ΘΕΜΑ: "ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΟΛΙΚΟΥ ΣΥΝΤΕΛΕΣΤΗ ΑΠΩΛΕΙΩΝ ΘΕΡΜΟΤΗΤΑΣ ΕΝΟΣ ΠΛΑΣΤΙΚΟΥ ΘΕΡΜΟΚΗΠΙΟΥ ΣΤΗΝ ΠΕΡΙΟΧΗ ΚΑΡΔΙΤΣΑΣ ".

Εισηγητής: Κ. ΚΙΤΤΑΣ
Αναπληρωτής Καθηγητής

Πτυχιακή Διατριβή του φοιτητή:
Κατσούλα Νικόλαου

Βόλος 1997
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΥΠΗΡΕΣΙΑ ΒΙΒΛΙΟΘΗΚΗΣ & ΠΛΗΡΟΦΟΡΗΣΗΣ
ΕΙΔΙΚΗ ΣΥΛΛΟΓΗ «ΓΚΡΙΖΑ ΒΙΒΛΙΟΓΡΑΦΙΑ»

Αριθ. Εισ.: 111/1
Ημερ. Εισ.: 15-09-2003
Δωρεά:
Ταξιθετικός Κωδικός: ΠΤ – ΓΦΖΠ
1997
ΚΑΤ

ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΣΣΑΛΙΑΣ

004000070262
ΠΕΡΙΕΧΟΜΕΝΑ

Ευχαριστίες .. 5
Εισαγωγή ... 6

Μέρος Ι
Γενικό

Κεφάλαιο 1
1.1 Το Θερμοκήπιο .. 9
1.2 Ιστορική Εξέλιξη .. 10
1.3 Το Θερμοκήπιο και το Φυσικό Περιβάλλον ... 13
1.4 Η Επιστημονική Έρευνα για το Θερμοκήπιο Σήμερα 14
1.5 Θερμοκηπιακές Εγκαταστάσεις .. 15
1.6 Υδροπονικές Καλλιέργειες ... 17
1.7 Αξία των Προϊόντων του Θερμοκηπίου .. 17

Μέρος ΙΙ

Κεφάλαιο 2
2. Το Περιβάλλον του Θερμοκηπίου ... 20
2.1 Ακτινοβολία ... 20
2.1.1 Φάσμα .. 21
2.1.2 Ένταση .. 21
2.2 Θερμοκρασία ... 23
2.2.1 Θερμοκρασία των Φυτών ... 25
2.2.2 Η Θερμοκρασία στο Θερμοκήπιο ... 27
2.3 Σχετική Υγρασία .. 29
2.3.1 Η Σχετική Υγρασία και το Φυτό ... 32
2.3.2 Διαπνοή ...32
2.3.3 Επιφανειακή Συμπύκνωση ..32
2.4 Διοξείδιο του Άνθρακα ..35

Κεφάλαιο 3
Υπολογισμός θερμικών απωλειών θερμοκηπίου
3.1 Ενέργεια ...37
3.2 Μετάδοση Θερμότητας ...37
3.2.1 Αγωγιμότητα ..37
3.2.2 Ακτινοβολία ...38
3.2.3 Συναγωγή ...39
3.3 Ισοζύγιο Ενέργειας ...40
3.3.1 Κέρδη και Απώλειες Ενέργειας41
3.3.2 Απώλειες ...42
3.3.3 Ισοζύγιο Ενέργειας στο Κάλυμμα43

Κεφάλαιο 4
Υπολογισμός απωλειών ενέργειας θερμοκηπίου
4.1 Απλοποιημένη Σχέση Απωλειών45
4.2 Προσδιορισμός του Συντελεστή Θερμικών Απωλειών45
4.3 Κέρδος Θερμότητας ...46

Μέρος III

Κεφάλαιο 5
Υλικά και Μέθοδοι ...48
Κεφάλαιο 6
Αποτελέσματα ... 55

Κεφάλαιο 7
Συζήτηση και συμπεράσματα .. 68

Βιβλιογραφία .. 70
Ευχαριστίες

Θα ήθελα στο σημείο αυτό να εκφράσω τις ευχαριστίες μου στον Κο Κωνσταντίνο Κίττα Αναπληρωτή Καθηγητή του Τμήματος Γεωπονίας του Πανεπιστημίου Θεσσαλίας για την δυνατότητα που μου προσέφερε να ασχοληθώ με το συγκεκριμένο γνωστικό αντικείμενο καθώς και για την καθοδήγησή και την αμέριστη επιστημονική και ηθική συμπαράσταση που μου παρείχε καθόλη την διάρκεια της σύνταξης της παρούσας διατριβής.

Επίσης θα ήθελα να ευχαριστήσω τον Κο Μιχάλη Καραμάνη, Φυσικό, Υποψήφιο Διδάκτορα του Εργαστηρίου Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος για βοήθεια του στο πειραματικό μέρος της παρούσας διατριβής.

Τέλος θα ήθελα να ευχαριστήσω τον Αναπληρωτή Καθηγητή Ν. Δαλέζιο και τον Επίκουρο Καθηγητή Θ. Γέμτο οι οποίοι συμμετείχαν στην βαθμολόγησή της εργασίας.
Εισαγωγή

Η άνοδος του βιοτικού επιπέδου του ανθρώπου τις τελευταίες δεκαετίες οδήγησε στην αύξηση και τη σταθεροποίηση της ζήτησης γεωργικών προϊόντων εκτός εποχής. Το γεγονός αυτό, σε συνδυασμό με την εξέλιξη της τεχνολογίας στον τομέα των θερμοκηπιακών κατασκευών και του εξοπλισμού τους, καθιστά τις θερμοκηπιακές καλλιέργειες έναν από τους δυναμικότερους κλάδους της σύγχρονης γεωργίας.

Όσον αφορά μάλιστα τη χώρα μας, ο τομέας των θερμοκηπιακών καλλιεργειών παρουσιάζει μεγάλες δυνατότητες ανάπτυξης αν ληφθούν υπόψη οι ευνοϊκές κλιματικές συνθήκες και η επιτακτική σημερινή ανάγκη για αναδιάρθρωση των καλλιεργειών και αύξηση της ανταγωνιστικότητας των ελληνικών γεωργικών προϊόντων.

Η παραγωγή ανταγωνιστικών γεωργικών προϊόντων απαιτεί μείωση του κόστους παραγωγής με ταυτόχρονη τήρηση υψηλών προδιαγραφών ποιότητας. Ένας από τους βασικότερους παράγοντες οι οποίοι αυξάνουν το κόστος παραγωγής των θερμοκηπιακών προϊόντων είναι η κατανάλωση ενέργειας για την διατήρηση των αναγκαίων για την καλλιέργεια θερμοκρασιών κατά τη διάρκεια των ψυχρών εποχών του έτους. Το πρόβλημα αυτό γίνεται μάλιστα επιτακτικότερο σήμερα αν ληφθεί υπόψη η παγκόσμια τάση για εξοικονόμηση ενέργειας και στροφή σε ανανεώσιμες πηγές ενέργειας.

Για τον περιορισμό της κατανάλωσης ενέργειας χωρίς την υποβάθμιση της παραγωγής, είναι απαραίτητη η διεξοδική μελέτη της ενεργειακής συμπεριφοράς του θερμοκηπίου έτσι ώστε να γίνει δυνατός ο ορθολογικός σχεδιασμός τους προς την κατεύθυνση αυτή.

Το αντικείμενο της παρούσης διατριβής είναι ο υπολογισμός, σε πραγματικές πειραματικές συνθήκες, του ολικού συντελεστή ενεργειακών απωλειών θυτών
θερμοκηπίου, για θερμοκήπιο καλλιέργειας ανθοκομικών φυτών στην περιοχή Θεσσαλίας κατά τη διάρκεια του χειμώνα.

Ο υπολογισμός σε πραγματικές συνθήκες του παραπάνω συντελεστή δίνει τη δυνατότητα αφενός μεν του ορθολογικού υπολογισμού των αναγκών σε κατανάλωση ενέργειας για θέρμανση, αφετέρου δε στη βελτίωση του σχεδιασμού και του εξοπλισμού των θερμοκηπιακών κατασκευών προς την κατεύθυνση της βελτιστοποιήσης του ενεργειακού τους ισοζυγίου.

Για το λόγο αυτό η εργασία χωρίζεται σε τρία μέρη:

• Στο πρώτο μέρος γίνεται μία ιστορική αναδρομή και αναφέρονται γενικά στοιχεία για το θερμοκήπιο και τις υπάρχουσες εκτάσεις θερμοκηπίων.

• Στο δεύτερο μέρος ακολουθεί μια προσπάθεια προσέγγισης των φυσικών παραμέτρων που συνθέτουν και καθορίζουν το εσωτερικό περιβάλλον του θερμοκηπίου. Εξετάζονται ακόμη τα φαινόμενα των ανταλαγών ενέργειας με σκοπό την έκφραση του ενεργειακού ισοζυγίου του θερμοκηπίου.

• Τέλος στο τρίτο μέρος, που αποτελεί το πειραματικό, περιγράφεται ο πειραματικός εξοπλισμός, η πειραματική διαδικασία, αναλύονται τα αποτελέσματα και παρουσιάζονται τα συμπεράσματα που προκύπτουν από την παρούσα διπλωματική διατριβή.
ΜΕΡΟΣ Ι

ΓΕΝΙΚΟ
ΚΕΦΑΛΑΙΟ 1.

1.1 Το Θερμοκήπιο.

Το θερμοκήπιο είναι μια κατασκευή η οποία καλύπτεται με διαφανές υλικό, ώστε να είναι δυνατή η είσοδος όσο το δυνατόν περισσότερου φυσικού φωτισμού, που είναι απαραίτητος στην ανάπτυξη των φυτών.

Τα θερμοκήπια είναι αρκετά υψηλά, έτσι ώστε να μπορεί ο άνθρωπος να εργάζεται μέσα σ' αυτά και σ' αυτό διαφέρουν από άλλες παρόμοιες κατασκευές όπως τα χαμηλά σκέπαστρα, τα σπορεία και θερμοσπορεία. Μπορεί να τα διαχωρίσουμε ανάλογα με το αν είναι θερμαινόμενα ή μη, τοξωτά ή αμφίρρικα, με μεταλλικό ή ξύλινο σκελετό, με πλαστικό ή γυάλινο κάλυμμα κ.α.

Ο σκοπός της χρησιμοποίησης των θερμοκηπίων στην παραγωγή γεωργικών προϊόντων είναι η τροποποίηση ή ρύθμιση πολλών εκ των παραγόντων του περιβάλλοντος που επηρεάζουν στην ανάπτυξη των φυτών [5].

Με την καλύτερη ρύθμιση του περιβάλλοντος των φυτών η παραγωγή μπορεί:

- Να αυξηθεί ποσοτικά, λόγω βελτίωσης των συνθηκών του περιβάλλοντος.
- Να προγραμματισθεί χρονικά, ώστε να σταλεί στην αγορά σε συγκεκριμένη χρονική στιγμή, ανεξάρτητα από τις καιρικές συνθήκες που θα επικρατήσουν.
- Να βελτιωθεί ποιοτικά, με την προστασία που προσφέρει το θερμοκήπιο από τα αντίξοα καιρικά φαινόμενα.

Με το θερμοκήπιο ειδικότερα:
- Αποφεύγονται ζημιές από αέρα, βροχή, χιόνι και χαλάζι.
- Ανάλογα με τον εξοπλισμό τους, παρέχεται η δυνατότητα ρύθμισης των παραγόντων του περιβάλλοντος της κόμης των φυτών, όπως: της θερμοκρασίας, της υγρασίας, του φωτισμού και του διοξειδίου του άνθρακα, με αρκετή ακρίβεια.
- Παρέχεται η δυνατότητα ρύθμισης των παραγόντων του περιβάλλοντος της ρίζας των φυτών, όπως: της υγρασίας, του οξυγόνου, της θερμοκρασίας και των ανόργανων θρεπτικών στοιχείων, που με τη χρήση κατάλληλων εδαφικών υποστρωμάτων ή υδροπονικών καλλιεργειών, μπορούν να φθάσουν με ακρίβεια τις απαιτήσεις των φυτών.

- Μειώνονται αλλά οπωσδήποτε δεν εξαλείφονται οι ζημιές από τις ασθένειες και τα έντομα. Η μείωση επιτυγχάνεται με τη δυνατότητα ρύθμισης του περιβάλλοντος των φυτών, με τον κατάλληλο εξοπλισμό.

Η ακρίβεια με την οποία ρυθμίζεται το περιβάλλον των φυτών στο θερμοκήπιο, προσδιορίζεται από:
- τη σωστή κατασκευή,
- τον κατάλληλο εξοπλισμό και κυρίως από
- την ικανότητα του καλλιεργητή να χειριστεί και να κατανείμει τα διάφορα εφόδια.

1.2 Ιστορική Εξέλιξη.

Από τους Έλληνες συγγραφείς του 5ου π.Χ. αιώνα και ιδιαίτερα από τον Πλάτωνα, γνωρίζουμε ότι υπήρχαν ειδικοί χώροι, που αναφέρονται ως “Κήποι του Άδωνη”, όπου τα φυτά αναπτύσσονταν με ταχύτατο ρυθμό.

Από τον 1ο π.Χ. αιώνα, ξέρουμε με σιγουριά ότι οι Ρωμαίοι καλλιεργούσαν φρούτα και λαχανικά σε απλά θερμοκήπια.

Στην Πομπηία βρέθηκαν μεγάλες κατασκευές που φαίνεται πως καλύπτονταν με ένα είδος πρωτόγονου γυαλιού. Δοχεία με φυτά τοποθετούνταν πάνω σε τραπέζια με διάτρητη επιφάνεια, κάτω από τα οποία υπήρχε η δυνατότητα να τοποθετηθούν αναμένα κάρβουνα, έτσι ώστε ο θερμός αέρας που ανέρχονταν να θερμαίνει τα δοχεία με τα φυτά.
Τα θερμοκήπια ξαναφάνηκαν πάλι τον 17ο αιώνα μ.Χ. Σε όλη τη διάρκεια του Μεσαίωνα το θερμοκήπιο φαίνεται ότι ήταν άγνωστο.

Τον 16ο αιώνα μ.Χ. οι έμποροι και οι εξερευνητές αρχίζουν να μεταφέρουν εξωτικά φυτά, που δεν μπορούσαν να επιζήσουν εύκολα στο κλίμα της Β. Ευρώπης. Για την παρατήρηση αυτών των εξωτικών φυτών δημιουργήθηκαν ειδικοί “Βοτανικοί Κήποι”, στην αρχή στην Ιταλία και μετά στην Ολλανδία και Αγγλία.

Τον 17ο αιώνα, τα εξωτικά φυτά, εκτός από το βοτανικό και φαρμακευτικό ενδιαφέρον που παρουσίαζαν, άρχισαν να χρησιμοποιούνται από την αριστοκρατία της Βόρειας Ευρώπης και ως φυτά διακόσμησης, καθώς και παραγωγής. Από τα καρποφόρα δημιοφιλή ήταν τα εσπεριδοειδή, των οποίων η καλλιέργεια ήταν σχετικά εύκολη, μια και δεν απαιτούσαν θέρμανση, παρά μόνο προστασία από τον παγετό. Η προστασία γινόταν σε μεγάλα δωμάτια, που είχαν σώμα θέρμανσης η οποία άναβε τις ημέρες παγετού. Τα εσπεριδοειδή φυτευόταν σε μεγάλα δοχεία, μεταφέρονταν για 6 μήνες το χειμώνα σε αυτά τα δωμάτια, ενώ τους υπόλοιπους μήνες ήταν στο ύπαιθρο.

