
TRANSPORT OF THE TINY-OS ENVIRONMENT

TO THE SMART-ITS PLATFORM

A Thesis

by

FOTIS LOUKOS

Submitted to the Office of Graduate Studies of
University of Thessaly

partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

September 2006

Major Subject: Wireless Sensor Networks

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

Πανεπιστήμιο Θεσσαλίας

ΒΙΒΛΙΟΘΗΚΗ & ΚΕΝΤΡΟ ΠΛΗΡΟΦΟΡΗΣΗΣ
Ειδική Συλλογή «Γκρίζα Βιβλιογραφία»

Αριθ. Εισ.: 5075/1
Ημερ. Εισ.: 24-09-2007

Δωρεά: Συγγραφέα
Ταξιθετικός Κωδικός: Δ

005.43
ΛΟΥ

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

TRANSPORT OF THE TINY-OS ENVIRONMENT

TO THE SMART-ITS PLATFORM

A Thesis

by

FOTIS LOUKOS

Submitted to the Office of Graduate Studies of
University of Thessaly

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Spyros Lalis
Committee Members, Iordanis Koutsopoulos

Georgios Stamoulis

September 2006

Major Subject: Wireless Sensor Networks

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

Ill

ABSTRACT

The smart-its are a low-cost platform made by the university of Karlsruhe used

mainly for wireless sensor network applications. This thesis sentences the port of

TinyOS to the smart-its platform. TinyOS is a wireless sensor network operating

system originally written to work with the mica motes from the Berkeley University;

since then a number of ports have been made. During the port a number of problems

came up due to the fact that the smart-its use a completely different hardware from

the other platforms TinyOS supports. All the problems together with the solutions

are presented. Tests of the RF communications and their results are displayed.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

IV

To my grandmother, Theodosia

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

V

ACKNOWLEDGMENTS

I would like to thank D. Syrivelis, M. Koutsoubelias and my supervisor S. Lalis

for all the help and useful suggestions during this work at the writing of my thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

VI

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION.. 1

II THE PARTICLE COMPUTER... 4

A. Particles.. 4
B. Sensor boards .. 6
C. Gateway hardware ... 7
D. The AwareCon runtime... 7
E. Creating an application... 9

III THE TINYOS OPERATING SYSTEM....................................... 11

A. NesC.. 11
1. Interfaces... 12
2. Components.. 14

a. Modules... 14
b. Configurations... 16

3. Flow of control inside a NesC program........................ 18
B. Structure of TinyOS .. 20

1. Analog To Digital Converter 23
2. Clock and Timers... 23
3. EEPROM and Flash memory access........................... 24
4. RF communications.. 24

IV PORTING TINYOS TO THE SMART-ITS PLATFORM 27

A. Major differences between berkeley motes and smart-its . . 27
B. The microcontroller... 27

1. Real time clock... 29
2. Analog to digital converter.. 29
3. Serial connection.. 30
4. Interrupt handler.. 30

C. The compiler .. 31
D. The RF communications.. 33

V EVALUATION OF RF COMMUNICATIONS........................... 38
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

Vll

CHAPTER Page

A. Packet Loss.. 38
1. Transmission rate ... 38
2. Packet size.. 38
3. External work load.. 39
4. Distance and environment... 39

B. Measurements... 39
1. Changing the distance... 43
2. Changing the work load on the transmitter................. 43
3. Changing the work load on the receiver....................... 44

C. AwareCon and TinyOS... 44

VI CONCLUSION... 46

REFERENCES... 47

APPENDIX A... 50

APPENDIX B 55

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

Vlll

LIST OF TABLES

TABLE Page

I Berkeley motes and smart-its major differences................................. 27

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

IX

LIST OF FIGURES

FIGURE Page

1 The 2/10 particle... 5

2 The spart sensorboard.. 5

3 Module structure... 17

4 Flow of control in TinyOS.. 19

5 Interfaces overview.. 22

6 Mica Communications Stack Diagram (interfaces).............................. 25

7 Basic microcontroller architecture and modules................................. 28

8 Compile procedure for the mica platform... 31

9 Creation of a linker script.. 33

10 Compile procedure for the smartits platform....................................... 34

11 UART bus transmission.. 35

12 SPI bus transmission.. 35

13 Data received at the UART.. 36

14 Packet loss vs Transmission rate for one byte packets........................ 41

15 Packet loss vs Transmission rate for five byte packets........................ 41

16 Packet loss vs Transmission rate for twenty byte packets.................. 42

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

1

CHAPTER I

INTRODUCTION

A Wireless Sensor Network is a mesh network of small sensor nodes communicating

among themselves using RF communication and deployed in large scale to sense the

physical world. The main characteristics of a wireless sensor network are

• Small-scale sensor nodes

• Limited power they can harvest or store

• Harsh environmental conditions

• Node failures

• Mobility of nodes

• Dynamic network topology

• Communication failures

• Heterogeneity of nodes

• Large scale of deployment

• Unattended operation

Wireless sensor networks have been used at many applications. Some of them

are the following:

• Environmental control. Sensor networks can be used for early discovery of

catastrophes like forest hies. A sensor node with a heat sensor can monitor the

environment and signal events like high increase of temperature. Also, sensors

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

2

can be used to take measurements from not easily accessible places. A real

life example is the volcano of Volcan Tungurahua in central Ecuador where a

sensor network was deployed to monitor erruptions [13]. Furthermore, sensors

have been used for waste management system monitoring [14].

• Health care. Monitoring systems based on sensor networks have been con

structed [15] [16]. As an example wireless sensors have been put in wriststraps

to monitor for strokes or other weaknesses [17].

• Security monitoring. Sensors can be put inside rooms to monitor for movement.

Another is example is security in cargo containers containing sensors [18].

There are many research issues on wireless sensor networks. We outline some of

them below.

• Routing problems. Due to the nature of sensor networks a node can only com

municate with a number of sensors which are close to it. This is because of the

low transmit power. In order to communicate with a node which is out of reach

a routing protocol must be used [19] [20].

• Energy saving. The nodes should be very small and they are usually powered

by a small battery with a limited energy. Most power consumption is due to rf

communications. So, protocols must be created that have this in mind [21] [22].

• Distributed data processing. Each sensor node gets it’s own readings. There are

many times when these data needs to be processed by more than one node. So

new approaches on processing distributed sensor data in sensor networks must

be found [23] [24],

• Security. All messages exchanged between sensor nodes are broadcasted over

the air. This can lead to important security issues when we want to transfer
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

3

“sensitive” data. Using another node a malicious attacker can intercept the

messages and read them or even inject new messages. For these reasons a

number of protocols for secure communications have been created [25] [26].

In order to make programming a sensor node easier operating systems have been

created. Many of them are designed to satisfy one of the above issues. Further

more, the most used operating systems have been ported and work at many different

architectures. A brief list of operating systems is the following:

• TinyOS1.

• Contiki2.

• Scat ter Web3.

In chapter II the smart-its platform together with the hardware and software

that supports it is presented. Then, in chapter III, the TinyOS operating system and

it’s concepts are analyzed. In chapter IV we document the process of porting the

TinyOS to the smart-its platform together with the problem we faced. In chapter V

an evaluation of the RF communications is presented.

1 http://www.tinyos.net
2http://hstein.trix.net/contiki
3http://www.inf. fu-berlin.de/inst/ag-tech/projects/index.html

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

http://www.tinyos.net
http://hstein.trix.net/contiki
http://www.inf

4

CHAPTER II

THE PARTICLE COMPUTER

A. Particles

The particle computer is a prototyping platform created by the university of Karl

sruhe. It is a low cost device, mainly used for the creation of wireless sensor networks.

The hardware is the part created by TecO for the Smart-Its project 1. It consists of a

small sensor (the particle) whose main components are a microcontroller, a chip for

wireless communications, external memory and a connector for an extra board. The

most commonly used is a sensorboard which carries a custom set of sensors depending

on the application (light, temperature, acceleration, etc).

