z e x] ;

B2
B2
B2

=0
=0
=0

46

B2 [3] =0;
B2 '4' =0;
B2 '5' =NoPhaseX .i d] ;
B2 6==NoPhaseX .id-1];
B2 " r =NoPhaseX _i d+(si
B2 ;s; =NoPhaseX 'i d+si z

BB [0] =0;
BB " r =0;
B3 '2' =0;
B3 3==0;
B3 '4' =0;
B3 = 5 ==NoPhaseY[id];
B3 '6' =NoPhaseY[id-1];
B3 Ύ =NoPhaseY[i d+(si
B3 '8' =NoPhaseY[i d+si z

zex-l)]
ex];

zex-1)]
ex];

}
el
{

se // any left spot but not corner

Bl [0] =0;
Bl Ί' =0;
Bl '2' =0;
Bl T =NoPhase .id];
Bl '4' =NoPhase li d-1]
Bl = 5 ==NoPhase 'i d+1'
Bl '6' =NoPhase ' i d+(sizex-1)];
Bl " r =NoPhase Ί d+sizex];
Bl '8' =NoPhase 'i d+si zex+l];

B2 [0] =0;
B2 " Ϊ =0;
B2 '2' =0;
B2 '3' =NoPhaseX
B2 '4' =NoPhaseX
B2 = 5 ==NoPhaseX
B2 6==NoPhaseX
B2 Ύ =NoPhaseX
B2 Ύ =NoPhaseX

B3 [0] =0;
B3 Ί' =0;
B3 '2' =0;
B3 '3' =NoPhaseY
B3 "4" =NoPhaseY
B3 '5' =NoPhaseY
B3 '6' =NoPhaseY
B3 Ύ =NoPhaseY
B3 8==NoPhaseY

i d] ;
id-1];
id+1];
i d + (s izex-1)] ;
id + s izex] ;
id + s izex+l] ;

id-1];
i d+1];
id+sizex-1];
id+sizex];
id+sizex+l];

}
}
else if(spot%sizeX==sizex-1) // lower right corner

47

{
if(spot/sizeY==sizeY-1)
{

B l [0] = 0 ;
B l T = 0 ;
B l '2 ' = 0 ;
B l '3 ' = 0 ;
B l '4 ' = 0 ;
B l = 5 = = N o P h a s e . i d - 1] ;
B l '6 ' = N o P h a s e . i d] ;
B l Ύ = N o P h a s e _i d - s i z e x] ;
B l '8 ' = N o P h a s e Ί d - (s i z e x + l)] ;

B2 [0] = 0 ;
B2 T = 0 ;
B2 '2 ' = 0 ;
B2 3 = = 0 ;
B2 "4" = 0 ;
B2 '5 ' = N o P h a s e X . i d - 1] ;
B2 '6 ' = N o P h a s e X . i d] ;
B2 7' = N o P h a s e X _i d - s i z e x] ;
B2 8 = = N o P h a s e X Ί d - (s i z e x + l)] ;

B3 [0] =0;
B3 T =0;
B3 '2' =0;
B3 3==0;
B3 '4' =0;
B3 = 5 == N o P h a s e Y
B3 '6' = N o P h a s e Y
B3 Ύ = N o P h a s e Y
B3 '8' = N o P h a s e Y

i d - 1] ;
i d] ;
id-sizex];
id-(sizex+l)];

}
e] se
{

B l
B l
B l
B l
B l
B l
B l
B l
B l

// any lower spot but not corner

[0] =0;
Ί' =0;
'2' =0;
T =NoPhase .id-1];
"4" =NoPhase _i d-si zex];
'5' =NoPhase Ί d-(sizex+l)];
'6' =NoPhase Ί d+(si zex-l)];
7' =NoPhase j d j ;
8==NoPhase _i d+si zex];