Τον 18ο αιώνα, είχε αναγνωρισθεί πλήρως η αξία του καλού φωτισμού στην υγιή ανάπτυξη των φυτών και άρχισε ο υπολογισμός της γωνίας κλίσης του γυαλιού, ώστε να εισέρχεται η μεγαλύτερη ποσότητα φωτισμού στο χώρο που βρίσκονταν τα φυτά. Οι Ολλανδοί μεταξύ των πρώτων χρησιμοποίησαν στέγη με κεκλιμένα επίπεδα από γυαλί. Εισήγαγαν επίσης τη χρήση της θερμοκουρτίνας κατά τη διάρκεια της νύχτας και σε πρώτο στάδιο την κατασκευή του διπλού τοιχώματος. Δύο από τους πιο φημισμένους Κήπους στην κόσμο βρίσκονταν στην Ολλανδία και είναι αυτοί του Πανεπιστημίου Leyden και του Clifford, όπου δουλεύει ο Λινναίος.

Η θέρμανση, όπου υπήρχε, γινόταν με θερμάστρες. Γύρω στο 1790 εμφανίστηκε η πρώτη θέρμανση με ατμό, που έδωσε μεγαλύτερη καθαριότητα,
απόδοση, ευκολία, δυνατότητα επίτευξης υψηλότερης θερμοκρασίας και
αποφυγή των αερίων από το χώρο των φυτών.

Με το τέλος του 18ου μ.Χ. αιώνα, η τέχνη της ανάπτυξης των φυτών έγινε
Επιστήμη.

Μεγάλη διάδοση των εμπορικών γυάλινων θερμοκηπίων στις χώρες της
Ευρώπης άρχισε το 19ο αιώνα. Το πρώτο θερμοκήπιο με διπλές πλάκες γυαλιού
κατασκευάστηκε το 1806. Το πρώτο διαφανές πλαστικό φύλλο που προτάθηκε για
να αντικαταστήσει το γυαλί, ήταν το flex-o-glass και κατασκευάστηκε το 1925
από τον Αμερικανό Warp. Τον αιώνα αυτό το θερμοκήπιο εξελίχθηκε αρκετά, ενώ
μερικοί νεωτερισμοί της εποχής εκείνης χρησιμοποιούνται ακόμη και σήμερα.

Ο πρώτος αυτόματος μηχανικός θερμοστάτης χρησιμοποιήθηκε το 1816 για
tον εξαερισμό των θερμοκηπίων, ενώ μόλις το 1801 είχε εμφανισθεί ο
μηχανισμός για το χειροκίνητο άνοιγμα των παραθυρών σε γυάλινο θερμοκήπιο.

Τον 20ο αιώνα υπάρχει συνεχής εξέλιξη του θερμοκηπίου, από πλευράς
υλικών κατασκευής, υλικών κάλυψης και κλιματισμού των θερμοκηπίων. Σήμερα
κατασκευάζονται σκελετοί θερμοκηπίων από ξύλο, γαλβανισμένο σίδηρο και
αλουμίνιο. Η επαναστατική αλλαγή έγινε στα υλικά κάλυψης όπου εκτός από το
γυαλί, χρησιμοποιούνται σήμερα τα εύκαμπτα και σκληρά φύλλα πλαστικού. Η
χρησιμοποίηση αυτών των υλικών έδωσε στην δυνατότητα κατασκευής φθηνών
θερμοκηπίων, που επέτρεψε την γρήγορη εξάπλωσή τους. Στον κλιματισμό των
θερμοκηπίων μερικές από τις πιο χαρακτηριστικές τεχνικές βελτιώσεις είναι τα
αερόθερμα, το σύστημα δροσισμού με υγρή παρειά, το σύστημα μείωσης της
θερμοκρασίας με εξάτμιση νερού (fog-system), ο εμπλουτισμός του αέρα του
θερμοκηπίου με διοξείδιο του άνθρακα, η χρησιμοποίηση του τεχνητού φωτισμού,
η θέρμανση με ηλιακή και γεωθερμική ενέργεια κ.α.

Η εξέλιξη της ηλεκτρονικής επέτρεψε την ανάπτυξη πολλών αυτοματισμών
που ρυθμίζουν το επιθυμητό περιβάλλον με μεγάλη ακρίβεια.
Η εφαρμογή των γνώσεων της φυσιολογίας των φυτών καθώς και της ακριβούς ρύθμισης του περιβάλλοντος, μαζί με τη χρησιμοποίηση φυτών βελτιωμένων ποικιλιών, έδωσε πολύ μεγάλη αύξηση στην παραγωγή.

1.3 Το Θερμοκήπιο και το Φυσικό Περιβάλλον.

Οι σημαντικότερες επιπτώσεις της χρήσης του θερμοκηπίου στο φυσικό περιβάλλον, θα μπορούσαμε να πούμε ότι είναι:

α). Η αισθητική τοποθέτηση του θερμοκηπίου στο φυσικό τοπίο.

β). Η διάθεση των χρησιμοποιημένων υλικών κάλυψης του θερμοκηπίου π.χ. θερμοκήπια που καλύπτονται με πλαστικό το οποίο αντικαθίσταται κάθε 2-3 χρόνια. Η αντιμετώπιση του προβλήματος αυτού γίνεται με ανακύκλωση του πλαστικού υλικού.

γ). Η αύξηση της συγκέντρωσης του διοξειδίου του άνθρακα στην ατμόσφαιρα από θερμοκήπια θερμανόμενα με συμβατικά καύσιμα. Η εξοικονόμηση ενέργειας και η αντικατάσταση των συμβατικών συστημάτων θέρμανσης με συστήματα ήπιων μορφών ενέργειας, αποτελεί λύση στο πρόβλημα.

δ). Η υπερβολική χρήση λιπασμάτων, ιδιαίτερα αζωτούχων, στις καλλιέργειες του θερμοκηπίου, συχνά προκαλεί μόλυνση του υπεδάφους και μερικές φορές των υπογείων υδάτων με νιτρικά ιόντα. Προσπάθεια για λύση του προβλήματος γίνεται με την χρησιμοποίηση της υδροπονικής μεθόδου καλλιέργειας φυτών με επαναχρησιμοποιούμενο διάλυμα.

e). Η χρήση υπερβολικών ποσοτήτων χημικών υσιών για φυτοπροστασία στο χώρο του θερμοκηπίου. Περιορισμός του προβλήματος αυτού θα επέλθει με την εφαρμογή των κανόνων χρήσης των φυτοφαρμάκων και της τήρησης των αναγκαίων χρονικών διαστημάτων από την εφαρμογή των φυτοφαρμάκων μέχρι τη συγκομιδή. Λύση στο πρόβλημα δίνει η ολοκληρωμένη καταπολέμηση.
1.4 Η Επιστημονική Έρευνα για το Θερμοκήπιο σήμερα.

Το θερμοκήπιο είναι ένα μέσο που χρησιμοποιείται για την ανάπτυξη και παραγωγή των φυτών, επομένως η έρευνα στο θερμοκήπιο έχει ως κύριο στόχο τη βελτίωση του περιβάλλοντος που δημιουργεί ώστε να είναι δυνατή η αποδοτικότερη ανάπτυξη και παραγωγή φυτών.

Με την έρευνα επιδιώκεται η λύση προβλημάτων που αφορούν, την κατασκευή και τον εξοπλισμό του θερμοκηπίου, με σκοπό την αύξηση της φυτικής παραγωγής μέσα στο θερμοκήπιο, τη βελτίωση του οικονομικού αποτελέσματος της παραγωγικής διαδικασίας στο θερμοκήπιο, τη βελτίωση της ποιότητας του παραγόμενου προϊόντος, τη μικρότερη βλάβη του φυσικού περιβάλλοντος και την προστασία της υγείας του ανθρώπου κατά την παραγωγική διαδικασία στο θερμοκήπιο.

Η έρευνα που γίνεται διεθνώς σχετικά με το θερμοκήπιο αφορά κυρίως:

A). Το περιβάλλον στο χώρο του θερμοκηπίου.

1). Την εύρεση της βέλτιστης τιμής των παραγόντων του περιβάλλοντος της κόμης (φως, θερμοκρασία, σχετική υγρασία, διοξείδιο του άνθρακα κ.α.), καθώς και της ρίζας (νερό, οξυγόνο, θερμοκρασία, ανόργανα στοιχεία, οξύτητα κ.α.), για την ανάπτυξη και παραγωγή των διαφόρων ειδών φυτών στο θερμοκήπιο (λαχανοκομικά, δρεπτά άνθη και γλαστρικά καλλωπιστικά).

2). Τους τρόπους δημιουργίας του βέλτιστου περιβάλλοντος με τα οικονομικότερα μέσα, όπως:

- την εξεύρεση υλικών κατασκευής που δημιουργούν το άριστο περιβάλλον για την ανάπτυξη και παραγωγή των φυτών,
- το σχεδιασμό του θερμοκηπίου για τη δημιουργία του επιθυμητού περιβάλλοντος για τα φυτά με αντοχή σε αντιξέoes συνθήκες καιρού,
- την εύρεση τρόπων εξοικονόμησης ενέργειας στο χώρο του θερμοκηπίου,
- την αντικατάσταση των συμβατικών καυσίμων που χρησιμοποιούνται για τη θέρμανση κυρίως με άλλες ανανεώσιμες πηγές ενέργειας,
- τη δημιουργία αυτόματων συστημάτων ελέγχου του θερμοκηπίου, που θα επιτρέπουν την ακριβή ρύθμιση του περιβάλλοντος του θερμοκηπίου, αλλά και τη μέγιστη εξοικονόμηση ενέργειας και άλλων πόρων.

Β). Την προστασία των φυτών από ασθένειες και εχθρούς με μέσα που δεν ενοχλούν το περιβάλλον και δεν εισέρχονται στην τροφική αλυσίδα ώστε να αποτελούν κίνδυνο για τον άνθρωπο και τα ζώα.

Γ). Την άρση των δυσμενών επιδράσεων που πιθανόν δημιουργούνται στο φυσικό περιβάλλον του θερμοκηπίου.

1.5 Θερμοκηπιακές εγκαταστάσεις.

Παγκόσμια υπάρχουν (σύμφωνα με στοιχεία του 1992) 1.670.000 στρ. θερμοκηπίων, από τα οποία τα 410.000 στρ. είναι υαλόφρακτα και τα 1.260.000 στρ. είναι με κάλυψη πλαστικού. Στην Ευρωπαϊκή Ένωση υπάρχουν 750.000 στρ. θερμοκηπίων από τα οποία τα 250.000 στρ. είναι υαλόφρακτα ενώ τα 500.000 στρ. είναι πλαστικά. Στην Ευρωπαϊκή Ένωση η Ολλανδία κατέχει την πρώτη θέση στα υαλόφρακτα θερμοκήπια, ενώ η Ιταλία κατέχει την πρώτη θέση στα θερμοκήπια με πλαστικό κάλυμμα.

Ο τύπος των θερμοκηπίων που χρησιμοποιούνται στις διάφορες χώρες της Ε.Ε. εξαρτάται από τις εκεί κλιματολογικές συνθήκες, την τεχνολογική της ανάπτυξη και την φύση των προϊόντων που παράγονται. Η Ελλάδα με σχετικά ευνοϊκές εδαφοκλιματικές συνθήκες για την παραγωγή θερμοκηπιακών προϊόντων κατέχει μόλις την 7η θέση στην Ε.Ε.

Στην χώρα μας οι πρώτες συστηματικές εγκαταστάσεις θερμοκηπίων ξεκίνησαν το 1955 και αποτελούνταν από υαλόφρακτα θερμοκήπια για παραγωγή
καλλωπιστικών φυτών. Η σημαντική εξάπλωση αρχίζει μετά το 1961, με τη χρησιμοποίηση του πλαστικού φύλλου πολυαιθυλενίου ως υλικό κάλυψης των θερμοκηπίων. Η ευκολία προσαρμογής του υλικού αυτού σε οποιοδήποτε σχήμα σκελετού και η χαμηλή τιμή του, επέτρεπαν στους καλλιεργητές, περιοχών με πρώιμες καλλιέργειες να κατασκευάσουν θερμοκήπια για παραγωγή πρώιμων κηπευτικών, χωρίς να χρειάζονται μεγάλα κεφάλαια. Έτσι παρατηρήθηκε μία εντυπωσιακή αύξηση των θερμοκηπίων, τα οποία έφθασαν στα 44.350 στρ. το 1992 από τα οποία το 3,8% ήταν υαλόφρακτα και το 96,8% πλαστικά.

Οι λόγοι για τους οποίους ενδείκνυται η επέκταση των θερμοκηπίων και οι παράγοντες που συνέτελεσαν στην αύξηση των θερμοκηπίων στην Ελλάδα, είναι:

1. Οι καλλιέργειες κηπευτικών και ανθοκομικών ειδών αποδίδουν την μεγαλύτερη ανά στρέμμα ακαθάριστη πρόσοδο και το υψηλότερο γεωργικό εισόδημα.

2. Η ανάγκη εξασφάλισης εισοδήματος από μικρής έκτασης γεωργικό εξοπλισμό.

3. Οι εδαφοκλιματικές συνθήκες της χώρας μας. Το ήπιο κλίμα που επικρατεί σε πολλές περιοχές είναι ευνοϊκό και παρέχει τη δυνατότητα καλλιέργειας σε πολύ απλές κατασκευές χωρίς ακριβό εξοπλισμό.

4. Η παραγωγή των εκτός εποχής κηπευτικών και ανθοκομικών ειδών ευνοείται από τις κλιματολογικές συνθήκες της χώρας μας.

5. Η αύξηση της ζήτησης των θερμοκηπιακών προϊόντων στην εσωτερική εξαγορά.

6. Η γεωργική πολιτική του κράτους, που ενθάρρυνε την προώθηση των καλλιεργειών αυτών με την θέσπιση οικονομικών κινήτρων.

7. Οι καλλιέργειες στα θερμοκήπια ταιριάζουν στις μικρές γεωργικές εκμεταλλεύσεις της χώρας, γιατί απασχολούν πολλά εργατικά χέρια τους χειμερινούς μήνες που είναι δύσκολο να βρουν άλλη δουλειά.

8. Τέλος διαγράφονται ευνοϊκές προοπτικές για την αύξηση των εξαγωγών των εκτός εποχής κηπευτικών, σε χώρες όπου, είτε οι κλιματολογικές συνθήκες
είναι πιο δυσμενείς, είτε η εντόπια παραγωγή δεν επαρκεί να καλύψει τις αυξημένες ανάγκες της αγοράς.

1.6 Υδροπονικές Καλλιέργειες.

Η καλλιέργεια των λαχανοκομικών φυτών και δρεπτών ανθέων, στην Ελλάδα, σχεδόν στο σύνολο των θερμοκηπιών γίνεται στο φυσικό τους έδαφος ή σε βελτιωμένο με την προσθήκη οργανικής ουσίας.

Σε πολλές περιοχές του κόσμου σήμερα εφαρμόζεται και η υδροπονική καλλιέργεια φυτών στην οποία εκτός από τη ρύθμιση του περιβάλλοντος της κόμης των φυτών γίνεται και ρύθμιση του περιβάλλοντος της ρίζας. Η καλλιέργεια γίνεται με τη μέθοδο του πετροβάμβακα, μεμβράνης θρεπτικού διαλύματος και σάκων περλίτη.

1.7 Αξία των προϊόντων Θερμοκηπίων.

Τα παραγόμενα θερμοκηπιακά προϊόντα, λαχανοκομικά και ανθοκομικά, έχουν για την αγροτική οικονομία της χώρας μας ιδιαίτερη σημασία, συμμετέχοντας στο σύνολο της ακαθάριστης αξίας της φυτικής παραγωγής κατά 3% περίπου, ενώ η έκταση στην οποία καλλιεργούνται αποτελεί το 0,1% του γεωργικού εδάφους.