All particles use a PIC microcontroller from Microchip. Also, there is an RF com

munications transceiver from RF Mononolithics, the TR1001. To get readings they

connect to a sensorboard using a special type of connector, the CONAN connector.

As an example the hardware from the 2/10 particle is shown below.

• Processor: Microchip’s PIC18F6720 at 20 MHz providing up to 10 MIPS op

eration. The internal memory is 128 kbytes of flash, 4 kbytes of RAM and

1 kbyte of EEPROM. Main features are 5 timer modules, I2C™ and 3-wire

gpitm M^ter Synchronous Serial Port (MSSP), 2 addressable Universal Syn

chronous Asynchronous Receiver Transmitter (USART) and up to 12-channel

10-bit Analog-to-Digital Converter (A/D).

• External Memory: 32 kbytes EEPROM (Microchip’s 24FC256).

• RF Communications: RFM TR1001, 125kbit bandwidth, 868.35 ISM band.

1 http://smart-its.teco.edu/
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

http://smart-its.teco.edu/

5

Fig. 1. The 2/10 particle

Fig. 2. The spart sensorboard

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

6

Fieldstrength regulation via software. Up to 30 meters inhouse range.

• Interface: CONAN connector with 21 pin multipurpose pins. Allows I2C™,

SPI7M, serial communications (RS232), parallel bus, analog input lines and

digital I/O lines.

• Real time clock (RTC).

• Two low power LEDS.

• Ballswitch to detect movement and connected to interrupt line for wake-up-on-

movement.

• Power regulation for power in from 0.9-3.3 V. Supports AAA, 2xAAA, AA and

lithium coin batteries. Also supports remaining energy measurement. Allows

in circuit charging if rechargeable battery is used.

• Allows in circuit and over the air programming.

• Size: 33x17 mm without ballswitch and battery, 33x17x15 mm without ball-

switch and with lithium coin cell and 45x27 mm with ballswitch and AAA

battery.

More information about the devices and the hardware can be found at

http://particle.teco.edu/devices/index.html and

http: / / particle.teco.edu / documentation / content/particle, html.

B. Sensorboards

Sensorboard are the boards that are connected to the particles that have the sensors

which get the readings of various values.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

http://particle.teco.edu/devices/index.html

7

There are two types of sensorboards. Both of them contain a number of differ

ent sensors for temperature, humidity, light, etc. The biggest difference is that one

board contains it’s own microcontroller, therefore it can process the sensor readings

autonomously and needs the particle only for RF communications.

More information about the sensorboards can be found at

http://particle.teco.edu/documentation/content/ssimp.html and

http://particle.teco.edu/documentation/content/spart.html.

C. Gateway hardware

The particles are able to communicate with each other in an ad-hoc way. No special

backbone infrastructure is needed for this purpose.

Additionally, there are two special devices that enable communication with other

computers, the XBridge and the USB Bridge.

The XBridge allows any device which supports the UDP/IP protocol to access

every particle in the network. The USB Bridge connects to a computer and allows

this computer to access the particles in the network.

For more information about bridges you can visit

http://particle.teco.edu/documentation/content/bridge.html.

D. The AwareCon runtime

Along with the hardware there is also a software part. It comes as the AwareCon

protocol stack.

AwareCon is a strict time synchronized TDMA system with a frame duration

of 13ms. It is designed so that when a particle powers up it synchronizes as fast as

possible with the rest of the particles and stays synchronized at anytime. Further

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

http://particle.teco.edu/documentation/content/ssimp.html
http://particle.teco.edu/documentation/content/spart.html
http://particle.teco.edu/documentation/content/bridge.html

8

more, it can achieve a high speed of communication when it transmits and receives

all data. Due to the channel access control it implements it can avoid collisions and

full throughput can be achieved even with hundrends of particles running.

Since there is no multithreading implemented, every 13ms the program running

at the particle is stopped and the AwareCon stack takes over. The particle exchanges

all data with the rest of the network and the program continues and the point where it

stopped. The program continues to run until the next timeslot where it stops again.

If there are data to exchange the warranted application time is a little more than

4.5ms but if there are no data then the application time is more than 11ms.

The data are transmitted as packets consisting of three layers:

• The RF layer for synchronization, channel coding etc.

• The LL (link layer) layer for access control, data encoding and error checking

(CRC16 algorithm)

• The ACL layer as abstract user interface and data representation

The payload data have a maximum size of 64 bytes. They are organized in units called

tuples. Each tuple consists of 2 bytes which represent the data type, one byte that

holds the length of the packet and the data bytes. These tuples are concatenated

and then placed inside the payload buffer for the ACL layer. The first tuple has

a special meaning since it’s data type represents the subject of the packet. Every

time a packet is sent it is broadcasted to all particles in the network. These have

a subscriber list which holds a maximum of seven subjects they are interested into.

If the packet’s subject is not in this list then the packet is dropped. Otherwise the

program is notified that a new packet has arrived which can be processed.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

9

E. Creating an application

There are a number of functions that are provided by the AwareCon protocol stack.

The most important categories of functions are the following:

• Preparing and transmitting packets.

Functions that allow you to create a new packet, append tuples into it and

finally send it. You can also check the remaining number of bytes in the packet.

• Status and flow control.

Functions to check if the communications stack is transmitting a packet and if

the last packet transmission was successful.

• Subscription to subjects.

Functions to subscribe or unsubscribe to certain subjects.

• Receive data.

Functions to check if a new packet has arrived and get access to it’s contents.

But, in order to use all these functions your application must conform to certain

rules. First of all, your application should be aware that it will be stopped every

13ms. There is no warranty about the time remaining for the application. It can be

11ms if there was no packet reception/transmission or 4.5 if there where data that had

to be processed. There are functions that allow the application to wait until the next

timeslot or check how many time is left until the next interrupt. Furthermore, there

are a number of timers that are reserved by the AwareCon protocol stack. In order

to fulfil all these requirements your application should not use interrupts for handling

various events e.g. analog to digital conversions since code inside an interrupt handler

cannot be stopped by another interrupt i.e. the AwareCon protocol stack timer

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

10

interrupt. This imposes an asynchronous model of operation so the application cannot

take full advantage of the time that remains in each timeslot.

There are a number of examples together with documentation that give general

guidelines for creating an application at the particles homepage2.

2 http: //particle, teco .edu/software / particlesw / index, html
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

11

CHAPTER III

THE TINYOS OPERATING SYSTEM

The TinyOS is an open-source operating system1 designed for wireless sensor net

works. It was initially designed by the university of Berkeley and for the Berke

ley/Crossbow motes. It uses an event-driven model which allows better power man

agement control. The programming language it is written in is nesC (with the lower

level components written in assembly) which allows a component architecture that

minimizes the code size as required by the severe memory constrains of sensor network

nodes.

A. NesC

The NesC 1.1 programming language, as specified in [4], is used mainly for program

ming for the TinyOS operating system. It is based on C [5] but has some extensions

in order to support an event driven model.

The main concepts of NesC are the interfaces and the components. Interfaces

can be seen as the specifications for the behaviour of components. The components

are the main parts of a program. There are two types of components, modules and

configurations. Modules contain the actual code for implementing interface specifica

tions. Conhgurations contain only wiring specifications for putting together several

modules in order to create a final component.

1 All sources can be found at http://www.tinyos.net.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

http://www.tinyos.net

12

1. Interfaces

A component may use certain interfaces and provide some others. Interfaces have a

bidirectional nature. Each interface defines two sets of named functions, the com

mands and the events. Events correspond to notifications that must/can be handled

by components. Commands correspond to functions that can be invoked from within

components.

A sample interface for a generic timer is the following. It has two commands,

start and stop, and one event, fired.

/**

* This interface provides a generic timer that can be used to

* generate events at regular intervals.