B2 [0] =0;
B2 " Ϊ =0;
B2 '2' =0;
B2 '3' =NoPhaseX .id-1];
B2 '4' =NoPhaseX _i d-si zex];
B2 = 5 ==NoPhaseX i d-(sizeX+1)^
B2 6==NoPhaseX i d+(sizex-l)^
B2 7' =NoPhaseX !i d] ;
B2 '8' =NoPhaseX _i d+si zex];

B3 [0]=0;

48

H-
t (D

 '-r
J

H-
ifD

B3[l
B3 [2
B3 [3
B3 [4
B3 [5
b3 [6;
B3 [7]=NoPhaseY[i d]
B3 [8 "

= 0 ;
= 0 ;
=NoPhaseY
=NoPhaseY
=NoPhaseY
=NoPhaseY

= N o P h a s e Y

id-1];
id-sizex];
id-(sizex+l)]
id+(sizex-l)]

i d + s i z e x]

}

]se if(spot/sizeY==sizeY-1) // any right spot but not corner

B l
B l
B l
B l
B l
B l
B l
B l
B l

B2
B2
B2
B2
B2
B2
B2
B2
B2

B3
B3
B3
B3
B3
B3
B3
B3
B3

] se

B l
B l
B l
B l
B l
B l
B l
B l
B l

[0] =0;
T =0;
'2' =0;
'3' =NoPhase[
'4' =NoPhase[
'5' =NoPhase[
6 =NoPhase[

Ύ =NoPhase[
\8\ =NoPhase[

[0] =0;
" Ϊ =0;
'2' =0;
3 ==NoPhaseX
'4' =NoPhaseX
= 5 ==NoPhaseX
'6' =NoPhaseX
7' =NoPhaseX
;8; =NoPhaseX

[0] =0;
Ί' =0;
'2' =0;
'3' =NoPhaseY
"4" =NoPhaseY
"5" =NoPhaseY
'6' =NoPhaseY
7' =NoPhaseY
;e ; =NoPhaseY

[0] =NoPhase[
T =NoPhase[
'2' =NoPhase[
'3' =NoPhase[
'4' =NoPhase[
= 5 ==NoPhase[
6 =NoPhase[

Ύ =NoPhase[
'8' =NoPhase[

id-(sizex+l)]
i d - 1] ;
id] ;
id + 1] ;
i d- (si zex-l)]
id-sizex];

id-
id-

(s i z e x + l)]
l] ;

i d + l] ;
i d - (s i z e x -
i d - s i z e x] ;

1)]

id-
id-

(s i z e x + l)]
l] ;

i d + l] ;
i d - (s i z e x -
i d - s i z e x] ;

1)]

//any other spot not near the table limits

id] ;
id-1];

i d- (si zex-l)]
id-sizex];
id-(sizex+l)i

(si zex-1)^
id+sizex];

B2 [0]=NoPhaseX[id];

49

B2 [1] =NoPhaseX[
B2 '2' =NoPhaseX[
B2 '3' =NoPhaseX[
B2 "4" =NoPhaseX[
B2 "5" =NoPhaseX[
B2 '6' =NoPhaseX[
B2 7' =NoPhaseX[
B2 ;8; =NoPhaseX[

B3 [0] =NoPhaseY[
B3 " ϊ =NoPhaseY[
B3 '2' =NoPhaseY[
B3 3 ==NoPhaseY[
B3 '4' =NoPhaseY[
B3 '5' =NoPhaseY[
B3 '6' =NoPhaseY[
B3 Ύ =NoPhaseY[
B3 8 =NoPhaseY[

i d - 1]
i d + 1]
i d - (s i z e x - l)]
i d - s i z e x] ;
i d - (s i z e x + l)]
i d + (s i z e x - l)]
i d + s i z e x] ;
i d + s i z e x + l] ;

i d] ;
τ d - 1] ;
1 d + 1] ;
i d - (s i z e x - l)]
i d - s i z e x] ;
i d - (s i z e x + l)]
i d + (s i z e x - l)]
i d + s i z e x] ;
i d + s i z e x + l] ;