Το 2% της καλλιεργούμενης έκτασης των λαχανοκομικών είναι σε θερμοκήπια ενώ η αξία παραγωγής τους αντιπροσωπεύει το 15% της συνολικής αξίας των λαχανοκομικών.
Η αξία των παραγόμενων ανθοκομικών σε θερμοκήπια αποτελεί το 46% της συνολικής αξίας των ανθοκομικών προϊόντων, ενώ η καλλιεργούμενη έκταση αποτελεί το 30% του συνόλου.

Ο κλάδος των θερμοκηπιών στην Ελλάδα αποτελεί έναν από τους δυναμικότερους κλάδους της γεωργίας, παρ’όλο ότι ο μεγάλος όγκος των θερμοκηπιακών επιχειρήσεων τεχνολογικά δεν βρίσκεται ακόμα σε υψηλό επίπεδο.

Γενικά η περαιτέρω ανάπτυξη των θερμοκηπιακών επιχειρήσεων:

- Παρέχει τη δυνατότητα συγκράτησης πληθυσμού που έχει στην κατοχή του μικρής έκτασης έδαφος, στη γεωργία.

- Αυξάνει την απασχόληση, γιατί ασχολείται με εντατικές καλλιέργειες που αξιοποιούν πολλά εργατικά χέρια.

- Μπορεί να συντελέσει στην αύξηση των Ελληνικών εξαγωγών γεωργικών προϊόντων σε χώρες της Β. Ευρώπης.

- Δίνει διέξοδο στον εκσυγχρονισμό της Ελληνικής γεωργίας.
ΜΕΡΟΣ II
ΚΕΦΑΛΑΙΟ 2

Το περιβάλλον του θερμοκηπίου

Η ανάπτυξη και παραγωγή ενός φυτού εξαρτώνται από το κληρονομικό δυναμικό του και το περιβάλλον μέσα στο οποίο θα αναπτυχθεί.

Για ένα συγκεκριμένο κληρονομικό δυναμικό υπάρχει πάντα ένα βέλτιστο περιβάλλον, το οποίο επιτρέπει στους χαρακτήρες του φυτού που προσδιορίζονται από το κληρονομικό δυναμικό να αναπτυχθούν στον καλύτερο δυνατό βαθμό. Το βέλτιστο περιβάλλον διαφέρει ανάλογα με το σκοπό της καλλιέργειας.

Οι παράγοντες του περιβάλλοντος που επηρεάζουν την ανάπτυξη των φυτών στο θερμοκήπιο χωρίζονται σε δύο ομάδες:

α) Σ' αυτούς που επηρεάζουν τις υπέργειες λειτουργίες του φυτού και είναι κυρίως η ακτινοβολία, η θερμοκρασία, η υγρασία, το διοξείδιο του άνθρακα και

β) Σ' αυτούς που επηρεάζουν τις λειτουργίες της ρίζας του φυτού και είναι κυρίως η θερμοκρασία της ρίζας, το νερό, το οξυγόνο και τα ανόργανα θρεπτικά στοιχεία.

Η ρύθμιση των παραγόντων του περιβάλλοντος στα θερμοκήπια είναι πολύ δύσκολη, όχι μόνο επειδή υπεισέρχονται πολλοί συγχρόνως παράγοντες, αλλά και επειδή ο κάθε παράγοντας μεταβάλεται απεριόριστα και ακόμη υπάρχει μια διαρκής αλληλεπίδραση μεταξύ όλων των παραγόντων.

2.1 Ακτινοβολία

Η ηλιακή ακτινοβολία αποτελεί την πηγή ενέργειας για τη φωτοσύνθεση των φυτών, καθώς και τη φυσική πηγή θερμότητας στο χώρο του θερμοκηπίου.

Με τη φωτοσύνθεση δεσμεύεται η φωτεινή ακτινοβολία στους υδατάνθρακες, οι οποίοι με τη σειρά τους αποτελούν το καύσιμο που δίνει ενέργεια σε κάθε ζωντανό οργανισμό.
Για την ανάπτυξη των φυτών μας ενδιαφέρει κυρίως το φάσμα της ακτινοβολίας, η ένταση και η διάρκειά της.

2.1.1 Φάσμα

Σχετικά με το εύρος του φάσματος, την ακτινοβολία την ξεχωρίζουμε σε :

α) Συνολική ακτινοβολία 0,2-100 μ.
Η συνολική αυτή ακτινοβολία είναι σημαντική για τη μελέτη του ενεργειακού ισοζυγίου του θερμοκηπίου και της εξατμισοδιαπνοής της καλλιέργειας.

β) Μικρού μήκους κύματος ακτινοβολία 0,2-3,5 μ.
Το μεγαλύτερο μέρος της ηλιακής ακτινοβολίας είναι σ' αυτό το μήκος κύματος, λόγω της υψηλής επιφανειακής θερμοκρασίας του ήλιου.

1) Ορατό φως 0,4-0,7 μ.
Αυτή η περιοχή είναι πολύ σημαντική για τη φωτορευσίμεση. Η χλωροφύλλη δείχνει ένα μέγιστο απορρόφησης στην περιοχή του κόκκινου (0,6-0,7μ) και ένα στην περιοχή του μπλε (0,4-0,5 μ).

2) Ακτινοβολία κοντά στο ερυθρό 0,7-1 μ.
Είναι η περιοχή του φάσματος που είναι υπεύθυνη για την επιμήκυνση και άλλες μορφογενετικές διαδικασίες των φυτών.

γ) Μεγάλου μήκους κύματος ακτινοβολία 3,5-100 μ.
Κάθε σώμα με την συνήθη θερμοκρασία εκπέμπει ακτινοβολία σ' αυτό το μήκος κύματος.

2.1.2 Ένταση

Η ένταση της ηλιακής ακτινοβολίας που φτάνει σε μια συγκεκριμένη επιφάνεια πάνω στη γη, εξαρτάται από την ακτινοβολία που εκπέμπει ο ήλιος, από το ύψος του ήλιου (εποχή, ώρα, γεωγραφικό πλάτος), από την κατάσταση της ατμόσφαιρας, από την κλίση της επιφάνειας και το ύψος της πάνω από την επιφάνεια της θάλασσας.
Διαθέσιμο φως

100%

Φως που περνάει

φως που αποκλαίεται και απορροφάται από την επιφάνεια του θερμοκηπίου

70%

Φως που πέφτει στο φυτό

φως που πέφτει σε άλλα αντικείμενα και στο έδαφος

50%

Φως που απορροφάται από τους χλωροπλάστες

μη πράσινα μέρη ή ανακλάται

35%

Φως που χρησιμοποιείται για την παραγωγή ζηράς ουσίας

φωτοσυνθετικά, μετατρέπεται σε θερμότητα

5%

Ενέργεια οργανικών ουσιών που μετακινούνται στις θέσεις ελλειψης ή συσσώρευσης

3%

Ενέργεια για ανάπτυξη και αποθήκευσης οργανικών ουσιών

2%

Συλλεγόμενο προϊόν

Αχρησιμοποιητα μέρη φυτών

1%

Σχήμα 1. Πορεία και κατάληξη της ηλιακής ενέργειας μέσα στο θερμοκήπιο.[9]

Παρέχοντες που ευνοούν το φυσικό φωτισμό στο θερμοκήπιο. [1]

- Απλός σκελετός.
- Καθαρό υλικό κάλυψης.
- Όχι εμπόδια από σωληνώσεις-θερμοκουρτίνα κ.α.
- Η πυκνότητα των φυτών στο χώρο.
Σε περιόδους που δεν είναι αρκετός ο φυσικός φωτισμός, χρησιμοποιείται συμπληρωματικός.

Πολλά φυτά εσωτερικού χώρου απαιτούν σκίαση για να αναπτυχθούν καλύτερα. Για την μείωση του φωτισμού χρησιμοποιούνται κουρτίνες και ειδικές βαφές της οροφής του θερμοκηπίου που απομακρύνονται με τη βροχή.

2.2 Θερμοκρασία

Όλη σχεδόν η θερμότητα πάνω στη γη προέρχεται από τον ήλιο.

Η ακτινοβολούμενη από τον ήλιο ενέργεια φθάνει στο έδαφος και την ενεργεία της ακτινοβολίας, όπου ένα μικρό μέρος ανακλάται και το υπόλοιπο μετατρέπεται σε θερμότητα. Από τη θερμή επιφάνεια της γης μεταφέρεται θερμότητα στον αέρα με συναγωγή. Ο ατμοσφαιρικός αέρας δεν θερμαίνεται άμεσα από την ηλιακή ακτινοβολία, αλλά έμμεσα από την επιφάνεια της γης.

Ο χρόνος που εμφανίζεται η μέγιστη τιμή της θερμοκρασίας του αέρα σε κάποια απόσταση από το έδαφος είναι καθυστερημένος σε σχέση με το χρόνο εμφάνισης της μέγιστης τιμής του εδάφους, λόγω των αντιστάσεων μεταφοράς της θερμότητας και της θερμοκρασιακής μεταφοράς του αέρα.

Ένα σώμα πάνω στη γη απορροφά τόσο περισσότερη ηλιακή ακτινοβολία, όσο πιο σκούρο χρωματισμό έχει, όσο πιο μεγάλη επιφάνεια έχει εκτεθειμένη στην ακτινοβολία, όσο μεγαλύτερο χρονικό διάστημα ακτινοβολείται και όσο μεγαλύτερης έντασης είναι η ακτινοβολία που δέχεται.

Το ποσό της ηλιακής ακτινοβολίας που δέχεται το έδαφος μιας περιοχής, εξαρτάται από:

-Το γεωγραφικό πλάτος της περιοχής.
-Την εποχή του έτους.
-Τη διάρκεια της ηλιοφάνειας.
-Το χρώμα του.
-Τον προσανατολισμό και την κλίση του.
Η μεταβολή της θερμοκρασίας του εδάφους σε μια συγκεκριμένη στιγμή εξαρτάται από [1]:

- το ποσό της ηλιακής ακτινοβολίας που απορροφά.
- τις θερμικές ιδιότητες του εδάφους, που επηρεάζονται από τα φυσικά συστατικά του,
- τη θερμοκηπική κατάστασή του, που κυρίως καθορίζεται από την ποσότητα νερού και αέρα που περιέχει,
- την απαιτούμενη ενέργεια για τις μεταβολές που συμβαίνουν σ’ αυτό, όπως εξάτμιση κ.λ.π.

Η επιφάνεια της γης δεν δέχεται μόνο ηλιακή ακτινοβολία, αλλά ακτινοβολεί και αυτή προς το διάστημα μεγάλου μήκους κύματος ακτινοβολίας. Έτσι κατά τη διάρκεια της νύχτας που δεν δέχεται ηλιακή ακτινοβολία, ψύχεται συνεχώς, ψύχοντας και τον αέρα που έρχεται σε επαφή με αυτήν.

Ο ατμοσφαιρικός αέρας απορρόφα ελάχιστη από τη μεγάλου μήκους κύματος ακτινοβολία που εκπέμπει η γη. Η απορρόφησή γίνεται κυρίως από τους υδρατμούς και το διοξείδιο του άνθρακα. Ο ξηρός αέρας επομένως δεν είναι δυνατό να εμποδίσει την ψύξη της επιφάνειας της γης. Τα σύννεφα όμως με την υγρασία που περιέχουν περιορίζουν την απώλεια μεγάλου μήκους κύματος ακτινοβολίας στο διάστημα και ένα σημαντικό μέρος επανακτινοβολείται στη γη, εμποδίζοντας έτσι τη γρήγορη ψύξη.

Ο ψυχρός αέρας που δημιουργείται από την επαφή του με την ψυχρή επιφάνεια της γης κατά τη διάρκεια μιας ασυννέφιαστης νύχτας με άπνοια, γίνεται βαρύτερος και κατρακύλα στις χαμηλότερες λεκάνες του αναγλύφου της περιοχής. Αυτό έχει αποτέλεσμα οι λεκάνες αυτές να διατηρούν για μεγάλο χρονικό διάστημα ψυχρές θερμοκρασίες και γι’ αυτό θα πρέπει να αποφεύγοντας για την εγκατάσταση θερμοκηπίων.

Ο ρυθμός πτώσης της θερμοκρασίας ενός σώματος πάνω στη γη και του θερμοκηπίου, εξαρτάται:
από τη θερμοκρασία του,
από την έκταση της επιφάνειάς του,
από τη θερμοκρασία και την ταχύτητα του ανέμου,
από το ισοζύγιο ακτινοβολίας.
Το ισοζύγιο ακτινοβολίας σε ένα συγκεκριμένο τόπο και χρόνο επηρεάζεται από:

- τη θερμοκρασία του σώματος και αυτής του γύρω χώρου,
- το ποσοστό νεφώσεως και υγρασίας της ατμόσφαιρας,
- τα χαρακτηριστικά της επιφάνειας,
- το ανάγλυφο της περιοχής που βρίσκεται ή την ύπαρξη ά/ίλων σωμάτων.

2.2.1 Θερμοκρασία των φυτών

Η θερμοκρασία των φυτών στο χώρο του θερμοκηπίου καθορίζεται κυρίως από την ακτινοβολία που δέχονται και εκπέμπουν, από τη θερμοκρασία του περιβάλλοντος αέρα, από τη θερμοχωρητικότητά τους και από τη λανθάνουσα θερμότητα που χάνουν ή δέχονται λόγω εξάτμισης (διαπνοής) ή συμπύκνωσης των υδρατμών.

Τα φυτά όπως όλα τα σώματα που έχουν μια θερμοκρασία, ακτινοβολούν θερμότητα στο διάστημα με αποτέλεσμα να ψύχονται τα ίδια, αλλά και να συμβάλουν στην πτώση της θερμοκρασίας του αέρα που τα περιβάλλει. Αυτό έχει ως αποτέλεσμα, τις νύχτες με άπνοια και καθαρό ουρανό συχνά η θερμοκρασία των φυτών να είναι χαμηλότερη από αυτή του αέρα, με αποτέλεσμα να έχουμε συμπύκνωση υγρασίας πάνω σ’ αυτά.

Η θερμοκρασία είναι ο παράγοντας που έχει την πιο πολύπλοκη επίδραση στην ανάπτυξη και παραγωγή των φυτών, γιατί επηρεάζει σχεδόν όλες τις λειτουργίες του φυτού όπως : φωτοσύνθεση, αναπνοή, διαπνοή, μεταφορά και κατανομή των μεταβολιτών. Πιθανόν δε να επηρεάζει για μεγάλο διάστημα χρόνου και όχι μόνο στιγμιαία τις μεταβολές που συμβαίνουν σ’ αυτά. Επίσης, η
θερμοκρασία είναι ο παράγοντας που έχει τη μεγαλύτερη επίπτωση στο κόστος της παραγωγής στο θερμοκήπιο.

Η εδαφική θερμοκρασία είναι μεγάλης σημασίας για την βλάστηση και το φύτρωμα των σπόρων. Μαζί με την υγρασία και το οξυγόνο αποτελεί τον καθοριστικό παράγοντα της γρήγορης βλάστησης του σπόρου και της ανάπτυξης των νεαρών φυτών.

Η θερμοκρασία εδάφους επηρεάζει την ανάπτυξη της ρίζας των φυτών και την λειτουργία της στην απορρόφηση του νερού και των θρεπτικών στοιχείων. Αμέσως μετά το φύτρωμα, επηρεάζει και το μέγεθος της φυλλικής επιφάνειας των νεαρών φυτών.