*/

interface Timer {

/* Start the timer. */

command result_t start(char type, uint32_t interval);

/* Stop the timer, preventing it from firing again. */

command result_t stopO ;

/* The signal generated by the timer when it fires. */

event result_t firedO ;

}

Each interface provider must implement a certain set of commands defined in an

interface. The commands may be executed either synchronously or asynchronously,

e.g. by disabling interrupts. The main usage of commands is the initialisation of

components and performing complex interactions that must be non-blocking, e.g.

start and stop timers, prepare sensors or send data over the network.
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

13

An example of a command is the following. It belongs to the TimerM module

and is called stop(). It’s usage is to stop a timer by clearing the appropriate bits in

a state variable.

command result_t Timer.stop[uint8_t id]() {

if (id>=NUM_TIMERS) return FAIL;

if (mState&(OxlL<<id)) { // if the timer is running

atomic mState &= ~(0xlL<<id);

if (!mState) {

setlntervalFlag = 1;

>

return SUCCESS;

>

return FAIL; //timer not running

>

Events are functions that are called when signalled from another part of a pro

gram. When an event is defined in an interface all components that use this interface

must implement the event handler. As an exception, an event handler may not be

implemented if the component that provides this interface defines a default event

handler. The main usage of events is to report the completion of complex commands,

e.g. send data over the network, send data over the serial line, e.t.c., and to be tied

on interrupts e.g. fire event when a clock goes off, detection of data from a sensor,

e.t.c.

An event used at the TimerM module is the following. It is signalled every time

a timer interrupt fires and handles it appropriately.

async event result_t Clock.fireO {
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

14

atomic {

/* DCM: Once we’ve posted HandleFireQ, don’t post it again until

* the original one is handled. This prevents the task queue

* from getting flooded when mlnterval is small. */

if (interval_outstanding == 0)

post HandleFireO ;

else

dbg(DBG_ERR0R, "Don’t post handle fire, we’re not ready\n");

/* DCM: Keep track of the interval since the last interrupt */

interval_outstanding += call Clock.getlnterval() + 1;

>

return SUCCESS;

>

2. Components

A component can be either a module or a configuration. Each component provides

or uses an interface, so it must implement all commands specified in the interfaces it

provides and all events specified in the interfaces it uses. The commands “call down”

from the application towards the hardware components and events “call up” from

hardware components towards the application. Finally, all components used by an

application are wired together to form the final program.

a. Modules

Modules contain the main code for the implementation of the desired functionality.

The language that is used is C99 as specified in [6]. Inside a module we can have

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

15

• Standard C declarations and definitions.

• Task declarations and definitions.

• Implementations of commands.

• Implementations of events.

All the definitions belong to the module’s component implementation scope. The

definitions of commands and events must match the specifications of the interfaces

the module provides and uses. Furthermore, a module can call any of it’s commands

and signal any of it’s events.

Inside a module there can be one or more task definitions. Tasks are functions

that are added in a task queue and are executed one after another. This allows a model

of cooperative multithreading that can be achieved by splitting a big computation

into many tasks. Each task must post the next task which is added at the end of

the queue so all other intermediate tasks can execute. By using this mechanism

tasks, commands and events can be executed “concurrently”. A task doesn’t take

an argument and can’t return a value so interaction must be done using external

variables.

A special type of statements that exist inside a module are atomic statements.

They are defined inside atomic {} blocks and are executed “as-if” no other com

putation occurred simultaneously. The way TinyOS works, a block of code can be

interrupted by an external interrupt. If this block is defined as atomic then interrupts

are disabled and the block is executed without any interruptions.

Furthermore, inside the code we can see the call, signal and post statements

which are used for calling commands, signalling events and posting new tasks and are

the major extentions of the nesC language as far as statements are concerned.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

16

The structure of a module can be seen at figure 3. The first section is a general

description where the interfaces that are provided and the ones that are used are listed.

In the second section we have the implementation of the commands and events for

these interfaces. Apart from the commands and events, tasks together with helper

functions and global variables can also be dehned. These helper functions and the

global variables are visible only inside the module and so they can used only by the

tasks, the commands and events of this module and no other. Global variables are

useful when data needs to be passed to a task. According to NesC, tasks can take no

arguments, so all data must be stored to a global variable and then the task can read

them.

An example of a real module can be seen at appendix B, page 55. It is the

HPLClock component, ported for the smartits platform. It provides two interfaces,

StdControl and Clock, and uses one, PICl8F6720Interrupt. Inside the module there is

the C code that implements all the commands for the StdControl and Clock interfaces

and the C code that implements the events of the PICl8F6720Interrupt interface.

Also, there is another helper function, setlnterval, that is neither a command nor an

event, but is used by some commands and events.

b. Configurations

Configurations are wiring specifications for a collection of components used to imple

ment a new one. Every configuration uses a set of included components and a set of

wiring specifications.

Wiring is used to connect interfaces, commands and events together. Every

specification element has some endpoints. Using wiring you can link the endpoints of

a set of elements. The wiring can only link compatible sets of endpoints.

An example configuration is shown below. It is the ClockC configuration which
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

17

}
implementation {
uint8_t varl;
bool var2;
uintl 6_t var3;

Global variables used
inside module

task void taskl () { Task definition
r Task code 1

}

uint8 t function 1 () { Helper function
Γ Function code 1

}

command result_t ifacel .commandl () { ifacel command
Γ commandl () code
barl = functionl (); Helper function call
ball iface4.command1 (varl); Call iface4.command1()
'return SUCCESS;

}
Return successfully 1

event result_t iface3.event1 (bool par) { iface3 event
r eventl () code
'atomic { 1
1 Γ Atomically executed code block '
■}

1
Γ eventl () code
'return SUCCESS;

}
Return successfully 1

async command result_t iface2.command1 (uint8_t par) {
iface2j;ommand^exec£te£asyn£hronously

posttask1(); _ _Post taskl ()_fo£executio£
^signal j£ace1 .£vent1Jvar2)j_ _ _ _Signa[iface_Uevent1 [)_
feturn SUCCESS; Return successfully

}

Fig. 3. Module structure

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

18

belongs to the platform specific code and it is used by the generic TinyOS code.

It defines two components, HPLClock and PICl8F6720InterruptC. These are then

wired together to finally provide two interfaces, Clock and StdControl.

configuration ClockC {

provides {

interface Clock;

interface StdControl;

>
>

implementation

{

components HPLClock, PIC18F6720InterruptC;

StdControl = HPLClock;

Clock = HPLClock;

HPLClock.TIMERl_Overflow -> PIC18F6720InterruptC.TIMERl_0verflow;

>

3. Flow of control inside a NesC program

Every NesC program is a configuration. It uses the Main component which is the

equivalent of the main() function in C (actually internally it is translated to the main()

function). This component uses the StdControl interface which has three commands

that must be implemented, init(), startQ and stop(). When a program starts, the

Main component calls first init() and then start(). The user must implement these

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

19

Fig. 4. Flow of control in TinyOS

commands which form the main program. Inside, these commands may call other

commands from TinyOS or from other user written modules if the program is split

into many modules. Some of the commands it calls may signal some events in the

program so the program continues inside the event code until the event returns.

Another way to change the flow of control is when an interrupt from the processor

occurs. This can signal an event inside TinyOS which then usually signals an event

in the user program.

A diagram showing the flow of control can be seen at figure 4. Each step is

described below:

1. The program executes a command. When a program is started it begins ex

ecution inside two special commands, the initQ at first and then the start()

commands of the main component that implements the StdControl interface.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

20

2. The program calls a command inside a TinyOS module it uses.

3. Code starts executing inside the command.

4. The command signals an event of the NesC program.

5. The code of the event handler is executed.

6. Execution finishes and control returns to the module’s command.

7. The rest of the code is executed.

8. Execution finishes and control returns to the application’s command.

9. The rest of the code is executed.

Apart from these steps there is another way to execute an event. At any time an

interrupt from the processor may occur. Then, the event handler of a TinyOS module

takes over which starts execution of code. Inside this event handler, an event inside

the user’s application can be signalled. This starts execution until it finishes. Then

control returns to the module’s event handler and when it hnishes execution continues

at the point where it stopped before the interrupt.

B. Structure of TinyOS

TinyOS is a collection of interfaces, system code, libraries and modules for every

platform and sensorboard.