}

for(k=0;k<8;k++) //sorting the tables
{

for(j=0;j<8-k;j++)
{

if(Bl[j]>Bl[j+l])
{

swap=Bl[j];
B l [j]=Bl[j +1];
Bl[j+l]=swap;

}
i f (B2 [j]>B2 [j+l])

swap=B2[j];
B2 [j]=B2 [j+l];
B2 [j+l]=swap;

i f (BB [j] > B 3 [j+l])
{

swap=B3[j];
B3 [j]=BB[j+l];
B3 [j+l]=swap;

}

}

}

medianPhase[id]=Bl[4] ; //taking each median value
medi anx[i d]=B2 [4];
medianY[id]=B3 [4];

50

i f ((s p o t % s i z e x ! = 0) && (s p o t / s i z e Y ! = 0) &&
(s p o t % s i z e x ! = (s i z e x - l)) && (s p o t / s i z e Y ! = (s i z e Y - l)))

vect3D[0]=NoPhase[id-(sizex+l)]-value;
vect3D[1]=NoPhaseX[id-(sizex+l)]-value;
vect3D[2]=NoPhaseY[id-(sizex+l)]-val ue;

vect3D
vect3D
vect3D

= N o P h a s e [i d - s i z e x]
= N o P h a s e X
= N o P h a s e Y

id-
id-

si zex
si zex

value;
-value;
-value:

vect3D[6]=NoPhase[id-(sizex-l)]-value;
vect3D[7]=NoPhaseX[id-(sizex-l)]-value;
vect3D[8]=NoPhaseY[id-(sizex-l)]-val ue;

vect3D
vect3D
vect3D

^9]=NoPhase [id-1] -val u e ;
^10]=NoPhaseX[i d-1] -val u e ;
H]=NoPhaseY[i d-1] -val u e ;

vect3D
vect3D
vect3D

12
13
14:

= N o P h a s e [i d]
= N o P h a s e X
= N o P h a s e Y

id
i d

value;
-val u e ;
-val u e ;

vect3D
vect3D
vect3D

vect3D
vect3D
vect3D

15
16
17!

18
19
20

=NoPhase[id+1]-value;
= N o P h a s e X
= N o P h a s e Y

i d+1
i d+1

-value;
-value:

= N o P h a s e [i d + (s i z e x - l)] - v a l u e ;
= N o P h a s e X [i d + (s i z e x - l)] - v a l u e ;
= N o P h a s e Y [i d + (s i z e x - l)] - v a l u e ;

vect3D
vect3D
vect3D

21] = N o P h a s e [i d + s i z e x]
22] = N o P h a s e X [i d + s i z e x :
23] = N o P h a s e Y [i d + s i z e x

value;
-value;
-value;

vect3D[24]=NoPhase[id+(sizex+l)]-value;
vect3D[25]=NoPhaseX[id+(sizex+l)]-value;
vect3D[26]=NoPhaseY[id+(sizex+l)]-value;

//vectors multiplication

cscals[0]=medianPhase[id]*vect3D[0]+medianx[id]*vect3D[l]+medianY
[id]*vect3D[2];

cscals[l]=medianPhase[id]*vect3D[3]+medianx[id]*vect3D[4]+medianY
[id]*vect3D[5];

cscals[2]=medianPhase[id]*vect3D[6]+medianx[id]*vect3D[7]+medianY
[id]*vect3D[8];

cscals[3]=medianPhase[id]*vect3D[9]+medianx[id]*vect3D[10]+median
Y[id]*vect3D[ll];

cscals[4]=medianPhase[id]*vect3D[12]+medianx[id]*vect3D[13]+media
nY[id]*vect3D[14];

51

cscals[5]=medianPhase[id]*vect3D[15]+medianx[id]*vect3D[16]+media
n Y [i d] *vect3D [17];

cscals[6]=medianPhase[id]*vect3D[18]+medianx[id]*vect3D[19]+media
n Y [id]*vect3D[20];

cscals[7]=medianPhase[id]*vect3D[21]+medianx[id]*vect3D[22]+media
nY[id]*vect3D[23];

cscals[8]=medianPhase[id]*vect3D[24]+medianx[id]*vect3D[2 5]+media
nY[i d] *vect3D[26];

for(i=0;i<9;i++)
sum=sum+cscals[i];

mean=sum/9;

atomicAdd(&(MaglM[spot]) ,mean);