Μετά από μία πολύ κρύα νύχτα, όπου η θερμοκρασία του εδάφους πέφτει σε πολύ χαμηλή επίπεδα, στη μη θερμαινόμενη θερμοκρασία αν ακολουθεί μία ηλιόλουστη ημέρα η θερμοκρασία του αέρα στο θερμοκήπιο αυξάνεται γρήγορα σε υψηλά επίπεδα και η διαπνοή των φυτών αυξάνει πολύ [3]. Η θερμοκρασία του εδάφους όμως παρουσιάζει μια υβριδοποιημένη στιγμιαία υπεράνως κατά τη διάρκεια της ηλιοφάνειας. Μετά το φύτρωμα, η θερμοκρασία του εδάφους και της χειμερινής χιονοπτώσεως διαφέρει σημαντικά από τη διάρκεια της ηλιοφάνειας.

Για να έχουμε θετικό αποτέλεσμα στην αύξηση και παραγωγή των φυτών, θα πρέπει να έχει η θερμοκρασία να δρα έτσι ώστε να επιτεύχει την ανάπτυξη των νεαρών φυτών και την ικανή ανάπτυξη των σπόρων. Η θερμοκρασία του εδάφους παρουσιάζει μια υπεράνως κατά τη διάρκεια της ηλιοφάνειας. Μετά το φύτρωμα, η θερμοκρασία του εδάφους και της χειμερινής χιονοπτώσεως διαφέρει σημαντικά από τη διάρκεια της ηλιοφάνειας.

Για να έχουμε θετικό αποτέλεσμα στην αύξηση και παραγωγή των φυτών, θα πρέπει η θερμοκρασία να δρα έτσι ώστε να επιτεύχει την ανάπτυξη των νεαρών φυτών και την ικανή ανάπτυξη των σπόρων. Η θερμοκρασία του εδάφους παρουσιάζει μια υπεράνως κατά τη διάρκεια της ηλιοφάνειας. Μετά το φύτρωμα, η θερμοκρασία του εδάφους και της χειμερινής χιονοπτώσεως διαφέρει σημαντικά από τη διάρκεια της ηλιοφάνειας.
Η καλλιέργειες θερμοκηπίων αναπτύσσονται σε ημερήσια θερμοκρασία, τις συννεφιασμένες ημέρες, κατά 3-7 °C υψηλότερη από τη νυχτερινή. Τις ηλιολουστες ημέρες κατά 12 °C υψηλότερη. Γενικά η υψηλή μέση θερμοκρασία έχει αποτέλεσμα τη γρήγορη ανάπτυξη της φυλλικής επιφάνειας και των ανθέων, με συνέπεια την πρωιμότερη παραγωγή, αλλά συχνά σε μεγάλης διάρκειας καλλιέργεια, χαμηλότερη σε συνολικό όγκο.

Σήμερα στα θερμοκήπια που έχουν συστήματα αυτοματισμού με ηλεκτρονικό υπολογισμό γίνεται δυνατή η χρήση ενός προγράμματος λειτουργίας του συστήματος θέρμανσης, που δεν κρατά σταθερή θερμοκρασία κάθε βράδυ στο χώρο του θερμοκηπίου, όπως συνηθίζονταν, αλλά μεταβαλλόμενη, έτσι ώστε και η θερμοκρασία της νύχτας να ρυθμίζεται ανάλογα με την ποσότητα της ηλιακής ενέργειας που δέχθηκαν τα φυτά κατά τη διάρκεια της ημέρας που προηγήθηκε. Αυτός ο τρόπος λειτουργίας μπορεί να εξοικονομήσει μεγάλα ποσά ενέργειας για όσα θερμοκήπια θερμαίνονται με συμβατικά καύσιμα και να βελτιώσει πάρα πολύ την απόδοση των θερμοκηπίων που θερμαίνονται με συστήματα ηλιακής ενέργειας.

2.2.2 Η θερμοκρασία στο θερμοκήπιο

Ο κυριότερος παράγοντας που καθορίζει το θερμικό περιβάλλον στο θερμοκήπιο είναι η ηλιακή ακτινοβολία. Το κάλυμμα απορροφά ένα μικρό μέρος της ακτινοβολίας αυτής, ένα άλλο μέρος ανακλάται, ενώ η υπόλοιπο περνά στο εσωτερικό του θερμοκηπίου, όπου ένα μέρος του απορροφάται από τις επιφάνειες όπου προσπίπτει και ένα άλλο ανακλάται για να ξαναπέσει σε άλλες επιφάνειες ή να βγει εκτός θερμοκηπίου. Η μεγάλου μήκους κόματος ακτινοβολία παίζει σημαντικό ρόλο στις ανταλλαγές ενέργειας ιδιαίτερα στα θερμοκήπια με κάλυψη από φύλλα πολυαιθυλενίου, τα οποία είναι μερικώς περατά στην ακτινοβολία αυτή. Η ακτινοβολία αυτή ανταλλάσσεται μεταξύ του ουρανού και του καλύμματος, ή μεταξύ ουρανού και κάθε επιφάνειας μέσα στο θερμοκήπιο (μέσω
του καλύμματος), καθώς και μεταξύ των διαφόρων επιφανειών μέσα στο θερμοκήπιο.

Η ροή θερμότητας στο έδαφος γίνεται με αγωγή και στις τρεις διαστάσεις. Με αγωγή επίσης γίνεται η ροή μεταξύ της εσωτερικής και εξωτερικής πλευράς του υλικού κάλυμας. Ανταλλαγή ενέργειας με συναγωγή γίνεται μεταξύ του εξωτερικού αέρα και της εσωτερικής πλευράς του καλύμματος, καθώς και του εσωτερικού αέρα και της εσωτερικής πλευράς του καλύμματος. Έπειτα συναγωγή γίνεται μεταξύ του εσωτερικού αέρα και της επιφάνειας του εξωτερικού αέρα[3].

Όταν υπάρχει ηλιακή ακτινοβολία, η θερμοκρασία των επιφανειών μέσα στο θερμοκήπιο αυξάνεται περισσότερο από αυτή των αντίστοιχων επιφανειών εκτός του θερμοκηπίου, γιατί ακριβώς ο αέρας γύρω τους είναι σχεδόν ακίνητος, οπότε και ο ρυθμός ψύξης τους με συναγωγή είναι συγκριτικά μικρότερος. Αμεση συνέπεια είναι να αυξάνει και η θερμοκρασία του εγκλωβισμένου αέρα του θερμοκηπίου, αφού έρχεται σε επαφή με τις επιφάνειες αυτές. Σε αυτή την αιτία που δημιουργείται από το φαινόμενο του κλειστού χώρου, οφείλεται κατά το μεγαλύτερο ποσοστό η ανύψωση της θερμοκρασίας του αέρα μέσα στο θερμοκήπιο. Ένα άλλο φαινόμενο που συμμετέχει σημαντικά στην αύξηση της θερμοκρασίας στο χώρο του θερμοκηπίου είναι αυτό που αποκαλείται το "φαινόμενο του θερμοκηπίου". Αυτό οφείλεται στο γεγονός ότι η ηλιακή ακτινοβολία μπορεί και περνάει κατά το μεγαλύτερο μέρος της από το κάλυμμα του θερμοκηπίου και επομένως οι επιφάνειες του εσωτερικού του απορροφούν την ηλιακή ενέργεια. Η ακτινοβολία όμως που εκπέμπουν οι επιφάνειες αυτές (φυτά, έδαφος κ.λ.π.), λόγω της θερμοκρασίας τους, είναι μεγάλου μήκους κύματος και δεν μπορεί να βγει εκτός θερμοκηπίου επειδή το κάλυμμά του, ιδιαίτερα το γυαλί, είναι λιγότερο περατό στη θερμική ακτινοβολία.

Η συμμετοχή των φυτών στο ενεργειακό ισοζύγιο του θερμοκηπίου είναι πολύ σημαντική, μέσω της διαπνοής τους. Η διαπνοή των φυτών εξαρτάται
κυρίως από το ισοζύγιο ακτινοβολίας (μικρού και μεγάλου μήκους κύματος) και από το έλλειμμα κορεσμού υδρατμών, όπως αυτό καθορίζεται από τις θερμοκρασίες των φύλλων και του αέρα.

Στην κλιματική περιοχή που βρίσκεται η χώρα μας, το ευνοϊκό περιβάλλον θερμοκρασιών στο θερμοκήπιο για την ανάπτυξη των διαφόρων φυτών, δεν είναι πάντα δυνατό να δημιουργηθεί με μόνη την παθητική λειτουργία του θερμοκηπίου. Συνήθως είναι απαραίτητη η προσθήκη ενέργειας, που σήμερα γίνεται με κατανάλωση συμβατικών καυσίμων.

Για να γίνει κατανοητό το πρόβλημα των μεταβολών της θερμοκρασίας στο χώρο του θερμοκηπίου, θα πρέπει να αναφέρουμε τα παρακάτω ιδιαίτερα χαρακτηριστικά που παρουσιάζει το θερμοκήπιο:

1. Κάθε θερμοκήπιο, επειδή καλύπτεται με διαφανές κάλυμμα, δέχεται στο εσωτερικό του το μεγαλύτερο μέρος της προσπίπτουσας ηλιακής ενέργειας.

2. Η απώλειες του θερμοκηπίου σε θερμότητα, λόγω του λεπτού τοιχώματος του καλύμματος είναι πολύ μεγάλες, 6-12 φορές μεγαλύτερες από εκείνες ενός συνήθους κτίσματος ίσου όγκου.

Τα ιδιαίτερα αυτά χαρακτηριστικά του θερμοκηπίου έχουν τις παρακάτω επιπτώσεις στο περιβάλλον του:

α) τις ηλιόλουστες ημέρες, η θερμοκρασία του ανέρχεται σε πολύ υψηλά επίπεδα,

β) τις ψυχρές νύχτες η θερμοκρασία πέφτει σε πολύ χαμηλά επίπεδα.

Στην πράξη, οι πολύ υψηλές θερμοκρασίες αποφεύγονται με εξαερισμό και σκίαση και οι χαμηλές θερμοκρασίες αποφεύγονται με τη θέρμανση.

2.3 Σχετική υγρασία

Ένας από τους βασικότερους παράγοντες της σύστασης του περιβάλλοντος των φυτών είναι η υγρασία που εμπεριέχεται στον ατμοσφαιρικό αέρα.
Την ποσότητα των υδρατμών (gr/m³) που περιέχει ο αέρας σε συγκεκριμένη θερμοκρασία και πίεση την ονομάζουμε πυκνότητα υδρατμών ή απόλυτη υγρασία. Όσο υψηλότερη θερμοκρασία έχει ο αέρας τόσο μεγαλύτερη ποσότητα υδρατμών μπορεί να συγκρατήσει, γιατί αυξάνει η κινητική ενέργεια των μορίων του. Ειδική υγρασία ονομάζουμε το λόγο της μάζας των υδρατμών προς τη μάζα του υγρού αέρα (gr/gr).

Κορεσμένος με υγρασία είναι ο αέρας όταν σε ορισμένη θερμοκρασία και πίεση περιέχει τη μέγιστη ποσότητα υδρατμών, χωρίς όμως αυτοί να είναι υγροποιημένοι.

Θερμοκρασία σημείου δρόσου είναι η θερμοκρασία στην οποία ο αέρας όταν ψυχθεί, χωρίς να μεταβληθεί η περιεκτικότητά του σε υδρατμούς γίνεται κορεσμένος.

Σχετική υγρασία λέμε το λόγο της πυκνότητας των υδρατμών του αέρα προς αυτή του κορεσμένου αέρα, στην ίδια θερμοκρασία και πίεση. Η σχετική υγρασία εκφράζεται επί τοις %. Η σχετική υγρασία είναι 0 για τον ξηρό και 100 για τον κορεσμένο αέρα.

Σε αέρα μιας συγκεκριμένης θερμοκρασίας όσο αυξάνεται η περιεκτικότητά του σε υδρατμούς, χωρίς μεταβολή της θερμοκρασίας, τόσο η θερμοκρασία του σημείου δρόσου πλησιάζει προς αυτή του αέρα.

Όσο χαμηλώνει η θερμοκρασία του αέρα που περιέχει μια συγκεκριμένη ποσότητα υδρατμών, τόσο η θερμοκρασία του σημείου δρόσου πλησιάζει περισσότερο στις αυξήσεις του αέρα, ενώ το αντίστροφο συμβαίνει όταν αυξάνει η θερμοκρασία του.

Όσο η θερμοκρασία του σημείου δρόσου είναι πλησιέστερη προς τη θερμοκρασία του αέρα σε ένα χώρο, τόσο υψηλότερη είναι η σχετική υγρασία και τόσο αυξάνει η πιθανότητα, με μια μικρή μείωση της θερμοκρασίας ή μικρή αύξηση της υγρασίας, ο αέρας να καταστεί κορεσμένος και να συμπυκνωθούν οι υδρατμοί που περιέχει. Η συμπύκνωση αρχίζει να γίνεται πάνω στις επιφάνειες.
του χώρου που αποκτούν χαμηλότερη θερμοκρασία από αυτήν του αέρα. Για να
αποφευχθεί η συμπύκνωση θα πρέπει η θερμοκρασία του σημείου δρόσου να
βρίσκεται αρκετά χαμηλότερα από αυτήν του αέρα. Αυτό επιτυγχάνεται με
μείωση της περιεκτικότητας του αέρα σε υδρατμούς ή/και με την αύξηση της
θερμοκρασίας του αέρα και των επιφανειών της κατασκευής.

Η σχέση μεταξύ πυκνότητας υδρατμών και διαφοράς θερμοκρασίας υγρού και
ψυχρού θερμομέτρου δίδεται από τη σχέση:

$$p_a = p_{uw} - \gamma(T_a - T_w) \quad (1)$$

όπου: p_a είναι η πυκνότητα των υδρατμών του αέρα (gr/m³), $\gamma = (\rho C_p/\lambda)$
ορίζεται ως θερμοδυναμική ψυχρομετρική σταθερά. Η τιμή της εξαρτάται από τη
θερμοκρασία και την πίεση.

p_{uw} είναι η πυκνότητα των υδρατμών του κορεσμένου αέρα θερμοκρασίας T_w
(gr/m³)

ρ είναι η πυκνότητα του αέρα (gr/m³)

C_p είναι η ειδική θερμότητα του αέρα (J/gr k°) λ είναι η λανθάνουσα
θερμότητα εξάτμισης του νερού, στους 20 °C και 100 kpa, $\lambda=0,495$ jm³k⁻¹

T_a, T_w θερμοκρασία ξηρού και ψυχρού θερμομέτρου (°C).

Η διατήρηση ενός κατάλληλου περιβάλλοντος υγρασίας στο χώρο του
θερμοκηπίου είναι απαραίτητη όχι μόνο για τη διατήρηση της υδρικής ισορροπίας
tων φυτών αλλά και για την αποφυγή της ανάπτυξης παθογόνων
μικροοργανισμών και εντόμων.

Όταν το νερό συμπυκνώνεται σε μια επιφάνεια απελευθερώνει περίπου 2,5 Kj θερμότητα ανά γραμμάριο νερού. Η προσθήκη της ενέργειας που γίνεται με τη
συμπύκνωση, συχνά προστατεύει από την πτώση της θερμοκρασίας πολύ πιο
κάτω από το σημείο δρόσου.

Η πυκνότητα των υδρατμών στο χώρο του θερμοκηπίου είναι μεγαλύτερη
catά τη διάρκεια της ημέρας, γιατί τότε ο ρυθμός εξατμισοδιαπνοής είναι
μεγαλύτερος από τη νύχτα, η σχετική υγρασία όμως είναι μικρότερη κατά τη
διάρκεια της ημέρας, γιατί τότε η θερμοκρασία του αέρα είναι υψηλότερη και συνήθως λειτουργεί ο εξαερισμός.

2.3.1 Η σχετική υγρασία και το φυτό

Οι επιπτώσεις της σχετικής υγρασίας στα φυτά προέρχονται κυρίως από την επίδραση στην λειτουργία της διαπνοής και της συμπύκνωσης της υγρασίας στο φύλλωμά τους.