The system code is some general code that is used mainly by other system com

ponents. It is not platform-depended so the code is the same for every platform.

Examples of system code is the random number generator RandomLFSR, the timer

TimerM and the CRC calculator CrcC.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

21

Libraries are bigger “packages” of code that are used by user programs. They

usually consist of a collection of code that provides interfaces which are directly wired

and used by the user. An example are the counters. There are a number of counters

which can take an integer from a source and output it to a destination, e.g. IntToLeds

which takes an integer and outputs it to the leds and RfmToInt which takes an integer

over RF. A simple program could just wire together these two components provided

by the counters library and output and integer taken using the RF communications

to the leds.

The modules for the various platforms and sensorboards consist of the actual

C code that handles all low-level operations. Each platform and sensorboard has

it’s own hardware which is different and must be handled in a special way by the

operating system. This code is usually plain C code or even assembly in some special

occasions when very low-level operations must be done.

Finally, there is a special build system, some utilities and java libraries that help

in the development of a program. These are not the core of the operating system but

rather a collection of tools to help the programmer.

There are a number of different interfaces. Most of them are platform inde

pendent but there are a number of low level interfaces that must be implemented

differently for each platform. A brief list of the interfaces is provided in figure 5. At

the left there are the generic interfaces common for all platforms and at the right there

are the platform specific interfaces. They are matched in groups whose interfaces are

related. The distinction between platform dependent and platform independent may

sometimes change according to the nature of the platform.

The most important interfaces that are used in sensor network applications are

briefly presented below.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

Platform Platform
Independent Dependent

ADC 1

ADCControl J ^ \ HPLADC
ADCError ; 1I...............

EEPROMRead
EEPROMWrite
BufferedLog
Logger
LoggerRead
LoggerWrite
Log Data
Checkpoint
Checkpointlnit

Clock
Timer

BareSendMsg
ByteComm
CommControl
Radio
RadioCoordinator
Receive
ReceiveMsg
Send
Send Data
SendMsg
SendVarLenPacket
AMPromiscuous
AMStandard
CRCPacket
NoCRCPacket
UART
UARTComm
UARTFramedPacket
UARTNoCRCPacket

EEPROM
PageEEPROM
HPLEEPROM
HPLFIash

HPLCIock

RadioCRCPacket
I HPLUART

Fig. 5. Interfaces overview

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

23

1. Analog To Digital Converter

The analog to digital converter interface is mainly used to collect data from the various

sensors. A lot of sensors return data in an analog form and these must be converted

to a number that can be later used. This is mainly done using analog to digital

converters. In order to interface with these converters a number of interfaces is used.

The main one is ADC. It contains two commands and one event. The first command,

getDataO starts a conversion from a specific analog to digital converter. When

this conversion ends the dataReadyO event is signalled. The second command is

getContinuousDataO. This starts a continuous conversion. It begins with the first

conversion. When this ends, the dataReadyO event is signalled and another one

starts. This way, by implementing the dataReadyO event you can have a continuous

sampling of the data from the various external sensors.

2. Clock and Timers

The clock and timer interfaces are used in order to schedule events for a specific

time. The Timer interface is the one that is used the most. It depends on the Clock

interface and schedules an event to be signalled after a specific amount of time. It

contains the start 0 and stopO commands and the firedO event. Every time you

call start you specify the type of the timer and the interval. If the timer is of the

type TIMER_0NE_SH0T then after interval binary milliseconds2 the firedO event is

signalled and the timer is stopped. If the type is TIMER_REPEAT then every interval

binary milliseconds the firedO event is signalled. In order for the timer to stop you

must call the stopO command.

2One binary millisecond equals seconds.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

24

3. EEPROM and Flash memory access

Another interface that is important is the EEPROM and Flash memory access. It is

used for storing various data in a non-volatile memory so they can be later processed.

There are two interfaces for reading the EEPROM or Flash memory, EEPROMRead and

EEPROMWrite. The EEPROMRead interface contains one command, readO that is used

to start reading from a specific location in the memory. When the read is complete,

the readDoneO event is signalled which means that the data are already read. The

EEPROMWrite interface is a little bit more complicated. It contains three commands,

startWriteO, write() and endWriteC). startWriteO is called before any write.

After calling it you can start calling the write() command to begin writting. When

a write is completed the writeDoneO event is signalled. When there’s nothing else

to be written endWriteO must be done. When it finishes it signals endWriteDoneO

and the write procedure is finished.

4. RF communications

One of the most important parts are the RF communications. The model presented

below is the first one that was created and belongs to the mica platform.

The basic communications stack diagram is presented in figure 6.

The four top levels, from Application to RadioCRCPacket, are generic and are

common to all radio stacks supported by TinyOS. From the MicaHighSpeedRadioM

level and moving downwards all levels are specific to the mica platform. Using the

GenericComm interface a user can send packets with custom content to other wireless

sensors. Also, a lot of libraries use this interface, e.g. IntToRfm which sends an

integer using the rf. The GenericComm interface provides the parameterised inter

faces SendMsg [uint8_t id] and ReceiveMsg [uint8_t id] that are mainly used for

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

25

τ

Fig. 6. Mica Communications Stack Diagram (interfaces)

communications. Interface SendMsg provides one command, send() and one event,

sendDoneO. The send() command is used to send a packet. After sending it the

sendDoneO event is signalled. The ReceiveMsg interface just defines the receiveO

event which is signalled every time a packet is received.

All packets have a common structure which is defined in a special file. The

structure is the following

typedef struct T0S_Msg

{

uintl6_t addr;

uint8_t type;

uint8_t group;

uint8_t length;

int8_t data[TOSH_DATA_LENGTH] ;
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

26

uintl6_t crc;

> TOS_Msg;

The first field is the destination address. Each wireless sensor has it’s own address

and a packet can be send only to this sensor by putting the appropriate value at this

field. Furthermore, there is a special address, TOS_BCAST_ADDR, which is the broadcast

address, and all packets that have this destination address are delivered to all sensors.

The second field is the type of the packet. This is defined by the user and depends

on the application. It is used in order to discriminate different types of packets and

process only the ones needed.

The third field is the group. Again this is a characteristic of the packet. There

is a default group for all packets, TOSH_DEFAULT_AM_GROUP.

The next field is the length of the data contained inside a packet. This can have

the maximum value of TOSH_DATA_LENGTH which by default is equal to 29. Together

with the other 7 bytes of the packet we have a maximum packet size of 36 bytes.

It should be noted here that as we’re going to see, this is not the number of bytes

transmitted over the air but the number of bytes in the packet.

After the length comes the real data. They are at most TOSH_DATA_LENGTH.

Finally, the crc comes. It is used in order to check if the data received are valid.

This is a general description of the upper level of the RF communications stack.

As we move to a lower level there are a number platform specific components. Each

platform uses it’s own combination of components which should be analyzed sepa

rately when studying the platform’s RF communications hardware.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

27

CHAPTER IV

PORTING TINYOS TO THE SMART-ITS PLATFORM

A. Major differences between berkeley motes and smart-its

There are a number of important differences between the berkeley motes, the wireless

sensors TinyOS was originally designed for, and the smart-its. These are presented

at Table I.

Smart-its Berkeley motes

Microcontroller Microchip’s PIC 18F6720 Atmel’s ATmegal03

RF Communications RF Monolithics’ TR1001

connected through the SPI

and UART bus

RF Monolithics’ TR1000

connected through the SPI

bus

Table I. Berkeley motes and smart-its major differences

B. The microcontroller

The smart-its use the PIC 18F6720 by microchip, an 8-bit RISC microcontroller. In

contrast, berkeley motes use atmel’s ATmegal03 from the AVR family, another 8-bit

microcontroller with a RISC core. The two microcontrollers have a different number

of peripherals and a different way to handle them.

White studying the microcontroller architecture, we uncovered the following

problems:

• The real time clock handling is different.