}

}

Appendix III MATLAB and MEX C code

a) MATLAB code that called the MEX C code

load data.mat;

diffX-1;
diffY-1;
neigm=3;
neign=3;
newDatasetA(80,80,40,52)=0;

52

I=setstruct(1). IM;
NoPhasel=setstruct(2). IM;
NoPhaseXl=setstruct(3). IM;
NoPhaseYl=setstruct(4). IM;
sizeX=setstruct(1).XSize;
sizeY=setstruct(1).YSize;
sizeT=setstruct(1).TSize;
slices=setstruct(1).ZSize;
NoPhase=reshape(NoPhasel,1,sizeX*sizeY*sizeT*slices);
NoPhaseX=reshape(NoPhaseXl,1,sizeX*sizeY*sizeT*slices);
NoPhaseY=reshape(NoPhaseYl,1,sizeX*sizeY*sizeT*slices);

t=cputime;

for slice=l:slices;
magmean = mean(I s l i c e) ,3);
MagIMout=zeros(sizeX*sizeY);

[MagIM2]=changed(MaglMout,NoPhase,NoPhaseX,NoPhaseY,slice,si
zeX,sizeY,sizeT,diffX);

MagIM2=reshape(MagIM2,sizeX,sizeY);
MaglMl = MagIM2/(max(MagIM2(:)));
temp = MaglMl.*magmean;
norm = abs(temp/max(temp(:)));
n e w D a t a s e t A s l i c e) — repmat(norm,[1 1 sizeT]);

%replicate for all timeframes....
end
timeA=cputime-t;

b) MEX C code that is being called from MATLAB

#include <stdint.h>
typedef uintl6_t charl6_t;
#include <mex.h>
#include <matrix.h>
#include <stdlib.h>
#include <stdio.h>

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const
mxArray *prhs[])
{

53

float
*MagIM,*medianPhase,*medianX,*medianY,*NoPhase,*NoPhaseX,*NoPhase
Y,*MagIMout;

int slice,sizeX,sizeY,tsize,diffX;

int id,start,end,sizeMagIM;
int k,j,i,spot,position;
float B1[9],B2[9],B3[9],swap,sum,mean,cscals[9],vect3D[27];

medianPhase=(float *)malloc(sizeX*sizeY*tsize);
medianX=(float *)malloc(sizeX*sizeY*tsize);
medianY=(float *)malloc(sizeX*sizeY*tsize);

MagIM=(float *)(mxGetPr(prhs[0]));
NoPhase=(float *)(mxGetPr(prhs[1]));
NoPhaseX=(float *)(mxGetPr(prhs[2]));
NoPhaseY=(float *)(mxGetPr(prhs[3]));

slice=(int)mxGetScalar(prhs[4]);
sizeX=(int)mxGetScalar(prhs[5]);
sizeY=(int)mxGetScalar(prhs[6]);
tsize=(int)mxGetScalar(prhs[7]);
diffX=(int)mxGetScalar(prhs[8]);

plhs[0]=mxCreateNumericMatrix(sizeX*sizeY, 1, mxSINGLE_CLASS,
mxREAL);

MagIMout=(float *)mxGetPr(plhs[0]);

start=(slice-1)*sizeX*sizeY*tsize;
end=slice*sizeX*sizeY*tsize ;

for (id=start;id<end;id++)
{

position=id%sizeX*sizeY*tsize;

spot=id%(sizeX*sizeY);

if (spot%sizeX==0)
{

if (spot/sizeY==0)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id];

54

B1[6]=NoPhase[id+sizeX];
B1[7]=NoPhase[id+1];
B1[8]=NoPhase[id+sizeX+1];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+sizeX];
B2[7]=NoPhaseX[id+1];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+sizeX];
B3[7]=NoPhaseY[id+1];
B3[8]=NoPhaseY[id+sizeX+1];