2.3.2 Διαπνοή

Η λειτουργία της διαπνοής είναι απαραίτητη για τη ρύθμιση της θερμοκρασίας του φυτού και την κυκλοφορία του χυμού μέσα σ’ αυτό.

Ο ρυθμός της διαπνοής είναι συνάρτηση της θερμοκρασίας του φύλλου, της σχετικής υγρασίας του αέρα και της ταχύτητας του αέρα στην περιοχή του φύλλου.

Ο ρυθμός διαπνοής είναι πολύ μεγαλύτερος στα φύλλα που δέχονται άμεσα την ηλιακή ακτινοβολία ή τη θερμική ακτινοβολία, από το σύστημα θέρμανσης, παρά στα σκιαζόμενα φύλλα.

Ο ρυθμός υψηλός ρυθμός διαπνοής έχει συχνά συνέπειες τη μάρανση των φυτών, γιατί η ρίζα δεν μπορεί να τροφοδοτεί με τον ανάλογο ρυθμό νερό. Μάρανση των φύλλων σημαίνει κλείσιμο των στομάτων, επομένως περιορισμό της διαπνοής, αλλά και της ροής του διοξειδίου του άνθρακα προς το σύστημα της φωτοσύνθεσης.

Εκτός από τον πολύ υψηλό ρυθμό της διαπνοής και ο χαμηλός ρυθμός της διαπνοής μπορεί να δημιουργήσει σημαντικά προβλήματα στην καλλιέργεια.

2.3.3 Επιφανειακή συμπύκνωση

Είναι το φαινόμενο της υγροποίησης των υδρατμών σε μία επιφάνεια που γίνεται όταν η επιφάνεια αυτή αποκτήσει χαμηλότερη θερμοκρασία από την
αντίστοιχη του χώρου και μάλιστα μικρότερη απ’ αυτήν του σημείου δρόσου. Το φαινόμενο αυτό παρατηρείται πολύ συχνά σε χώρους με αυξημένη σχετική υγρασία.

Το κάλυμμα του θερμοκηπίου είναι επιφάνεια όπου πρωτοεμφανίζεται κυρίως η επιφανειακή συμπύκνωση των υδρατμών και ακολουθεί η επιφάνεια των φυτών. Το κάλυμμα και τα σκελετικά στοιχεία που το συγκρατούν, λόγω της άμεσης επαφής του με τον ψυχρότερο εξωτερικό αέρα, αποκτούν πρώτα, τη νύχτα χαμηλότερη θερμοκρασία στο χώρο του θερμοκηπίου.

Η επιφάνεια των φυτών ψύχεται επίσης γρήγορα τη νύχτα επειδή ακτινοβολούν θερμότητα. Σε μερικές περιπτώσεις, όταν επικρατεί ξάστερος ουρανός, σε θερμοκήπια με κάλυψη από πολυαιθυλένιο, τα φυτά μπορεί να ψυχθούν ταχύτερα από τον αέρα.

Το σημαντικότερο πρόβλημα στο θερμοκήπιο δημιουργείται με τη συμπύκνωση των υδρατμών πάνω στα φυτά, η οποία ευνοεί την ανάπτυξη των μυκήτων και την ανάπτυξη των βακτηρίων. Η συμπύκνωση συμβαίνει συνήθως τη νύχτα και είναι συνάρτηση της θερμοκρασίας των φυτών, καθώς και της θερμοκρασίας και υγρασίας του αέρα. Μπορεί επομένως να αποφευχθεί με την κατάλληλη ρύθμιση των δύο αυτών παραγόντων. Αυτό εφαρμόζεται ιδιαίτερα στις καλλιέργειες διάφορων ανθίων όπου το εμπορεύσιμο μέρος είναι το κορυφαίο άνθος και η καλή του ποιότητα πρέπει να εξασφαλισθεί [1].

Στην περίπτωση της συμπύκνωσης στο κάλυμμα, εκτός από τα χαρακτηριστικά του αέρα στο χώρο του θερμοκηπίου, σημαντικό ρόλο στη
συμπύκνωση έχουν και τα χαρακτηριστικά θερμοπερατότητας του υλικού κάλυψης, π.χ. διπλή επιφάνεια διαφανούς υλικού κάλυψης (με κενο ενδιάμεσα), αυξάνει η θερμομόνωση και επομένως η θερμοκρασία της εσωτερικής πλευράς του υλικού κάλυψης με αποτέλεσμα λιγότερες φορές η θερμοκρασία του στην εσωτερική πλευρά να φθάνει στο σημείο δρόσου για συμπύκνωση.

Οι ιδιότητες του υλικού κάλυψης καθορίζουν και τη μορφή της συμπύκνωσης. Η συμπύκνωση γίνεται υπό μορφή μεμβράνης στις υδρόφιλες επιφάνειες και υπό μορφή σταγόνων στις υδρόφοβες. Η συμπύκνωση υπό μορφή σταγόνων είναι η πιο επικίνδυνη γιατί πέφτουν πάνω στα φυτά. Στο τζάμι η συμπύκνωση γίνεται υπό μορφή μεμβράνης, ενώ στο πολυαιθυλενίο και τον πολυεστέρα με μορφή σταγόνων, που με τα χτυπήματα του ανέμου πέφτουν υπό μορφή βροχής πάνω στα φυτά.

Γενικά η επιφανειακή συμπύκνωση στα υλικά του σκελετού έχει αποτέλεσμα τη διάβρωση ή τη σήψη, ενώ οι υλικά κάλυψης (κατά τη διάρκεια της ημέρας) τη μείωση της μείωση της μείωση της ηλιακής ακτινοβολίας (όταν γίνεται συμπύκνωση υπό μορφή σταγόνων) και σε άλλες περιπτώσεις τη δημιουργία ανθυγιεινού περιβάλλοντος για τα φυτά.

Η συμπύκνωση των υδρατμών στο κάλυμμα πολυαιθυλενίου μειώνει και την περατότητα του στη μεγάλου μήκους κύματος ακτινοβολία, γεγονός που συμβάλλει στη μείωση των απωλειών ενέργειας του θερμικοκινήτη τη νύχτα.

Πολλά σημεία της κατασκευής π.χ. ο μεταλλικός σκελετός στον οποίο στηρίζονται οι υαλοπίνακες, λόγω μεγαλύτερης θερμικής αγωγιμότητας από τους υαλοπίνακες, παρουσιάζουν ισχύτερα μικρότερη θερμοκρασία από την επικρατούσα στο υπόλοιπο μεγαλύτερο τμήμα της κατασκευής, με συνέπεια στα σημεία αυτά να παρατηρείται συχνότερα και σε μεγαλύτερο βαθμό γυροσκόπηση υδρατμών. Τα σημεία αυτά ονομάζονται "θερμικές γέφυρες". Θερμικές γέφυρες δημιουργούν και οι γωνίες των δύο ή τριών πλευρών, λόγω μεγαλύτερων απωλειών θερμότητας.
2.4 Διοξείδιο του άνθρακα

Ο άνθρακας και το οξυγόνο που περιέχουν τα φυτά λαμβάνονται από τον ατμοσφαιρικό αέρα με τη μορφή του διοξειδίου του άνθρακα.

Το διοξείδιο του άνθρακα της ατμόσφαιρας διαχέεται στα στόματα των φύλλων όταν είναι ανοιχτά και από εκεί στα κύτταρα των φύλλων και τους χλωροπλάστες, όπου με την ηλιακή ενέργεια και το νερό μέσω της φωτοσύνθεσης μετασχηματίζεται σε υδατάνθρακες. Οι υδατάνθρακες μετακινούνται σε διάφορα μέρη του φυτού και από αυτούς σχηματίζονται όλες οι άλλες οργανικές ουσίες που βρίσκονται στα φυτά.

Η φωτοσύνθεση επιμένει επηρεάζεται, από το φως, τη συγκέντρωση του διοξειδίου του άνθρακα στον αέρα, τη θερμοκρασία και το νερό.

Η αύξηση της συγκέντρωσης του διοξειδίου του άνθρακα στον αέρα επηρεάζει, εκτός από τη λειτουργία της φωτοσύνθεσης και τη μορφογένεση στα φυτά.

Η συγκέντρωση του διοξειδίου του άνθρακα στον αέρα σε κανονικές συνθήκες είναι 0,035% (350 ppm). Η ανάπτυξη των φυτών σταματά σε ελάχιστη συγκέντρωση διοξειδίου που ποικίλει από φυτό σε φυτό.

Στην περιοχή των φυτών και ειδικότερα κοντά στην κόμη, λόγω της φωτοσύνθεσης υπάρχει μια ημερήσια διακύμανση στη συγκέντρωση του CO₂. Η διακύμανση αυτή είναι πιο έντονη μέσα στο θερμοκήπιο λόγω του κλειστού χώρου.

Σε φυτεία με υψηλή καθαρή φωτοσύνθεση, η προσθήκη CO₂ στην ατμόσφαιρα του θερμοκήπιου είναι μεγάλης σημασίας για την αύξηση της παραγωγής.

Σε φυτεία με υψηλή καθαρή φωτοσύνθεση, η προσθήκη CO₂ στην ατμόσφαιρα του θερμοκήπιου είναι μεγάλης σημασίας για την αύξηση της παραγωγής.
διοξειδίου στο εσωτερικό του φύλλου είναι υψηλότερη από τη συγκέντρωση του διοξειδίου του άνθρακα του αέρα του θερμοκηπίου. Το πρωί με την αύξηση της έντασης του φωτός, λειτουργεί η φωτοσύνθεση και η συγκέντρωση του CO\textsubscript{2} στο εσωτερικό του φύλλου μειώνεται μέχρι μία ελάχιστη ποσότητα. Τότε ανοίγουν τα στόματα και λόγω διαφοράς συγκέντρωσης δημιουργείται μία ροή CO\textsubscript{2} από το χώρο του θερμοκηπίου στο εσωτερικό του φύλλου.

Η ελάχιστη ποσότητα στο εσωτερικό του φύλλου κάτω από την οποία σταματά η φωτοσύνθεση εξαρτάται από το είδος του φυτού και από τη δραστηριότητα των φυτών ως προς την αξιοποίηση του διοξειδίου του άνθρακα.

Γενικά η καθαρή φωτοσύνθεση μπορεί να περιγραφεί ως μία λειτουργία διαχύσεως, όπου η ροή CO\textsubscript{2} από τον κλήση και την αντίσταση της πορείας.

Ο εμπλουτισμός του χώρου του θερμοκηπίου με CO\textsubscript{2} σε συγκεντρώσεις ανώτερες από αυτές που υπάρχουν στη φύση, έχει σημαντική επίδραση στην αύξηση της παραγωγής ποσοτικά και ποιοτικά, γιατί εκτός της αναπλήρωσης του καταναλισκόμενου από τη φωτοσύνθεση CO\textsubscript{2} μειώνει και το ρυθμό της φωτοαναπνοής.

Οι συγκεντρώσεις που είναι επιθυμητές για το θερμοκήπιο είναι μεταξύ 800-1800 ppm.

Για να είναι αποδοτική η ενέργεια του εμπλουτισμού με CO\textsubscript{2}, θα πρέπει και οι άλλοι παράγοντες που συμμετέχουν στην αύξηση των φυτών να βρίσκονται στο άριστο επίπεδο. Ο εμπλουτισμός του θερμοκηπίου με CO\textsubscript{2} είναι αρκετά δαπανηρός και γι’ αυτό θα πρέπει να εφαρμόζεται με προσοχή, ώστε η αύξηση της παραγωγής και η βελτίωση της ποιότητας να υπερκαλύπτουν το κόστος του εμπλουτισμού. Ο εμπλουτισμός με CO\textsubscript{2} στο θερμοκήπιο γίνεται με θετικό αποτέλεσμα από το Νοέμβριο μέχρι τον Απρίλιο κατά τη διάρκεια της ημέρας γιατί τότε η χρονική διάρκεια που μένουν τα παράθυρα ανοιχτά δεν είναι πολύ μεγάλη.
ΚΕΦΑΛΑΙΟ 3

3.1 Υπολογισμός θερμικών απωλειών θερμοκηπίου

Οι μεταβολές που συμβαίνουν στο περιβάλλον του θερμοκηπίου είναι αποτέλεσμα των ανταλλαγών ενέργειας μεταξύ των στοιχείων του θερμοκηπίου, του περιβάλλοντα εξωτερικού χώρου και του εσωτερικού του θερμοκηπίου. Η μελέτη των ανταλλαγών αυτών εκτός από τη βοήθεια που προσφέρει στην κατανόηση των μεταβολών της θερμοκρασίας στο χώρο του θερμοκηπίου, βοηθά και στη σωστή τοποθέτηση των προβλημάτων θέρμανσης και εξαερισμού του θερμοκηπίου, καθώς και στην αξιολόγηση των διαφόρων προτάσεων-λύσεων για εξοικονόμηση ενέργειας στο θερμοκήπιο.

3.2 Μετάδοση θερμότητας

Η μετάδοση της θερμότητας γίνεται με αγωγιμότητα, ακτινοβολία και συναγωγή.

3.2.1 Αγωγιμότητα

Όταν υπάρχει διαφορά θερμοκρασίας σε ένα σώμα, μεταφέρεται ενέργεια από την θερμότερη στην ψυχρότερη περιοχή μέσω της θερμικής αγωγιμότητας. Ο ρυθμός μεταφοράς της θερμότητας δίδεται από την ισότητα του Fourier:

\[Q = \frac{\lambda}{\varepsilon} A (T_1 - T_2) \]

όπου: \(\lambda \) η θερμική αγωγιμότητα του σώματος [W m\(^{-1}\)K\(^{-1}\)]
\(\varepsilon \) το πάχος του υλικού [m]
\(A \) η έκταση της διατομής μέσω της οποίας η θερμότητα άγεται [m\(^2\)]
\(T_1 - T_2 \) η διαφορά θερμοκρασίας [K]
Αυτή η ισότητα δείχνει ότι η θερμότητα που άγεται αυξάνεται με την αύξηση της διαφοράς θερμοκρασίας και τη θερμική αγωγιμότητα του υλικού, αλλά μειώνεται όσο το πάχος του υλικού αυξάνει.

3.2.2 Ακτινοβολία

Κάθε επιφάνεια εκπέμπει και δέχεται θερμική ακτινοβολία. Η θερμική ακτινοβολία εκπέμπεται από όλα τα σώματα λόγω της θερμοκρασίας τους, με τη μετακίνηση των ηλεκτρονίων από το ένα επίπεδο ενέργειας στο άλλο ή αλλαγών στην ενέργεια δόνησης και περιστροφής των μορίων. Το μήκος κύματος στο οποίο εκπέμπεται η θερμική ακτινοβολία είναι μεταξύ 0,2-100 μι. Τα σώματα που έχουν τη θερμοκρασία του περιβάλλοντος εκπέμπουν σε μήκος κύματος 5-40 μι.