• The analog to digital converter has a different way to get analog value, store

them and has a different number of analog input lines.
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

28

RX TX

USART2 Module I2C Bus

TRIOOlRadioM

Analog
Lines Analog To Digital

Converter

HPLADCM

Timerl Module

HPLCIock

USART Module Interrupt Controller

HPLUARTM PIC18F6720lnterruptM

TX RX

Fig. 7. Basic microcontroller architecture and modules

• There is a UART module on the microcontroller but the serial board uses soft

ware emulation.

• Interrupt handling is done in a total different way by the interrupt controller.

• The RF chip and the connection to the microcontroller is different.

The basic architecture together with the modules written for the port are pre

sented in figure 7.

The first four hardware modules are presented below. For the RF communica

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

29

tions part a special section has been written.

1. Real time clock

The hardware that supports the real time clock is a 32 kHz externally connected

crystal. In order to use it the Timerl components of the microcontroller is used.

Timers can be used as counters and as clocks. They have a register associated with

them that counts with a specific rate and each time an interval passes an interrupt

occurs. One big difference between the AVR and the PIC family as far as timers are

concerned is that the AVRs count from 0 to a specific number and then the interrupt

occurs so that you know an interval has passed and the PICs start from a specific

number and count until OxFFFF. Because TinyOS was originally written for the

mica motes it uses the AVR representation. So, there are always two representations

kept, the PIC one which is used internally and the TinyOS one which is the one the

programmer uses. Each time a function that involves setting or getting the clock

is called one on-the-fly conversion happens that is transparent to the programmer.

Finally, the values for the hardware scaling and intervals for some standard times

(msec, sec, etc) had to be computed.

2. Analog to digital converter

The PIC 18F6720 microcontroller has a 10-bit analog to digital converter module

which offers 12 analog inputs. The smartits however use only 6 of them. In order to

have a successful conversion a number of timings had to be taken care of. There had

to be a minimal interval between two conversions and between the time the analog

to digital converter module is powered on and the time it starts converting. In order

to avoid the second problem we could power on the analog to digital converter and

never power it off but this would be very power consuming. So, delay routines had
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

30

to be written. In order to achieve maximum accuracy all the code was written in

assembly.

3. Serial connection

The PIC 18F6720 microcontroller has two addressable universal synchronous asyn

chronous receiver transmitter (USART) modules. The second one is used for RF

communications so that leaves only the first one free. Unfortunately, the 1/82 serial

board doesn’t use these pins but two other digital pins so a UART had to be emulated

using software. The code needed as much accuracy as possible, especially if working

with high speeds is desired so it was written in assembly. The speed that it uses is the

standard 57600 bps with 8 data bits, no parity and 1 stop bit (8N1). There are two

main problems introduced here. The first one is that since the communications are

done using software emulation all that time the microcontroller can do nothing else.

As it can be seen this is very time consuming but there is no other way to achieve

UART communications. The AwareCon protocol and the runtime TecO provides use

a software emulation too. The second problem is that we have no way telling if there

are incoming data. When using the USART module there is a special interrupt when

a byte is received but since an emulation is used this is impossible. The TecO runtime

has a receive function but it is used synchronously which can’t happen at TinyOS

since it a completely asynchronous environment.

4. Interrupt handler

The PIC microcontroller has an interrupt vector which is a standard address where the

program jumps when an interrupt occurs. In contrast the ATmegal03 microcontroller

has a different interrupt vector for every interrupt. TinyOS was designed so that each

component can handle an interrupt by it’s own which is accomplished by declaring
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

31

Fig. 8. Compile procedure for the mica platform

some functions as interrupt handlers and leaving the compiler do the final placement.

In order to accomplish something like this a special interrupt handler had to be written

which checks what interrupt has occurred and jumps to the appropriate function each

time it is called.

C. The compiler

TinyOS was written to work with the gnu toolchain and the avr-gcc compiler but

there is no gnu toolchain for the PIC microcontroller. The usual compile procedure

for the mica motes is presented at figure 8. The makerules are the series of commands

needed to compile a program written inside a special file used by the “make” utility

for the build process.

So the code must be transformed in order to compile using another C compiler

which supports the PIC architecture. There are a number of different compilers but

the one chosen is C18 by microchip. It was chosen because it is a full-featured ANSI

compliant compiler and there is a free student version.

The problem that came up is the incompatibility of the C code produced by the

nesC compiler with the C18 compiler. There are a number of keywords and extensions

that are used by avr-gcc and they don’t exist in C18. So, a converter script had to

be written. It should remove all extensions that don’t exist in C18 and convert all

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

32

those who use another name.

Another issue is that there are some processor specific configuration bits, the

fuses. They are used in order to change the behaviour of the processor and set some

special features, like the watchdog timer and the oscillator selection. In order to

program them you must use some preprocessor directives. Again, using the convert

script, these are added to form the final C program.

Some special directives are also needed for the interrupt handler. As it was said

a special interrupt handler was written that jumps to the appropriate function. In

order to declare a function as an interrupt handler a number of special directives have

to be used which are not supported by the nesC compiler. So the interrupt handler

wasn’t written inside the main module of the nesC code but was put inside the final

program by the converter.

Apart from the C code problems there was the assembly problem too. As it

was said before some parts had to be written in PIC assembly. Since nesC uses the

avr-gcc compiler there is no way to “understand” and put inline PIC assembly code.

So all assembly was written externally and compiled into libraries. If an assembly

function was used by the final program, after compiling it had to be linked against

the corresponding library. So there had to be a way to understand which libraries

are needed each time so that we link only against them to make the final binary as

small as possible. So another script was created that checks the functions that are

used and creates a final linker script for the compiler.

A sample run of the script that creates the final linker script for a program that

uses serial communications but doesn’t use exact timers is presented at figure 9.

In order to create the converter the perl scripting language was chosen. It is

very good for searching and replacing text and it has support for regular expressions.

The final program can be seen at Appendix A, page 50. Since the library searching
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

33

grep ReadTimerl script lNo, FILES serlib.lib
//TIMERLIB FILES timerlib.lib “I

Yes

Remove //TIMERLIB

Fig. 9. Creation of a linker script

script needs to do a lot less work that could be easily done with the “grep” and “sed”

utilities, it was written as a shell script.

To finish all these a special make rule was written that is used each time a

program for the smartits platform is produced. Instead of compiling the nesC program

and giving the final binary file, a complete MPLAB project is produced. MPLAB is

an IDE made by microchip which is fully compatible with the C18 compiler.

So, the final compile procedure for the smartits port can be seen at figure 10.

D. The RF communications

Both the smart-its and the mica motes use an RF chip from the ASH transceivers

series by RF Monolithics in On-Off Keying (OOK) mode. This type of modulation

represents digital data as the presence or absence of a carrier wave. The biggest

difference is that at the mica motes the AVR microcontroller is connected to the RF

chip using the SPI bus and at the smart-its the output from the microcontroller to

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

34

Fig. 10. Compile procedure for the smartits platform

the RF chip is done using the SPI bus and the input using the UART bus.

The biggest difference between the SPI and the UART bus is that the first one

has a clock line and so it is synchronous and the second one has no clock and is

asynchronous. The UART bus transmission is presented in figure 11. Both ends

must have already agreed at a common speed. The transmit line is normally high

at the sender which means that the receive line is also high at the receiver. When

transmission is about to begin then a start bit is transmitted which is a 0. After

this start bit, the data bits follow. Finally, an end bit which is a 1 is transmitted

and the voltage remains high until the next start bit is sent. In contrast the SPI bus

doesn’t have to use a start and a stop bit. The SPI bus transmission can be seen in

figure 12. Apart from the transmit line there is the clock line. Each time the clock

line voltage goes high the next bit is transmitted by the sender. The receiver is able

to understand a new bit is coming by watching the clock line. So to transmit a byte

only 8 bits are sent.