}
else if (spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id];
Bl[6]=NoPhase[id-sizeX];
B1[7]=NoPhase[id-(sizeX-1)];
B1[8]=NoPhase[id+1];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id-sizeX];
B2[7]=NoPhaseX[id-(sizeX-1)]
B2[8]=NoPhaseX[id+1];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;

B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-sizeX];
B3[7]=NoPhaseY[id-(sizeX-1)]
B3[8]=NoPhaseY[id+1];

}
else
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=NoPhase[id-sizeX];
B1[4]=NoPhase[id];
B1[5]=NoPhase[id+sizeX];
B1[6]=NoPhase[id-(sizeX-1)];
B1[7]=NoPhase[id+1];
B1[8]=NoPhase[id+(sizeX+1)];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-sizeX];
B2[4]=NoPhaseX[id];
B2[5]=NoPhaseX[id+sizeX];
B2[6]=NoPhaseX[id-(sizeX-1)]
B2[7]=NoPhaseX[id+1];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-sizeX];
B3[4]=NoPhaseY[id];
B3[5]=NoPhaseY[id+sizeX];
B3[6]=NoPhaseY[id-(sizeX-1)]
B3[7]=NoPhaseY[id+1];
B3[8]=NoPhaseY[id+(sizeX+1)]

}
}
else if (spot/sizeY==0)
{

if(spot%sizeX==(sizeX-1))
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id];
Bl[6]=NoPhase[id-l] ;
B1[7]=NoPhase[id+(sizeX-1)];
B1[8]=NoPhase[id+sizeX];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id-l];
B2[7]=NoPhaseX[id+(sizeX-1)]
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id-l];
B3[7]=NoPhaseY[id+(sizeX-1)]
B3[8]=NoPhaseY[id+sizeX];

}
else
{

B1[0]=0;
B1 [1]=0;
B1[2]=0;
B1[3]=NoPhase[id];
Bl[4]=NoPhase[id-l];
B1[5]=NoPhase[id+1];
B1[6]=NoPhase[id+(sizeX-1)];
B1[7]=NoPhase[id+sizeX];
B1[8]=NoPhase[id+sizeX+1];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id];
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id+1];
B2[6]=NoPhaseX[id+(sizeX-1)]
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=0;
B3 [1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id];
B3[4]=NoPhaseY[id-1];
B3[5]=NoPhaseY[id+1];

B3[6]=NoPhaseY[id+sizeX-1];
B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+1];

}
}
else if (spot%sizeX==sizeX-l)
{

if (spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=0;
B1[4]=0;
B1[5]=NoPhase[id-1];
B1[6]=NoPhase[id];
B1[7]=NoPhase[id-sizeX];
B1[8]=NoPhase[id-(sizeX+1)];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=0;
B2[4]=0;
B2[5]=NoPhaseX[id-l];
B2[6]=NoPhaseX[id];
B2[7]=NoPhaseX[id-sizeX];
B2[8]=NoPhaseX[id-(sizeX+1)]

B3[0]=0;
B3 [1]=0;
B3[2]=0;
B3[3]=0;
B3[4]=0;
B3[5]=NoPhaseY[id-1];
B3[6]=NoPhaseY[id];
B3[7]=NoPhaseY[id-sizeX];
B3[8]=NoPhaseY[id-(sizeX+1)]

}
else
{

B1[0]=0;
B1 [1]=0;
B1[2]=0;
B1[3]=NoPhase[id-1];
Bl[4]=NoPhase[id-sizeX];
B1[5]=NoPhase[id-(sizeX+1)];
B1[6]=NoPhase[id+(sizeX-1)];
B1[7]=NoPhase[id];
B1[8]=NoPhase[id+sizeX];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-l];
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+1)]
B2[6]=NoPhaseX[id+(sizeX-1)]
B2[7]=NoPhaseX[id];
B2[8]=NoPhaseX[id+sizeX];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-1];
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+1)]
B3[6]=NoPhaseY[id+(sizeX-1)]
B3[7]=NoPhaseY[id];
B3[8]=NoPhaseY[id+sizeX];