Στο θέμα της θερμικής ακτινοβολίας έχει εισαχθεί η έννοια του μαύρου σώματος, το οποίο είναι ένας τέλειος πομπός και δέκτης της θερμικής ακτινοβολίας. Η εκπεμπόμενη ενέργεια από ένα μαύρο σώμα εξαρτάται, σύμφωνα με το νόμο των Stefan-Boltzmann, από τη θερμοκρασία του.

\[E_\beta = \sigma * T^4 \]

όπου: \(E_\beta = \) Εκπεμπόμενη ενέργεια \\
\(\sigma = \) Η σταθερά του Stefan-Boltzmann \\
\(T = \) Η θερμοκρασία του μαύρου σώματος

\(\text{[W m}^2\text{]} \)

\(\text{[5.6697} \times 10^{-8} \text{W m}^2\text{K}^{-4}\text{]} \)

\(\text{[K]} \)

Όταν η θερμική ακτινοβολία πέφτει στην επιφάνεια ενός φυσικού σώματος (όχι μέλαν σώμα), ένα μέρος της ανακλάται, ένα μέρος απορροφάται και ένα μέρος περνάει μέσα από το σώμα αυτό. Το τμήμα της προσπίπτουσας ακτινοβολίας η οποία ανακλάται, ορίζεται ως ανακλαστικότητα (\(\gamma \)), το τμήμα που απορροφάται ως απορροφητικότητα (\(\alpha \)) και το τμήμα που περνά μέσα, ως περατότητα (\(\tau \)).
Ο πρώτος νόμος της θερμοδυναμικής λέει ότι:

\[\gamma + \alpha + r = 1 \] (4)

3.2.3 Συναγωγή

Η συναγωγή (ή επαγωγή) θερμότητας είναι η διαδικασία κατά την οποία η μεταφορά θερμότητας γίνεται μεταξύ της επιφάνειας ενός στερεού και ενός υγρού που βρίσκεται σ’ επαφή με αυτή. Αν η κίνηση του ρευστού οφείλεται μόνο στις δυνάμεις που προέρχονται από τη μεταβολή της πυκνότητας λόγω των διαφορών θερμοκρασιών, αυτό ονομάζεται ελεύθερη ή φυσική συναγωγή. Αν η κίνηση οφείλεται σε διαφορά πίεσης που προέρχεται από εξωτερικούς παράγοντες, είναι γνωστή σαν βεβιασμένη συναγωγή. Και στις δύο περιπτώσεις ο ρυθμός μεταφοράς θερμότητας μεταξύ της επιφάνειας και του ρευστού, δίνεται από το νόμο της ψύξης του Newton:

\[Q = A \cdot h \cdot (T_s - T_v) \] (5)

όπου:
- \(A \) η έκταση της επιφάνειας [\(\text{m}^2 \)]
- \(h \) ο συντελεστής θερμικής αγωγιμότητας με συναγωγή [\(\text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-1} \)]
- \(T_s - T_v \) η διαφορά θερμοκρασιών μεταξύ της επιφάνειας και του όγκου του ρευστού [\(\text{K} \)].

Στην πράξη ο συντελεστής θερμικής μεταφοράς μπορεί να είναι μία σύνθετη λειτουργία της γεωμετρίας του συστήματος, των θερμοφυσικών ιδιοτήτων του ρευστού και της φύσης της κίνησης του. Συνήθως υπολογίζεται χρησιμοποιώντας τον αριθμό Nusselt (Nu), ο οποίος αντιπροσωπεύει τη σχέση της μεταφερόμενης θερμότητας με συναγωγή με αυτήν που μεταφέρεται με αγωγή:

\[Nu = h \cdot 1/\lambda \] (6)

όπου: \(1 = \) η χαρακτηριστική διάσταση του συστήματος.
Ελεύθερη συναγωγή:
Έχει δειχθεί με διαστατική ανάλυση ότι:

\[Nu = C*(Gr*Pr)^n \tag{7} \]

Ο αριθμός Grashof (Gr) αντιπροσωπεύει την αναλογία τριβών στις δυνάμεις του ιξώδους και προσδιορίζει εάν η κίνηση είναι ευθεία ή τυρβώδης.

Λανθάνουσα θερμότητα
Η μεταβολή από την υγρά κατάσταση στην αέριο ενός σώματος, συνεπάγεται την απορρόφηση ενέργειας, γνωστή ως λανθάνουσα θερμότητα. Αν το υγρό είναι σε επαφή με μία επιφάνεια, η ενέργεια θα αφαιρεθεί από την επιφάνεια, η οποία κατ’ ακολουθία θα ψυχθεί. Το αντίστροφο συμβαίνει όταν οι ατμοί συμπυκνώνονται και η θερμότητα μεταφέρεται στην επιφάνεια.

3.3 Ισοζύγιο ενέργειας
Γενικά για να μπορούμε να προσδιορίσουμε τη θερμοκρασία του αέρα και των φυτών που υπάρχουν σε δεδομένες εξωτερικές συνθήκες ή για να υπολογισθεί ο ρυθμός εφοδιασμού σε ενέργεια που είναι αναγκαίος για να επιτευχθεί Κάποια θερμοκρασία στο χώρο του θερμοκηπίου, θα πρέπει να προσδιορισθεί το ισοζύγιο ενέργειας για όλα τα συστατικά του θερμοκηπίου που αλληλεπιδρούν θερμικά. Αυτά είναι ο αέρας, τα φυτά, το έδαφος και το κάλυμμα [8].
Σχήμα 2. Ανταλλαγές ενέργειας του θερμοκηπίου με το περιβάλλον

Κάθε ισοζύγιο ενέργειας συνιστάται από ισότητες που περιγράφουν τις εισροές και εκροές ενέργειας.

3.3.1 Κέρδη και απώλειες ενέργειας

Το θερμοκήπιο χάνει ενέργεια με τον εξαερισμό και τις διαρροές του αέρα, με επαγωγή από το κάλυμμα και με ακτινοβολία, ενώ κερδίζει ενέργεια από την ηλιακή ακτινοβολία.
3.3.2 Απώλειες

α). Εξαερισμός

Οι απώλειες ενέργειας από εξαερισμό βρίσκονται πολλαπλασιάζοντας το ρυθμό μεταφοράς αέρα από το θερμοκήπιο με τη διαφορά ενθαλπίας μεταξύ του εσωτερικού και εξωτερικού αέρα:

\[q_v = \frac{V \cdot N \cdot \rho \cdot (H_i - H_e)}{3600} \] (8)

όπου: \(q_v \) ο ρυθμός απωλειών θερμότητας με εξαερισμό,

\(V \) ο όγκος του θερμοκηπίου [\(m^3 \)]

\(N \) ο ρυθμός εξαερισμού, αλλαγές αέρα [\(s^{-1} \)]

\(\rho \) πυκνότητα του αέρα του θερμοκηπίου [\(Kg \cdot m^{-3} \)]

\(H_i - H_e \) ειδική ενθαλπία του εσωτερικού και εξωτερικού αέρα αντίστοιχα [\(J Kg^{-1} \)]

Η τιμή του \(N \) εξαρτάται κυρίως από την ταχύτητα του ανέμου, το μέγεθος και την έκταση των ανοιγμάτων εξαερισμού και τη στεγανότητα του θερμοκηπίου.

\[N = \alpha + \beta \cdot V_w \] (9)

όπου: \(V_w \) η μέση ταχύτητα ανέμου [\(m \cdot s^{-1} \)]

\(\alpha \) και \(\beta \) είναι σταθερές που εφαρμόζονται για ένα συγκεκριμένο θερμοκήπιο. Συνήθεις τιμές για ένα κλειστό θερμοκήπιο είναι 1 και 0,5 αντίστοιχα.

β). Συναγωγή από το κάλυμμα

Οι απώλειες με συναγωγή από το κάλυμμα είναι:

\[q_o = h_{co} \cdot A_c \cdot (T_v - T_e) \] (10)

όπου: \(q_o \) ρυθμός απωλειών θερμότητας με συναγωγή [\(W \)]

\(h_{co} \) ο συντελεστής μεταφοράς με συναγωγή από την εξωτερική επιφάνεια [\(W \cdot m^{-2} \cdot K^{-1} \)]
Η τιμή του h_{co} εξαρτάται επίσης από την ταχύτητα του ανέμου και εκφράζεται:

$$h_{co} = c + d*V_w$$ (11)

όπου c και d είναι σταθερές με τυπική τιμή 7,2 και 3,8 αντίστοιχα.

g). Θερμική ακτινοβολία

Οι απώλειες ενέργειας με ακτινοβολία από το κάλυμμα είναι:

$$q_r = \sigma*F_e*A_c*e_c*(T_{sky} - T_{c})$$ (12)

όπου: q_r ο ρυθμός απωλειών θερμότητας με θερμική ακτινοβολία $[W]$

σ η σταθερά του Stefan-Boltzmann $[5.6697 \times 10^{-8} \text{ W m}^{-2}\text{K}^{-4}]$

e_c εκπεμπτικότητα του καλύμματος $[K]$

T_{sky} θερμοκρασία ουρανού

F_e παράγοντας διαμόρφωσης. Περιλαμβάνει την επίδραση του εδάφους και άλλων σωμάτων που παρεμβάλλονται στη θερμική ακτινοβολία του καλύμματος.

3.3.3 Ισοζύγιο ενέργειας στο κάλυμμα

Η επίλυση των εξισώσεων της συναγωγής και ακτινοβολίας, πλην των άλλων προϋποθέτει και τη γνώση της θερμοκρασίας του καλύμματος T_c, που συνήθως δεν είναι διαθέσιμο στοιχείο. Η θερμοκρασία του καλύμματος όμως μπορεί να βρεθεί από το ισοζύγιο ενέργειας στο κάλυμμα. Επειδή το κάλυμμα έχει αμελητέα θερμοχωρητικότητα, μπορούμε να θεωρήσουμε ότι ο ρυθμός απορρόφησης θερμότητας από την εξωτερική πλευρά του καλύμματος [4].
Στην περίπτωση που δεν παρουσιάζεται συμπύκνωση υδρατμών στο κάλυμμα, η θερμότητα στην εσωτερική πλευρά του καλύμματος προέρχεται από συναγωγή και την ακτινοβολία του εσωτερικού του θερμοκηπίου.

Η θερμική ακτινοβολία στην εσωτερική πλευρά είναι:

\[q_n = \sigma A_t F_t (T_p^4 - T_c^4) \] (13)

όπου: \(F_t = \frac{1}{1/\varepsilon_p + A_t/A_c (1/\varepsilon_p - 1)} \) (14)

\(\varepsilon_p = \) η μέση εκπεμπτικότητα του εσωτερικού του θερμοκηπίου (συνήθως των φυτών),

\(T_p = \) η μέση θερμοκρασία των επιφανειών του εσωτερικού. Συνήθως θεωρείται ίση με τη θερμοκρασία του εσωτερικού αέρα \(T_i \).

Η συναγωγή στην εσωτερική πλευρά του καλύμματος, είναι:

\[q_o = h_{ci} A_c (T_i - T_c) \] (15)

όπου: \(h_{ci} = \) ο συντελεστής μεταφοράς στην εσωτερική επιφάνεια, με τυπική τιμή 7,5 W m\(^{-2}\) K\(^{-1}\).

Επομένως, όταν δεν υπάρχει συμπύκνωση υδρατμών στο κάλυμμα, το ισοζύγιο ενέργειας στο κάλυμμα είναι:

\[q_o + q_r = q_{oi} + q ri \] (16)

Από την ισότητα αυτή υπολογίζεται η θερμοκρασία του καλύμματος \(T_c \).
ΚΕΦΑΛΑΙΟ 4

Υπολογισμός απωλειών ενέργειας θερμοκηπίου

4.1 Απλοποιημένη σχέση απωλειών

Οι απώλειες ενέργειας μπορούν να αποδοθούν από τη σχέση:

\[Q_t = U \cdot A_c \cdot (T_i - T_e) \quad (17) \]

όπου: \(U \) συντελεστής απωλειών θερμότητας του θερμοκηπίου που εκφράζεται γραμμικά και επηρεάζεται από τις ροές θερμότητας με εξαερισμό, συναγωγή, συμπύκνωση και θερμική ακτινοβολία [W m\(^{-2}\) K\(^{-1}\)],

\(A_c \) η επιφάνεια του καλύμματος του θερμοκηπίου [m\(^2\)],

\(T_i \) η θερμοκρασία του αέρα στο εσωτερικό του θερμοκηπίου [K],

\(T_e \) η θερμοκρασία του εξωτερικού αέρα [K].

4.2 Προσδιορισμός του συντελεστή θερμικών απωλειών

Για ένα συγκεκριμένο υλικό καλύψεως, το \(U \) ποικίλει πολύ, ανάλογα με την ταχύτητα του ανέμου, τη θερμοκρασία του ουρανού και το βαθμό στεγανότητας στον αέρα του θερμοκηπίου.

Από το σχήμα 2 και την παράγραφο 3.3 (κέρδη και απώλειες ενέργειας) προκύπτει ότι οι απώλειες διδόνται από την παρακάτω σχέση:

\[U \cdot A_c \cdot (T_i - T_e) = q_o + q_r + q_v \quad (18) \]

όπου:

\[U = \frac{q_o + q_r + q_v}{A_c \cdot (T_i - T_e)} \quad (19) \]

Στις περιπτώσεις που επικρατεί άπνοια και ταυτόχρονα η θερμοκρασία του ουρανού είναι πολύ χαμηλή, η θερμοκρασία του καλύμματος μπορεί να είναι
μικρότερη εκείνης του εξωτερικού αέρα, οπότε ο άνεμος σημαίνει τις απώλειες από το κάλυμμα.

4.3 Κέρδος θερμότητας

Γενικά η ενέργεια από τον ήλιο που συλλέγει τη θερμότητα στο χώρο του θερμοκηπίου, μπορεί να αποδοθεί από την παρακάτω σχέση [7]:

$$Q_{sl} = r * e * A_g * I_t \quad (20)$$

όπου: Q_{sl} η ηλιακή ενέργεια που συλλέγει τη θερμότητα στο χώρο του θερμοκηπίου [W]

r η μέση περατότητα του καλύμματος στη θερμική ακτινοβολία.

e ο συντελεστής μετατροπής της ακτινοβολίας σε αισθητή θερμότητα μέσα στο θερμοκήπιο.

A_g η επιφάνεια του εδάφους του θερμοκηπίου [m²]

I_t η ηλιακή ακτινοβολία έξω από το κάλυμμα (W m⁻²)

Κατά συνέπεια από τις σχέσεις (18) και (20) οι ανάγκες θέρμανσης δίδονται από τη σχέση:

$$Q = Q_t - Q_{sl} \quad (21)$$

δηλαδή:

$$Q = U * A_c * \Delta T - r * e * A_g * I \quad (22)$$

Τη νύχτα είναι $I = 0$ και επομένως:

$$Q = U * A_c * \Delta T \quad (23)$$
ΜΕΡΟΣ ΙΙΙ
ΚΕΦΑΛΑΙΟ 5

Υλικά και μέθοδοι

Σκοπός του πειράματος που περιγράφεται παρακάτω είναι ο προσδιορισμός του ολικού συντελεστή απωλειών θερμότητας του θερμοκηπίου. Για τον πειραματικό αυτό προσδιορισμό έγιναν μετρήσεις σε ένα θερμοκήπιο στην περιοχή του Συκεώνα Καρδίτσας.

Το θερμοκήπιο στο οποίο έγινε το πείραμα ήταν πολλαπλό τροποποιημένο τοξωτό. Κατασκευάστηκε το έτος 1990 και είχε συνολική έκταση 2,88 στρέμματα. Αποτελούνταν από 6 βάσεις με 8 μέτρα πλάτος η κάθε μία. Το μήκος του ήταν 60 μέτρα και το πλάτος του 48 μέτρα. Ο ορθοστάτης του θερμοκηπίου είχε 2,5 μέτρα ύψος και ο κορφιάς 4 μέτρα. Ο συνολικός όγκος του θερμοκηπίου ήταν 7624 m³.

Το θερμοκήπιο ήταν καλυμμένο στην οροφή με διπλό πολυαιθυλένιο πάχους 180 μ. Μεταξύ των δύο στρωμάτων διοχετευόταν αέρας με τη βοήθεια ανεμιστήρα, ο οποίος με αεραγωγούς έστελνε τον αέρα μεταξύ των δύο στρωμάτων του πολυαιθυλενίου. Έτσι μεταξύ των δύο φύλλων του πλαστικού υπήρχε συνεχώς στρώμα αέρα ο οποίος κρατούσε τα φύλλα μακριά το ένα από το άλλο. Στα πλάγια το θερμοκήπιο ήταν καλυμμένο με Polycarbonate. Ο σκελετός του θερμοκηπίου ήταν κατασκευασμένος από γαλβανισμένο χάλυβα.