This leads to the following problem. In order for the receiver to understand a

byte comming over the UART bus it must get 10 bits which is not possible since the

transmission is done over the SPI bus which sends only 8 bits.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

35

TX Pin

Fig. 11. UART bus transmission

TX Pin

CLK Pin

Fig. 12. SPI bus transmission

Also, another problem is that the line cannot be high all the time as needed by

the UART protocol. In order to do so there rmist be a carrier wave all the time which

is not possible. After some tests it was discovered that the PIC would detect a start

bit by only checking for a falling edge at the receive line. So, a 1 must prepended

before the start bit. When going from the first bit which is a 1 to the second bit, the

0, the processor understands the falling edge and begins the reception. However, this

introduces yet another bit of overhead (a total of 3 to send a byte).

Another problem that came up concerned the final stop bit. If a 1 was sent at

the end then when the transmitter stopped sending the processor would see a falling

edge and believe a new byte is going to arrive. Again, after testing, it was discovered

that the PIC ignores the value of the stop bit. Since it only detects a falling edge

it doesn’t care whether there was a high voltage or not. It uses the internal baud

generator to get the first 8 bits and then waits again for the next falling edge. So, by

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

36

Fig. 13. Data received at the UART

changing the stop bit from a 1 to a 0 fully compatibility with the UART protocol is

lost but the problem is fixed.

But again the original problem still exists, a single byte consisting of 8 bits can

only be transmitted using the SPI bus and the receiver at the other end must get

11 bits in the UART bus input line. In order to solve this problem the following

approach was used. Two bytes one after another are sent with the same speed and

no delay between them (there is a very small delay because an assembly instruction

is needed to start sending the next byte). The first one consists of five 0, one 1 to

get the high voltage, a 0 in order to get the falling edge, which is the start bit, and

the least significant bit of the byte to be transmitted. The second byte is the second

least significant bit to the most significant bit and finally a 0 which is the stop bit we

use (not UART protocol compliant). Something that needs to be noted is that the

order of the bits needs to be changed because SPI transmits the most significant bit

first and the UART expect the least significant bit as the first one.

The final output is presented at figure 13.

As it can be seen there is a little delay between the first and the second data bit

received by the UART. This is due to the fact that they belong to two different bytes

transmitted over the SPI bus as it was explained before. In order to make this delay

as small as possible the transmission code was written in assembly.

After the low level hardware part was completed the MAC protocol should be

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

37

written. The decision was to use the same MAC protocol as the mica motes. After

some tests the higher speed that could be used without having problems because of

the low processing power was 2.5 Kbps1. By using the AwareCon protocol stack a

much greater speed can be achieved but this happens every 13 msec, so effectively the

speed is much lower. The smartits are originally designed to work with the AwareCon

protocol so all external components connected to the TR1001 are tuned to work with

this high speed. So the MAC protocol had to be changed in order to train the TR1001

a little more. Also some other values at the preamble had to be changed for the same

reason.

The mica MAC protocol uses the Sec/Ded byte level encoding which allows single

error correction and double error detection. The fallback is that encoding one byte

produces three bytes. Another encoding that provides a basic error detection is the

manchester encoding. It doesn’t support error correction but one byte is encoded

to two bytes, which gives a 33% gain. This could save some bandwidth but after

some tests it was clear that error correction was needed and so Sec/Ded encoding

was chosen.

JMica motes use a much higher speed but they have an AVR processor with 20
MIPS processing power and smartits a PIC with 10 MIPS. Furthermore, smartits
need more processing power because of the many things that need to be emulated
using software.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

38

CHAPTER V

EVALUATION OF RF COMMUNICATIONS

A. Packet Loss

RF communications is probably the most important part in an operating system for

wireless sensor networks. What is more interesting in communications is the final

packet loss. Packet loss depends on many factors.

1. Transmission rate

The transmission rate is one of the most important factors. The increase of the packet

loss occurs due to the fact that the receiver needs to read more bytes. Even if the

packet contains a small amount of data the receiver still reads the preamble for the

training, the start of packet symbols, the header and the trailing bytes after the data.

All these need to be processed later. Even if the transmitter also has to transmit a

high number of bytes, it transmits them in a synchronous manner and doesn’t need

to handle interrupts so it has no work load problem. Furthermore, after each packet

an acknowledge is sent which takes an amount of time too. That means that the

bigger the transmission rate is, the higher the packet loss.

2. Packet size

The packet size can also influence the packet loss. The bigger the packet size the

more bytes are sent and need to be received and processed at the receiver. It should

be noted here that each byte is encoded to three bytes in order to have the error

correction and detection. That means that by just using a packet that is one byte

bigger the receiver needs to receive three more bytes and decode them which is a very

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

39

time consuming process.

3. External work load

Apart from the work load for receiving and decoding packets there is the external

work load. Receiving data from the analog to digital sensors or using the clock is

one type of external work load. But the bigger problem is when using emulation for

various external components such as the serial UART. This type of external work

load is the heavier and the application needs to be designed in a way that it avoids

as much as possible using those components.

4. Distance and environment

Distance and environment play a very important role too. The sensors transmit using

a very low transmission power. That means the bigger the distance the most likely the

packets are lost over the air. This is a problem that doesn’t depend on the operating

system but on the hardware design of the sensors. Also, the packet loss rate may

also increase when there is a high radio interference from the environment. External

factors such as other transmitters operating at the same frequency may cause such

an interference.

B. Measurements

A number of measurements have been taken in order to see the packet loss when

changing the values of the various variables.

The testing environment included two sensors, the transmitter and the receiver.

They were at a very close distance in order to minimize the distance and environment

factors since the measurements are for the processing power of the sensors.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

40

The transmitter submitted a packet with a variable size at a different number

of rates at each execution. It contained a counter which was incremented when a

transmission occurred and this counter was sent as the first byte of the packet.

On the other end, the receiver had another counter. This counter was incre

mented every time a packet was received. When this counter reached number 30,

which means 30 packets were received, it sent the first byte of the current packet to

a computer using the serial port. Then, the counter was reset again to 0.

A program at the computer took the number and subtracted from it the one

it took last time from the receiver. This is the number of packets the transmitter

sent from which the receiver took only 30. Using these numbers the packet loss was

calculated.

All of the following measurements have been taken with a very close distance

between the two sensors in order to see the behaviour that depends on them and not

distance.

In figure 14 we can see how the packet loss changes when we change the trans

mission rate using a one byte packet.

As it can be seen the packet loss is very low and isn’t a monotonic function of

the transmission rate. There are points where we have no packet loss at all. This can

be explained because a one byte packet is very small and can be easily handled by

the receiver. The packet loss we have at some points is due to some external factors

such as radio interference.

In order to have a better understanding the same measurements were taken using

a five byte packet. The results can be seen at figure 15.

What can be seen here is that the packet loss is an increasing function of the

transmission rate. A five byte packet is acceptable when one packet per second is

transmitted but when the transmission rate increases to two packets per second then
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

%
 P

ac
ke

t lo
ss

%

 P
ac

ke
t lo

ss

41

Fig. 14. Packet loss vs Transmission rate for one byte packets

Fig. 15. Packet loss vs Transmission rate for five byte packets

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

42

Fig. 16. Packet loss vs Transmission rate for twenty byte packets

limitations from the hardware start to come up. The microcontroller can’t handle

receiving so many bytes at this rate and starts dropping them. At four packets per

second it is clear that the problems continues and it is much bigger.

The final measurements where made using a twenty byte packet. The results can

be seen at figure 16.

Values are presented only for one packet per second, one packet per two seconds

and one packet per five seconds. Measurements were made for two packets per second

and four packets per second but the results were too big to display. At the highest

frequency there was a packet loss of about 90%.

As a conclusion, it can be seen that for the maximum performance a program

that needs a high transmission rate must send small packets (around five bytes is a

good value). In case the transmission rate decreases the packet can have any size

with a very small packet loss.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

43

1. Changing the distance

The distance between the sensors is very important. If the sensors have a distance

of a few meters then the packet loss can increase and reach almost 100%. The RF

chip’s capability of distinguishing between a 0 and an 1 becomes very limited and so

unrecoverable errors are introduced.

This is due to the fact that the sensors are designed to work at a different, much

higher speed. The AwareCon stack uses the speed of 125kbps to send all packets.