}
}
else if (spot/sizeY==sizeY-l)
{

B1[0]=0;
B1[1]=0;
B1[2]=0;
B1[3]=NoPhase[id-(sizeX+1)];
B1[4]=NoPhase[id-1];
B1[5]=NoPhase[id];
B1[6]=NoPhase[id+1];
B1[7]=NoPhase[id-(sizeX-1)];
B1[8]=NoPhase[id-sizeX];

B2[0]=0;
B2[1]=0;
B2[2]=0;
B2[3]=NoPhaseX[id-(sizeX+1)];
B2[4]=NoPhaseX[id-l];
B2[5]=NoPhaseX[id];
B2[6]=NoPhaseX[id+1];
B2[7]=NoPhaseX[id-(sizeX-1)];
B2[8]=NoPhaseX[id-sizeX];

B3[0]=0;
B3[1]=0;
B3[2]=0;
B3[3]=NoPhaseY[id-(sizeX+1)];
B3[4]=NoPhaseY[id-1];
B3[5]=NoPhaseY[id];
B3[6]=NoPhaseY[id+1];

B3[7]=NoPhaseY[id-(sizeX-1)]
B3[8]=NoPhaseY[id-sizeX];

else
{

B1[0]=NoPhase[id];
B1[1]=NoPhase[id-1];
B1[2]=NoPhase[id+1];
B1[3]=NoPhase[id-(sizeX-1)];
B1[4]=NoPhase[id-sizeX];
B1[5]=NoPhase[id-(sizeX+1)];
B1[6]=NoPhase[id+(sizeX-1)];
B1[7]=NoPhase[id+sizeX];
B1[8]=NoPhase[id+sizeX+1];

B2[0]=NoPhaseX[id];
B2[l]=NoPhaseX[id-l];
B2[2]=NoPhaseX[id+l];
B2[3]=NoPhaseX[id-(sizeX-1)]
B2[4]=NoPhaseX[id-sizeX];
B2[5]=NoPhaseX[id-(sizeX+1)]
B2[6]=NoPhaseX[id+(sizeX-1)]
B2[7]=NoPhaseX[id+sizeX];
B2[8]=NoPhaseX[id+sizeX+1];

B3[0]=NoPhaseY[id];
B3[1]=NoPhaseY[id-1];
B3[2]=NoPhaseY[id+1];
B3[3]=NoPhaseY[id-(sizeX-1)]
B3[4]=NoPhaseY[id-sizeX];
B3[5]=NoPhaseY[id-(sizeX+1)]
B3[6]=NoPhaseY[id+(sizeX-1)]
B3[7]=NoPhaseY[id+sizeX];
B3[8]=NoPhaseY[id+sizeX+1];

}

}

for (k=0;k<8;k++)
{

f o r (j =0 ; j <8 -k ; j ++)
{

if(B1[j]>B1[j +1])
{

swap=Bl[j];
B1 [j] =B1[j + 1] ;
B1 [j + 1]=swap;

}
if (B2 [j] >B2 [j+1])
{

swap=B2[j] ;
B2 [j]=B2[j + 1] ;

B2[j+1]=swap;
}
if (B3 [j] >B3 [j+1])
{

swap=B3[j] ;
B3[j]=B3[j + 1] ;
B3 [j + 1]=swap;

}
}

}

medianPhase[position] =B1[4] ;
medianX[position] =B2[4] ;
medianY[position]=B3[4] ;

if((spotisizeX!=0) && (spot/sizeY!=0) &&
(spotisizeX!=(sizeX-1)) && (spot/sizeY!=(sizeY-1)))