Το θερμοκήπιο διέθετε αυτόματο σύστημα θέρμανσης, αερισμού, δροσισμού και ύδρευσης τα οποία ελέγχονταν από κεντρικό ηλεκτρονικό υπολογιστή.

Η θέρμανση του θερμοκηπίου γινόταν με δύο συστήματα: Το ένα σύστημα απέδιδε στο χώρο του θερμοκηπίου το μεγαλύτερο μέρος της θερμότητας με συναγωγή. Σ’ αυτό περιλαμβάνονταν τα αερόθερμα τα οποία θέρμαναν τον αέρα του θερμοκηπίου.
Η θέρμανση με αερόθερμα χρησιμοποιείται πολύ στο θερμοκήπιο. Έχει υψηλή αποδοτικότητα, αυτοματοποιείται εύκολα και δεν παρουσιάζει αδράνεια στην αύξηση της θερμοκρασίας του χώρου.

Τα αερόθερμα που χρησιμοποιούνταν στο θερμοκήπιο είχαν πηγή ενέργειας το ζεστό νερό. Η μετακίνηση του αέρα από τα αερόθερμα ήταν οριζόντια. Ήταν μεγάλα και βρίσκονταν στο μέσο του θερμοκηπίου. Έτσι έστελναν τον αέρα προς τα δύο άκρα του. Η κατανομή του αέρα γινόταν απ’ευθείας από την έξοδο του αερόθερμου.

Το δεύτερο σύστημα που χρησιμοποιείτο για τη θέρμανση του θερμοκηπίου ήταν θέρμανση με σωλήνες ζεστού νερού. Οι σωλήνες διαιρείζονταν μέσα στο χώρο του θερμοκηπίου και η μετάδοση της θερμότητας γινόταν με συναγωγή και ακτινοβολία σε ίσο περίπτωση ποσοστό.

Οι σωλήνες θέρμανσης κατευθύνονταν παράλληλα προς τις γραμμές των φυτών. Οι κεντρικές σωληνώσεις που έφεραν το νερό από το λέβητα και οι σωληνώσεις επιστροφής που μάζευαν το νερό, το οποίο επέστρεφε από το θερμοκήπιο και το οδηγούσαν στο λέβητα, ήταν τοποθετημένες στην περιφέρεια του θερμοκηπίου.

Και τα δύο συστήματα θέρμανσης (αερόθερμα και επιδάφια θέρμανση) χρησιμοποιούσαν ζεστό νερό. Η θερμότητα παραγόταν σε καυστήρα, ο οποίος θέρμανε το νερό που βρισκόταν στο λέβητα. Το καύσιμο υλικό του καυστήρα ήταν το προπάνιο.

Η θερμότητα που παραγόταν στο λέβητα, μεταφέρονταν και κατανέμονταν στο χώρο του θερμοκηπίου.

Έτσι με το κατάλληλο δίκτυο το νερό περνούσε είτε από τους σωλήνες που ήταν στο έδαφος και κατά συνέπεια λειτουργούσε η επιδαπέδια θέρμανση, είτε από τους εναλάκτες των αεροθέρμων στοιχείο λειτουργούσαν τα αερόθερμα ή η ροή του νερού γινόταν και από τα δύο συστήματα και έτσι λειτουργούσαν και τα δύο μαζί.
Ο αερισμός γινόταν με την βοήθεια ανεμιστήρων, με αναλογία 1.5 ανεμιστήρες για κάθε μονάδα κατασκευής, που ήταν τοποθετημένοι στην μία πλευρά του θερμοκηπίου. Οι ανεμιστήρες είχαν την δυνατότητα να επιτυγχάνουν 60 αλλαγές αέρα ανά ώρα. Η είσοδος του αέρα γινόταν από την άλλη πλευρά του θερμοκηπίου, απέναντι από τους ανεμιστήρες. Στην αντίθετη πλευρά από αυτή που υπήρχαν οι ανεμιστήρες και από την οποία γινόταν η είσοδος του αέρα υπήρχε υγρό τοίχωμα (υγρή παρειά). Έτσι ο αέρας που έμπαινε στο θερμοκήπιο είχε τη δυνατότητα να είναι δροσερός. Αυτό γινόταν μόνο αν περνούσε νερό από το τοίχωμα. Έτσι ήταν δυνατός ο δροσισμός του θερμοκηπίου κατά τους θερμούς μήνες. Κατά την περίοδο που έγιναν οι μετρήσεις δεν χρησιμοποιήθηκε το σύστημα δροσισμού του θερμοκηπίου.

Η άρδευση του θερμοκηπίου γινόταν με σταγόνες (στάγδην άρδευση). Μαζί με την άρδευση γινόταν και η λίπανση του θερμοκηπίου. Άρδευση είχαμε μόνο κατά τη διάρκεια της ημέρας.

Στο θερμοκήπιο που χρησιμοποιήθηκε για το πείραμα και το οποίο περιγράφηκε πιο πάνω καλλιεργούνταν τριαντάφυλλα. Η καλλιέργεια γινόταν σε απλές γραμμές και τα φυτά στηρίζοταν από σύρματα που βρισκόταν κατά μήκος των πλάγιων των φυτών.

Οι μετρήσεις του πειράματος έγιναν από 18/3 έως 16/4 1997. Για την συγκέντρωση και αποθήκευση των μετρήσεων χρησιμοποιήθηκε ηλεκτρονικό σύστημα (Data loger) με μνήμη ξηρού τύπου μεγάλης χωρητικότητας. Γινόταν μία σάρωση για κάθε παράμετρο ανά 10 δευτερόλεπτα. Καταγράφοταν ο μέσος όρος μετρήσεων κάθε μισή ώρα για όλες τις παραμέτρους. Έτσι συνολικά καταγράφοταν σαράντα οκτώ τιμές για κάθε παράμετρο ανά εικοσιτετράωρο.

Μελετήθηκαν συνολικά 23 παράμετροι και χρησιμοποιήθηκαν διάφορα όργανα για την καταγραφή των τιμών τους. Στα σχήματα 3 και 4 φαίνεται το θερμοκήπιο, μέρος του εξοπλισμού του και οι μετρήσεις που έγιναν. Οι
παράμετροι που μελετήθηκαν και τα όργανα που χρησιμοποιήθηκαν αναλυτικά ήταν:

- Η ταχύτητα του ανέμου (u), η οποία μετρήθηκε με ανεμόμετρο κυπέλλων, ms⁻¹
- Η θερμοκρασία του αέρα στο εσωτερικό του θερμοκήπιου (T₁), [K]
- Η θερμοκρασία του άξονα εξω του θερμοκήπιου (T₀), [K]
- Η θερμοκρασία κατά την είσοδο του αέρα από το τοίχωμα που είχε τη δυνατότητα να είναι υγρό (στη δική μας περίπτωση δεν ήταν υγρό), (Tpad), [K]

Για τη μέτρηση της θερμοκρασίας χρησιμοποιήθηκαν ψυχρόμετρα.

- Η σχετική υγρασία του αέρα στο εσωτερικό του θερμοκήπιου (RH₁), [%]
- Η σχετική υγρασία του αέρα εξω από το θερμοκήπιο (RH₀), [%]
- Η σχετική υγρασία του αέρα στο τοίχωμα της υγρής παρείας κατά την είσοδο του (RHpad), [%]
- Η σχετική υγρασία κατά την έξοδο του αέρα από τους ανεμιστήρες (RHfan), [%]

Η μέτρηση της σχετικής υγρασίας έγινε σε όλες τις περιπτώσεις με ψυχρόμετρα.

Ακόμη:

- Η ολική ηλιακή ακτινοβολία μέσα στο θερμοκήπιο (SR₁), [Wm⁻²]
- Η ολική ηλιακή ακτινοβολία εξω από το θερμοκήπιο (SR₀), [Wm⁻²]

Για τη μέτρηση τους χρησιμοποιήθηκαν πυρανόμετρα Kipp & Zonen.

- Η καθαρή θερμική ακτινοβολία μέσα στο θερμοκήπιο (Qnet₁), [Wm⁻²]
- Η καθαρή θερμική ακτινοβολία εξω από το θερμοκήπιο (Qnet₀), [Wm⁻²]

Η μέτρηση της καθαρής ακτινοβολίας έγινε με Net Radiometer.

51
Σχήμα 3. Το θερμοκήπιο, ο εξοπλισμός του και οι μετρήσεις.

Μετρήθηκαν ακόμη:
- Η θερμοκρασία του εδάφους \(T_\text{g} \) με θερμόμετρο, [Κ]
- Η θερμοκρασία του καλύμματος του θερμοκήπιου στην οροφή \(T_\text{c} \), [Κ]
- Η θερμοκρασία του νερού κατά την είσοδό του στους σωλήνες για την επιδάφια (επιδαπέδια) θέρμανση \(T_{\text{in},1} \), [Κ]
- Η θερμοκρασία του νερού κατά την έξοδο του από την επιδάφια θέρμανση \(T_{\text{ex},1} \), [Κ]
- Η θερμοκρασία του νερού κατά την είσοδό του στο αερόθερμο (\(T_{in,2}\), [K]) και
- Η θερμοκρασία του νερού κατά την έξοδό του από το αερόθερμο (\(T_{ex,2}\), [K])

Για τις μετρήσεις των τιμών αυτών χρησιμοποιήθηκαν θερμοζέγγη χαλκού-κονσταντάνης.
- Η ροή του νερού (παροχή) στο αερόθερμο (\(F_{con}\), \([m^3 \cdot h^{-1}]\) και
- Η ροή του νερού στους σωλήνες για την επιδάφια θέρμανση (\(F_{gr}\), \([m^3 \cdot h^{-1}]\))

Οι μετρήσεις αυτές έγιναν με ροόμετρα

Σχήμα 4. Το θερμοκήπιο, ο εξοπλισμός και οι μετρήσεις.
Τέλος μετρήθηκαν:
- Ο χρόνος λειτουργίας του ανεμιστήρα μέσα σε τριάντα λεπτά (t\text{fan}), [min]
- Ο χρόνος λειτουργίας του αερόθερμου μέσα σε διάστημα τριάντα λεπτών (t\text{con}), [min] και
- Ο χρόνος λειτουργίας της επιδάφιας θέρμανσης σε διάστημα τριάντα λεπτών (t\text{gr}), [min].

Ο υπολογισμός των χρόνων αυτών έγινε αυτόματα από το ηλεκτρονικό σύστημα καταγραφής των μετρήσεων.

Τα όργανα για τις μετρήσεις έξω από το θερμοκήπιο είχαν τοποθετηθεί πάνω σε ιστό σε χώρο δίπλα από το θερμοκήπιο. Τα όργανα για τις μέσα στο θερμοκήπιο μετρήσεις άλλα ήταν σε ιστό και άλλα διάσπαρτα στο κατάλληλο σημείο το καθένα.

Για την επεξεργασία των αποτελεσμάτων χρησιμοποιήθηκε ηλεκτρονικός υπολογιστής και τα προγράμματα EXCEL και STATGRAPHICS.
ΚΕΦΑΛΑΙΟ 6

Αποτελέσματα

Από το κεφάλαιο 4 και τις παραγράφους 4.1, 4.2 και 4.3 έχουμε δει ότι οι ανάγκες σε θέρμανση δίδονται από τη σχέση (21):

\[Q = Q_1 - Q_{\text{sl}} \]

όπου: \(Q_1 = U^* A_c^* (T_{\text{in}} - T_{\text{out}}) \) είναι οι απώλειες ενέργειας του θερμοκηπίου και \(Q_{\text{sl}} = \eta^* e^* A_g^* I_1 \) είναι η ενέργεια από τον ήλιο η οποία αυξάνει τη θερμότητα στο χώρο του θερμοκηπίου.

Κατά την διάρκεια της νύχτας το κέρδος από την ενέργεια του ήλιου είναι \(Q_{\text{sl}} = 0 \) διότι δεν υπάρχει ηλιακή ακτινοβολία. Έτσι η σχέση που δίνει τις ανάγκες σε θέρμανση γίνεται:

\[Q = U^* A_c^* (T_{\text{in}} - T_{\text{out}}) \] (24)

Από τη σχέση (24) βλέπουμε ότι το κέρδος από την ενέργεια, που παρέχει το σύστημα θέρμανσης κατά τη διάρκεια της νύχτας, ισοδύναμει με τις συνολικές απώλειες σε ενέργεια από το θερμοκήπιο κατά το ίδιο διάστημα. Για το λόγο αυτό χορηγήθηκαν οι μετρήσεις που έγιναν κατά τη διάρκεια του εικοσιτετραώρου σε δύο μέρη: Αυτές που έγιναν κατά τη διάρκεια της ημέρας και αυτές κατά τη διάρκεια της νύχτας.

Χρησιμοποιώντας τις μετρήσεις που έγιναν κατά τη διάρκεια της νύχτας υπολογίστηκαν οι μέσοι όροι όλων των παραμέτρων. Έτσι από κάθε νύχτα μετρήσεων χρησιμοποιήθηκε ο μέσος όρος από κάθε παράμετρο για τους παραπέρα υπολογισμούς.

Η αποδεδομένη από ένα ρευστό, που στην περίπτωση του συστήματος θέρμανσης του θερμοκηπίου μας είναι το νερό, θερμότητα δίνεται γενικά από τη σχέση:

\[Q = p^* C_p^* f^* (T_{\text{in}} - T_{\text{ex}}) \] (25)
όπου: Q η θερμότητα [W]

$\rho = \eta$ πυκνότητα του ρευστού η οποία στην περίπτωση του νερού είναι 1 για θερμοκρασία κοντά στους 25 °C [Kgr/m³],

$C_p = \eta$ ειδική θερμότητα του νερού η οποία είναι 4180 για θερμοκρασία κοντά στους 25 °C [J/Kgr* °K],

$F = \eta$ παροχή του νερού [m³/sec]

$T_{in} = \eta$ θερμοκρασία του νερού κατά την είσοδό του στο σύστημα θέρμανσης [K] και

$T_{ex} = \eta$ θερμοκρασία του νερού κατά την εξόδο του από το σύστημα θέρμανσης [K].

Χρησιμοποιώντας τη σχέση (25) μπορούμε να υπολογίσουμε το κέρδος ενέργειας σε θερμότητα που αποδίδεται από το νερό στο περιβάλλον του θερμοκηπίου μέσω της επιδάφιας θέρμανσης και των αεροθέρμων. Χρησιμοποιώντας τις αντίστοιχες παροχές και θερμότητες εισόδου και εξόδου του νερού υπολογίζουμε τα $Q_{em\delta}$ και $Q_{aero\theta}$ όπου:

$Q_{em\delta}$: η θερμότητα που αποδίδεται από την επιδάφια θέρμανση και

$Q_{aero\theta}$: η θερμότητα που αποδίδεται από το αερόθερμα, μπορούμε να υπολογίσουμε τη συνολική ενέργεια (Q_{tot}) που παρέχεται από το σύστημα θέρμανσης σε όλο το θερμοκήπιο:

$$Q_{tot} = Q_{aero\theta} + Q_{em\delta}.$$ (26)

Αρχικά στην προσπάθεια που έγινε για τον υπολογισμό του ολικού συντελεστή απωλειών θερμότητας του θερμοκηπίου, οι απώλειες σε ενέργεια (Q_{tot}) συσχετίστηκαν με το γινόμενο της διαφοράς θερμοκρασίας (ΔT) μεταξύ του καλύμματος και του εξωτερικού αέρα του θερμοκηπίου με την ταχύτητα του ανέμου. Δηλαδή:

$$Q_{tot} = \alpha^*(T_c - T_o)*u.$$ (27)
Εφαρμόζοντας τις τιμές των δεδομένων στο μοντέλο (27) προκύπτουν τα:
α = 5.4 και R² = 0.25
Στο διάγραμμα 1 φαίνονται τα αποτελέσματα της παλινδρόμησης (27).