So the hardware is adjusted to work better with this speed. Since it is a completely

synchronous environment there exists no problem with such a high speed once the

sensors are synchronized. Every 13ms the AwareCon stack “knows” it’s going to

receive a new packet so it starts reading. But TinyOS has a different philosophy. It

is an asynchronous environment and it must keep a complete state machine because

a packet can arrive at any time. Since the processing power is limited, working with

such high speeds and making such computations leaves no time for doing other work.

2. Changing the work load on the transmitter

As part of the tests a load was introduced to the transmitter. Instead of transmitting

a dummy packet, it took the readings from a sensor and transmitted them. The

results were the same as above and this is due to the asynchronous nature of TinyOS.

At the test program the transmission occurred when a reading was ready. So, the

transmission could be delayed due to the analog to digital conversion but this hap

pened while the sensor was waiting to send the command to start a new conversion.

The time a conversion takes to complete is too small comparing to the time we wait

to start a new conversion so there is no problem introduced. So, for carefully designed

applications which take full advantage of the features of TinyOS a small increase of

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

44

the work load has no effects on the packet loss.

3. Changing the work load on the receiver

There are many ways to introduce load to the receiver. There can be load due to

data processing by the program or due to some internal kernel command. Having

a heavy load due to a user program demanding a lot of cpu has no impact on the

receiver. When a new packet arrives an interrupt is thrown so the user program stops

it’s processing and the microcontroller is free to receive the packet. Then, when it

finishes, operation can continue from the point it stopped in the user program. On

the other hand, an internal kernel command that must be executed asynchronously

can have a big impact when receiving a packet. An asynchronous command disables

interrupts when it starts and re-enables them when it returns to the caller. If a

new packet arrives during this period then it is discarded. In order to avoid this

problem the parts that are executed asynchronously should be as small as possible.

An example of an asynchronous operation is UART transmission. Because of the

design of the particles software uart emulation must be used. In order to achieve

the baud that we need there are some strict delays we follow. An interrupt while

transmitting would make the sender desynchronize and change transmission baud.

So, if a packet arrives when the program transmits a byte over the UART then this

packet is lost.

C. AwareCon and Tiny OS

One of the early thoughts was compatibility between the AwareCon and the TinyOS

stacks. Unfortunately, this is not possible because of the big differences between the

two operating systems. The AwareCon stack needs to exchange data every 13ms and

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

45

leaves the rest of the time for the user application. On the other hand TinyOS has no

such limitations. If communications are not needed by the user application no data

exchange is made. Also, due to the asynchronous nature of TinyOS we can’t be sure

that every 13ms the microcontroller will be able to handle the RF communications.

For example, at this time the interrupt handler may be handling an interrupt used

by the HPLClock module for the real time clock and so it won’t handle the RF

communications correctly. This results in loss of synchronization with the rest of the

network. After noting all these differences it was clear that a new stack should be

used and compatibility with AwareCon wasn’t possible.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

46

CHAPTER VI

CONCLUSION

One of the major contributions of this thesis is the analysis of the smart-its platform

and identification of its shortcomings when it comes to running a full-fledged sensor

operating system. As it was shown a working port of TinyOS is made even if there

are many limitations by the hardware. Further tests should be made and real world

applications should be tested. The high packet loss when the sensors are not close to

each other may be discouraging but with careful design of the application and with

the use of routing protocols we can overcome this problem.

Future work includes porting TinyOS to the new generation of smart-its. Al

most all upcoming particles use a much more advanced RF chip which requires less

processing power from the microcontroller and allows much higher speeds. The rest

of the hardware and especially the microcontroller is the same so not much work has

to be done there.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

47

REFERENCES

[1] A. Hac, Wireless sensor network designs. John Wiley and Sons, 2003.

[2] N. Lee, P. Levis, and J. Hill, Mica High Speed Radio Stack. September 2002.

[3] P. Levis, and N. Lee, TOSSIM: A Simulator for TinyOS Networks. September

2003.

[4] D. Gay, P. Levis, D. Culler, and E. Brewer, nesC 1.1 Language Reference Manual.

May 2003.

[5] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second

Edition. Prentice Hall, 1988.

[6] International Standard ISO/IEC 9899, Programming Languages - C. Second

Edition, December 1999.

[7] Microchip Technology Incorporated, PIC18F6520/8520/6620/8620/6720/8720

Data Sheet. 2004.

[8] Maxim Integrated Products, Maxim 5160/5161 Low-Power Digital Potentiome

ters. 2001.

[9] RF Monolithics, ASH Transceiver Designer’s Guide. May 2004.

[10] RF Monolithics, ASH Transceiver Software Designer’s Guide. May 2004.

[11] Universitaet Karlsruhe, Telecoopcration Office, Particle Base System Source

Code. 2005.

[12] TinyOS Alliance, TinyOS 1.1 Source Code. 2006.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

48

[13] Geoff Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh,

Monitoring Volcanic Eruptions with a Wireless Sensor Network. EWSN’05.

[14] Safwan Al-omari, Weisong Shi, and Carol J. Miller, SESAME: SEnsor System

Accessing and Monitoring Environment. November 2004

[15] Konrad Lorincz, David Malan, Thaddeus R. F. Fulford-Jones, Alan Nawoj,

Antony Clavel, Victor Shnayder, Geoff Mainland, Steve Moulton, and Matt

Welsh, Sensor Networks for Emergency Response: Challenges and Opportunities.

October - December 2004.

[16] Victor Shnayder, Bor-rong Chen, Konrad Lorincz, Thaddeus R. F. Fulford-Jones,

and Matt Welsh, Sensor Networks for Medical Care. Harvard University Techni

cal Report TR-08-05, April 2005.

[17] David Malan, Thaddeus Fulford-Jones, Matt Welsh, and Steve Moulton, Code-

Blue: An Ad Hoc Sensor Network Infrastructure for Emergency Medical Care.

International Workshop on Wearable and Implantable Body Sensor Networks,

April 2004.

[18] C. Guo and A. Fano, Cargo Container Security using Ad Hoc Sensor Networks.

IPSN/SPOTS 2005.

[19] Philip Levis at al. Ad-Hoc Routing Component Architecture. February 2003.

[20] Alec Woo, Terence Tong, and David Culler, Taming the Underlying Challenges

of Reliable Multhop Routing in Sensor Networks. SenSys 2003.

[21] Wei Ye, John Heidemann and Deborah Estrin, An Energy-Efficient MAC Pro

tocol for Wireless Sensor Networks. INFOCOM 2002.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

49

[22] Wendi Rabiner Heinzelman, Anantha Chandrakasan and Hari Balakrishnan,

Energy-efficient Communication Protocols for Wireless Microsensor Networks.

HICSS 2000.

[23] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, Collaborative Signal and Infor

mation Processing: An Information Directed Approach. Proc. IEEE, 2003.

[24] M. Chu, H. Haussecker, F. Zhao, Scalable information-driven sensor querying

and routing for ad hoc heterogeneous sensor networks. Int’l J. High Performance

Computing Applications, 16(3):90-110, Fall 2002.

[25] Chris Karlof, Naveen Sastry, and David Wagner, TinySec: A Link Layer Security

Architecture for Wireless Sensor Networks. SenSys 2004.

[26] Prasanth Ganesan, Ramnath Venugopalan, Pushkin Peddabachagari, Alexander

Dean, Frank Mueller, and Mihail Sichitiu, Analyzing and Modeling Encryption

Overhead for Sensor Network Nodes. WSNA 2003.