{
sum=(float)0;

vect3D[0]=NoPhase[id-(sizeX+1)]-0.5;
vect3D[l]=NoPhaseX[id-(sizeX+1)]-0.5;
vect3D[2]=NoPhaseY[id-(sizeX+1)]-0.5;

vect3D[3]=NoPhase[id-sizeX]-0.5;
vect3D[4]=NoPhaseX[id-sizeX]-0.5;
vect3D[5]=NoPhaseY[id-sizeX]-0.5;

vect3D[6]=NoPhase[id-(sizeX-1)]-0.5;
vect3D[7]=NoPhaseX[id-(sizeX-1)]-0.5;
vect3D[8]=NoPhaseY[id-(sizeX-1)]-0.5;

vect3D[9]=NoPhase[id-1]-0.5;
vect3D[10]=NoPhaseX[id-1]-0.5;
vect3D[11]=NoPhaseY[id-1]-0.5;

vect3D[12]=NoPhase[id]-0.5;
vect3D[13]=NoPhaseX[id]-0.5;
vect3D[14]=NoPhaseY[id]-0.5;

vect3D[15]=NoPhase[id+1]-0.5;
vect3D[16]=NoPhaseX[id+1]-0.5;
vect3D[17]=NoPhaseY[id+1]-0.5;

vect3D[18]=NoPhase[id+(sizeX-1)]-0.5;
vect3D[19]=NoPhaseX[id+(sizeX-1)]-0.5;
vect3D[20]=NoPhaseY[id+(sizeX-1)]-0.5;

vect3D[21]=NoPhase[id+sizeX]-0.5;
vect3D[22]=NoPhaseX[id+sizeX]-0.5;
vect3D[23]=NoPhaseY[id+sizeX]-0.5;

61

vect3D[24]=NoPhase[id+(sizeX+1)]-0.5;
vect3D[25]=NoPhaseX[id+(sizeX+1)]— 0.5;
vect3D[26]=NoPhaseY[id+(sizeX+1)]— 0.5;

cscals[0]=(medianPhase[position]*vect3D[0]+medianX[position]*vect
3D[1]+medianY[position]*vect3D[2]);

cscals[l]=(medianPhase[position]*vect3D[3]+medianX[position]*vect
3D[4]+medianY[position]*vect3D[5]);

cscals[2]=(medianPhase[position]*vect3D[6]+medianX[position]*vect
3D[7]+medianY[position]*vect3D[8]);

cscals[3]=(medianPhase[position]*vect3D[9]+medianX[position]*vect
3D[10]+medianY[position]*vect3D[11]);

cscals[4]=(medianPhase[position]*vect3D[12]+medianX[position]*vec
t3D[13]+medianY[position]*vect3D[14]);

cscals[5]=(medianPhase[position]*vect3D[15]+medianX[position]*vec
t3D[16]+medianY[position]*vect3D[17]);

cscals[6]=(medianPhase[position]*vect3D[18]+medianX[position]*vec
t3D[19]+medianY[position]*vect3D[20]);

cscals[7]=(medianPhase[position]*vect3D[21]+medianX[position]*vec
t3D[22]+medianY[position]*vect3D[23]);

cscals[8]=(medianPhase[position]*vect3D[24]+medianX[position]*vec
t3D[25]+medianY[position]*vect3D[26]);

sum=sum+cseals[0]+cscals[1]+cscals[2]+cscals[3]+cscals[4]+cscals[
5]+cscals[6]+cscals[7]+cscals[8];

mean=sum/9;

MagIM[spot]=MagIM[spot]+mean;
MaglMout[spot]=MagIM[spot];

free(medianPhase);
free(medianX);
free(medianY);

}

}
}

62

References

[1] Class notes introduction to Biomedical Engineering, course offered by the
Department of Computer Science and Biomedical Informatics, 2009.
[2] Angelos Chalkias, Human Torso Modeling for MRI Simulations, 2012
[3] Oberg P. (April 8, 2013) Segmentation o f cardiovascular tree in 4D from PC-MRI
images
[4] Jason Sanders, Edward Kandrot, CUDA by Example

63