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

50

APPENDIX A

NESC COMPILER C OUTPUT TO MPLAB C CONVERTER

#!/usr/bin/perl

Ssource = $ARGV[0];

Soutput = $ARGV [1];

if (Ssource eq Soutput) {

die("perl: source and output cannot be the same");

>

open(SOURCE,Ssource) or

die("perl: Could not open source-file: Ssource");

open(OUTPUT,">$output") or

die ("perl: Could not open output-file: Soutput");

print OUTPUT "#include <pl8f6720.h>\n";

print OUTPUT "#define _C0NFIG l\n";

print OUTPUT "#pragma config OSC = HS\n";

print OUTPUT "#pragma config OSCS = 0FF\n";

print OUTPUT "#pragma config PWRT = 0N\n";

print OUTPUT "#pragma config BOR = 0FF\n";

print OUTPUT "#pragma config BORV = 25\n";

print OUTPUT "#pragma config WDT = 0FF\n";
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

51

print OUTPUT "#pragma

print OUTPUT "#pragma

print OUTPUT "#pragma

print OUTPUT "#pragma

print OUTPUT "#pragma

config WDTPS = 128\n";

config CCP2MUX = 0N\n";

config STVR - 0N\n";

config LVP = 0FF\n";

config DEBUG = 0FF\n";

while (<S0URCE>) {

s/“\# [0-9]+/\/\//;

s/~\#line [0-9]+/\/\//;

s/\$/_/g;

s/__inline//;

s/inline//;

s/__attributeX(\(packedX)\)//;

s/__attribute__\(\(packedX)\)//;

s/ __nesc_atomic_t __nesc_atomic/

auto __nesc_atomic_t __nesc_atomic/;

if(/long long/) {

s/(.*)long[]+long(.*)/\llong\2/;

>

if(/progmem/) {

$_ = ’//’ ·$_;

}

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

52

if(/static const prog_uchar/) {

$_ = ’/*’

}

if(/TRUE \> \}\;/) {

$line= $_;

chomp $line;

$_ = $line."*/\n";

}

s/int asm_nop\;//;

s/asm_nop = l\;/_asm nop _endasm\n/;

s/int asm_sleep\;//;

s/asm_sleep = l\;/_asm sleep _endasm\n/;

s/int asm_TBLWT\;//;

s/asm_TBLWT = l\;/_asm TBLWT _endasm\n/;

s/int asm_clrwdt\;//;

s/asm_clrwdt = l\;/_asm clrwdt _endasm\n/;
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

if(/~\/\//) {

$_ = ""

>

if(/~static[]*\n$/) {

$_ = "static

}

s/__attribute\(\(interrupt\)\)//;

if(/void InterruptHandler\(void\)[]*\n/) {

$_ = "\#pragma code InterruptVector = 0x08\n";

$_ = $_ . "void InterruptVector (void)\n

$_ = $_ . "\{\n _asra GOTO InterruptHandler _endasm\n \}\n"

$_ = $_ . "\#pragma code\n\#pragma interruptlow

$_ = $_ . "InterruptHandler\nvoid InterruptHandler (void)\n";

}

s/int8_t crc8/rom int8_t crc8/;

s/uint!6_t crcl6/rom uint!6_t crc!6/;
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

54

if(/int[] [\w]+bits_/) {

>

s/([0-9A-z]+bits)_/ $l./g;

if(/int[][\w]+_register/) {

>

s/([0-9A-z]+).register/ $l/g;

unless (/~\n/) {

print OUTPUT $_;

>

}

close(OUTPUT);

close(SOURCE);

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

55

APPENDIX B

HARDWARE PRESENTATION LAYER FOR THE REAL TIME CLOCK

/*

* Clock handling.

* Fotis Loukos <fotisl@inf.uth.gr>

* Check Clock.h for some default values.

*/

module HPLClock {

provides {

interface StdControl;

interface Clock;

>

uses {

interface PIC18F6720Interrupt as TIMERl_Overflow;

>

}

implementation

{

bool set_flag;

uint8_t mscale, nextScale;

uintl6_t minterval, picinterval, nextlnterval ;

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

mailto:fotisl@inf.uth.gr

56

void setlnterval(uintl6_t interval) {

uint32_t inttmp;

uintl6_t passed;

/* Tinyos representation */

minterval = interval;

/* PIC representation, clocks before reaching OxFFFF */

picinterval = OxFFFF - interval + 1;

passed = TOS_ReadTimerl();

inttmp = picinterval + passed;

if(inttmp > OxFFFF)

TOS_WriteTimerl(OxFFFF);

else

TOS_WriteTimerl((uintl6_t) inttmp);

return;

>

command result_t StdControl.init() {

atomic {

set_flag = FALSE;

mscale = DEFAULT_SCALE;

minterval = DEFAULT_INTERVAL;

}
Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

57

TlC0Nbits_TMR10N = 1; /* Timer on */

TICONbits.TMRICS = 1; /* External clock */

TlCONbits_TlSYNC = 1; /* Do not synch ext elk inp */

TlC0Nbits_T10SCEN = 1; /* Oscillator enabled */

TlC0Nbits_RD16 = 0; /* 8 bit values */

/* Scaling */

TlC0Nbits_TlCKPS0 = mscale & 1;

TICONbits.TICKPSI = mscale » 1;

TOS_WriteTimerl(0);

return SUCCESS;

}

command result_t StdControl.start() {

uint8_t mi;

uintl6_t ms;

atomic {

mi = minterval;

ms = mscale;

>

call Clock.setRate(mi, ms);

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

58

TICONbits.TMRION = 1;

return SUCCESS;

>

command result_t StdControl.stop() {

uintl6_t mi;

atomic {

mi = minterval;

>

call Clock.setRate(mi, 0);

TICONbits.TMRION = 0;

return SUCCESS;

}

async command uintl6_t Clock.getlnterval() {

uintl6_t in;

atomic {

in = minterval;

}

return in;

}

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

59

async command uint8_t Clock.getScaleO {

uint8_t ms;

atomic {

ms = mscale;

}

return ms;

>

async command void Clock.setNextlnterval(uintl6_t value) {

atomic {

nextlnterval = value;

set_flag = 1;

>

>

async command void Clock.setNextScale(uint8_t scale) {

atomic {

nextScale = scale;

set_flag = 1;

>

}

async command void Clock.setlnterval(uintl6_t value) {

PIElbits_TMRlIE = 0;

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

60

atomic setlnterval(value);

PIElbits_TMRlIE = 1;

return;

>

async command result_t Clock.setIntervalAndScale(uintl6_t interval,

uint8_t scale) {

PIElbits_TMRlIE = 0;

atomic {

mscale = scale & 3;

TlC0Nbits_TlCKPS0 = mscale & 1;

TlCONbits_TlCKPSl = mscale » 1;

setlnterval(interval);

>

PIElbits_TMRlIE = 1;

return SUCCESS;

>

async command uintl6_t Clock.readCounter() {

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

61

uintl6_t val;

val = TOS_ReadTimerl();

if(!val)

return val;

return(OxFFFF - val + 1);

>

async command void Clock.setCounter(uintl6_t n) {

/* You're smart enough to pass a value > 0 */

TOS_WriteTimerl(OxFFFF - n + 1);

>

async command void Clock.intDisableO {

PIElbits.TMRlIE = 0x0;

>

async command void Clock. intEnableO {

PIElbits.TMRlIE = 0x1;

>

async command result_t Clock.setRate(uintl6_t interval,

uint8_t scale) {

uint32_t inttmp;

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

62

uintl6_t passed;

PIElbits.TMRlIE = 0;

scale &= 0x3;

TlC0Nbits_TlCKPS0 = scale & 1;

TlCONbits_TlCKPSl = scale » 1;

passed = TOS_ReadTiraerl();

inttmp = OxFFFF - interval + 1 + passed;

if(inttmp > OxFFFF)

TOS_WriteTimerl(OxFFFF);

else

TOS_WriteTimerl((uintl6_t) inttmp);

PIElbits_TMRlIE = 1;

return SUCCESS;

}

async event result_t TIMERl_Overflow.fired() {

atomic {

if(set_flag) {

mscale = nextScale;

TlCONbits_TlCKPSO = mscale & 1;

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

63

TlCONbitsJTlCKPSl = rascale » 1;

setlnterval(nextInterval);

set_flag=0;

>
}

signal Clock.f ireO ;

return SUCCESS;

>

default async event result_t Clock.fire() { return SUCCESS; }

}

Institutional Repository - Library & Information Centre - University of Thessaly
16/05/2024 17:37:24 EEST - 3.145.62.240