Διάγραμμα 1. Γραφική παράσταση των μετρήσεων των απωλειών του θερμοκηπίου συναρτήσει των εκτιμήσεων του Q_{tot} από το μοντέλο (27)

Από το διάγραμμα 1 βλέπουμε ότι η σχέση αυτή δεν εκφράζει καλά το Q_{tot}. Αυτό αποδεικνύεται και από το χαμηλό R² = 0.25. Για το λόγο αυτό έγινε προσπάθεια για την εξεύρεση νέας σχέσης-μοντέλου το οποίο θα έδινε ικανοποιητική σχέση μεταξύ των παρατηρημένων και προβλεπόμενων τιμών του Q_{tot}.
Στο διάγραμμα 2 δίνεται η σχέση μεταξύ δύο διαφορών θερμοκρασίας: Της διαφοράς θερμοκρασίας του καλύμματος με τον εξωτερικό αέρα του θερμοκηπίου \((T_c - T_{out})\) και της διαφοράς θερμοκρασίας του αέρα του θερμοκηπίου με τον εξωτερικό αέρα \((T_{in} - T_{out})\) [6].

\[(T_{in} - T_{out}) \text{ vs } (T_c - T_{out})\]

Διάγραμμα 2. Μεταβολή της διαφοράς \(T_c - T_{out}\) ως συνάρτηση της διαφοράς \(T_{in} - T_{out}\).

Από το διάγραμμα 2 φαίνεται ότι υπάρχει άμεση σχέση μεταξύ των δύο αυτών διαφορών \((T_c - T_{out})\) και \((T_{in} - T_{out})\) και επομένως στο εξής μπορούμε σαν \(\Delta T\) να χρησιμοποιούμε τη διαφορά \((T_{in} - T_{out})\).
Ο ολικός συντελεστής απωλειών θερμότητας \(U \) είναι το άθροισμα τριών επιμέρους συντελεστών:

- του συντελεστή απωλειών με συναγωγή και μεταφορά, \(U_c \)
- του συντελεστή απωλειών λόγω διαφυγών του αέρα, \(U_v \)
- του συντελεστή απωλειών με ακτινοβολία, \(U_R \)

Κατόπιν επιχειρήθηκε να εκφραστεί ο συντελεστής \(U \) συναρτήσει μόνο της διαφοράς θερμοκρασίας μεταξύ του εσωτερικού και εξωτερικού αέρα του θερμοκηπιού (\(\Delta T = T_i - T_o \)). Επομένως ο συντελεστής αυτός θα ήταν ένας μέσος ολικός συντελεστής απωλειών.
Στο διάγραμμα 3 δίνεται η σχέση του Q_{tot} με το ΔT. Η εξίσωση της γραμμικής παλινδρόμησης του Q_{tot} είναι:

$$Q_{tot} = 8.8 \times \Delta T \quad (28)$$

και το $R^2 = 0.25$.

Διάγραμμα 3. Γραφική παράσταση των μετρήσεων των απωλειών του θερμοκηπίου συναρτήσει των εκτιμήσεων του Q_{tot} από το μοντέλο (28).

Απ’ ότι φαίνεται όμως και στο διάγραμμα 3 η σχέση αυτή δεν εκφράζει καλά και πάλι το Q_{tot} όπως άλλωστε θα περίμενε κανείς αν λάβει υπόψη του τα διαγράμματα 1 και 2. Από το μοντέλο (28) βρίσκουμε ότι ο ολικός συντελεστής απωλειών θερμότητας είναι $U = 8.8 \text{ Wm}^{-2} \text{ K}^{-1}$ ο οποίος όμως εξηγεί το 25% μόνο της ολικής παραλακτικότητας αλλά είναι κοντά στον μέσο ολικό συντελεστή που αναφέρεται στην βιβλιογραφία [2].
Στην προσπάθεια που έγινε για την βελτίωση του μοντέλου το οποίο θα εξέφραζε καλύτερα από τα προηγούμενα το Q_{tot} και το οποίο θα έδινε τη δυνατότητα για ικανοποιητικό υπολογισμό του ολικού συντελεστή απώλειών θερμότητας επιλέξθηκε η παρακάτω έκφραση του συντελεστή U στην οποία δεν λαμβάνονται υπόψη οι απώλειες με ακτινοβολία αλλά μόνο οι απώλειες με μεταφορά, αγωγή και διαφυγών του αέρα οι οποίες είναι άμεσα συνδεδεμένες με την ταχύτητα του ανέμου (u). Είναι δηλαδή:

\[U = \alpha + \beta \cdot u, \]

οπότε:

\[Q_{tot} = \alpha \cdot \Delta T + \beta \cdot \Delta T \cdot u \]

(29)

Για 25 παρατηρήσεις η συμμεταβολή του Q_{tot} συναρτήσει των ΔT και $u \cdot \Delta T$ έδωσε τα παρακάτω αποτελέσματα: $\alpha = 4.3$, $\beta = 2.4$, και $R^2 = 0.54$. Επομένως το μοντέλο του Q_{tot} γίνεται:

\[Q_{tot} = (4.3 + 2.4 \cdot u) \cdot \Delta T. \]

(30)
Στο διάγραμμα 4 δίνεται η γραφική παράσταση των παρατηρημένων μετρήσεων του Q_{tot} και εκτιμήσεις με το μοντέλο (29).

Διάγραμμα 4. Γραφική παράσταση των μετρήσεων των απωλειών του θερμοκηπίου συναρτήσει των εκτιμήσεων του Q_{tot} από το μοντέλο (29)

Από το διάγραμμα 4 βλέπουμε ότι το μοντέλο που δίνει το Q_{tot} δηλαδή:

$$Q_{tot} = (\alpha - \beta * u) * \Delta T$$

είναι αρκετά βελτιωμένο. Εξάλλου αυτό φαίνεται και από το (R^2) το οποίο είναι $R^2=0.54$.

62
Στο διάγραμμα 5 δίνεται η γραφική παράσταση μεταξύ των υπολοίπων των παρατηρημένων τιμών του \(Q_{\text{tot}} \) συναρτήσει των εκτιμήσεων του \(Q_{\text{tot}} \).

Residual Plots for Qtotal

![Residual Plots for Qtotal](image)

\[a*DT + b*DT*\omega \]

Διάγραμμα 5. Μεταβολή των απόκλισεων μετρήσεων του \(Q_{\text{tot}} \) και εκτιμήσεων του \(Q_{\text{tot}} \) (από το μοντέλο (29)), συναρτήσει των εκτιμήσεων του \(Q_{\text{tot}} \).

Στο διάγραμμα 5 βλέπουμε ότι οι τιμές των υπολοίπων είναι τυχαία κατανεμημένες. Αυτό είναι ένας ακόμη λόγος που καθιστά το μοντέλο του \(Q_{\text{tot}} \) ικανοποιητικό.

Χρησιμοποιώντας την σχέση (24) υπολογίζουμε τον ολικό συντελεστή θερμικών απωλειών του θερμοκηπίου \(U \) ο οποίος είναι:

\[U = 4.3 + 2.4*\omega \] (31)
Τέλος, επιχειρήθηκε στην έκφραση του \(U \) να ληφθούν υπόψη και οι απώλειες με ακτινοβολία. Γι' αυτό επιλέχθηκε ένα μοντέλο που παρουσιάζει τις ολικές θερμικές απώλειες του θερμοκηπίου ως άθροισμα τριών γινομένων: ενός σταθερού όρου \(\alpha \) επί τη διαφορά θερμοκρασίας του εσωτερικού με τον εξωτερικό αέρα του θερμοκηπίου (\(\Delta T \)), ενός σταθερού όρου \(\beta \) επί την ταχύτητα του ανέμου (\(u \)) και επί \(\Delta T \) και ενός σταθερού όρου \(\gamma \) επί την καθαρή θερμική ακτινοβολία εξω από το θερμοκήπιο. Δηλαδή

\[
Q_{\text{tot}} = \alpha \Delta T + \beta u \Delta T + \gamma Q_{\text{net}} \quad (32)
\]

Εφαρμόζοντας το μοντέλο αυτό στα δεδομένα των παραμέτρων βρίσκουμε ότι \(\alpha = 3.44, \beta = 1.26, \gamma = -0.44 \) και \(R^2 = 0.7 \). Έτσι η εξίσωση γίνεται:

\[
Q_{\text{tot}} = (3.44 + 1.26 u) \Delta T + 0.44 Q_{\text{net}} \quad (33)
\]
Στο διάγραμμα 6 δίνεται η γραφική παράσταση των παρατηρημένων τιμών του Q_{tot} και εκτιμήσεις με το μοντέλο (32).

Διάγραμμα 6. Γραφική παράσταση των μετρήσεων των απωλειών του θερμοκηπίου συναρτήσει των εκτιμήσεων του Q_{tot} από το μοντέλο (32).

Το R^2 της εξίσωσης (33) είναι $R^2=0.7$ και είναι ικανοποιητικό. Από το R^2 και το διάγραμμα 6 βλέπουμε πως το νέο μοντέλο είναι ακόμη πιο καλό από το προηγούμενο και αυτό γιατί λαμβάνει υπόψη του και την καθαρή θερμική ακτινοβολία.
Στο διάγραμμα 7 δίνεται το σχέδιο των υπολοίπων των παρατηρημένων τιμών του Κtot από την ευθεία του νέου μοντέλου που προβλέπει τις τιμές του.

Διάγραμμα 7. Μεταβολή των απόκλισεών μετρήσεων του Qtot και εκτιμήσεων του Qtot (από το μοντέλο (32)), συναρτήσει των εκτιμήσεων του Qtot.

Η κατανομή των υπολοίπων είναι ικανοποιητική και αυτό είναι ένας ακόμη λόγος που δείχνει ότι το μοντέλο (32) αποδίδει καλά τις προβλεπόμενες τιμές σε σχέση με τις παρατηρημένες.
Η καθαρή θερμική ακτινοβολία (\(Q_{\text{net}}\)) συνδέεται άμεσα με την θερμοκρασία του ουρανού (\(T_{\text{sky}}\)). Και οι δύο αυτοί παράμετροι είναι δύσκολα μετρήσιμοι. Για τον λόγο αυτό αντικαθιστούμε τον παράγοντα \(\gamma * Q_{\text{net}}\) στο μοντέλο (32) με ένα νέο όρο \(\gamma'\). Έτσι το μοντέλο τελικά γίνεται:

\[
Q_{\text{tot}} = (3.44 * u + 1.26 * u) \Delta T + 14.6 \quad (34)
\]

Τελικά ο νέος βελτιωμένος ολικός θερμικός συντελεστής θερμικών απωλειών είναι:

\[
U = 3.44 * u + 1.26 * u + 14.6 / \Delta T \quad (35)
\]

του οποίου η τιμή όμως εκφράζει μόνο το 58% της ολικής παραλακτικότητας των συνολικών απωλειών.
ΚΕΦΑΛΑΙΟ 7

Συζήτηση και συμπεράσματα.

Οι πειραματικές μετρήσεις έγιναν σε πραγματικό θερμοκήπιο. Αυτό βοήθησε αρκετά στην εξοικείωση τόσο με τον πειραματικό εξοπλισμό και το πρότυπο σύστημα καταγραφής όσο και με το θερμοκήπιο.

Αρχικά ο ολικός συντελεστής απωλειών θερμότητας εκφράστηκε ως γινόμενο ενός σταθερού όρου επί την ταχύτητα του ανέμου και επί την διαφορά θερμοκρασίας του καλύμματος με τον εξωτερικό αέρα. Επειδή όμως η έκφραση αυτή του ολίκου συντελεστή απωλειών θερμότητας δεν ήταν ικανοποιητική και λόγω της άμεσης σχέσης των διαφορών της θερμοκρασίας του καλύμματος με τον εξωτερικό αέρα και της θερμοκρασίας του εσωτερικού με τον εξωτερικό αέρα του θερμοκήπιο, έγινε προσπάθεια για νέα έκφραση του U.

Έτσι επιχειρήθηκε μια έκφραση του μέσου ολικού συντελεστή απωλειών θερμότητας συναρτήσει της διαφοράς θερμοκρασίας (ΔΤ=Τ₁-Τ₀) του οποίου η τιμή υπολογίστηκε U = 8.8 W m⁻² K⁻¹, τιμή η οποία είναι πολύ κοντά στους μέσους όρους του συντελεστή που υπάρχουν στην βιβλιογραφία.

Έπειτα έγινε μία προσπάθεια για την βελτίωση του μοντέλου το οποίο θα εξέφραζε καλύτερα από τα προηγούμενα τον συντελεστή U και το οποίο θα έδινε τη δυνατότητα για ικανοποιητικό υπολογισμό του ολικού συντελεστή απωλειών θερμότητας. Έτσι επιλέχθηκε η παρακάτω έκφραση του συντελεστή U στην οποία δεν λαμβάνονται υπόψη οι απώλειες με ακτινοβολία αλλά μόνο οι απώλειες με μεταφορά, αγωγή και διαφυγών του αέρα οι οποίες είναι άμεσα συνδεδεμένες με την ταχύτητα του ανέμου (u). Στην περίπτωση αυτή η τιμή του συντελεστή υπολογίστηκε U = 4.3+2.4*u W m⁻² K⁻¹.
Κατόπιν, επιχειρήθηκε η έκφραση του U να συμπεριλάβει υπόψη και τον συντελεστή απωλειών με ακτινοβολία. Γι’αυτό επιχειρήθηκε ένα μοντέλο που παρουσίαζε τον συντελεστή U ως άθροισμα τριών όρων: ενός σταθερού όρου \(a \), ενός σταθερού όρου \(\beta \) επί την ταχύτητα του ανέμου (\(u \)) και ενός σταθερού όρου \(\gamma \) επί την καθαρή θερμική ακτινοβολία \(Q_{\text{net}} \) από το θερμοκήπιο, προς την \(\Delta T \). Η τιμή του συντελεστή υπολογίστηκε \(U = 3.4 + 1.2 \ast u + 0.4 \ast Q_{\text{net}}/\Delta T \, \text{W m}^2 \, \text{K}^{-1} \). Έτσι με την εισαγωγή του \(U_{R} = 0.4 \ast Q_{\text{net}}/\Delta T \) στην έκφραση του U, το μοντέλο βελτιώθηκε σημαντικά και εξηγεί το 70% της συνολικής παραλλακτικότητας.

Τέλος επειδή η καθαρή θερμική ακτινοβολία (\(Q_{\text{net}} \)) συνδέεται άμεσα με την θερμοκρασία του ουρανού (\(T_{\text{sky}} \)) και οι δύο αυτοί παράμετροι είναι δύσκολα μετρήσιμοι, αντικαταστήσαμε τον παράγοντα \(\gamma \ast Q_{\text{net}} \) με ένα νέο όρο \(\gamma' \). Στην περίπτωση αυτή η τιμή του συντελεστή υπολογίστηκε \(U = 4 + 2.2 \ast u + 14.6/\Delta T \).

Συμπεραίνουμε λοιπόν ότι η καλύτερη έκφραση του ολικού συντελεστή απωλειών θερμότητας είναι αυτή που λαμβάνει υπόψη τις απώλειες με μεταφορά, συναγωγή, λόγω διαφυγών του αέρα και ακτινοβολία. Επειδή όμως η μέτρηση της καθαρής θερμικής ακτινοβολίας και της θερμοκρασίας του ουρανού, που συνδέονται άμεσα, είναι δύσκολη, οι προσπάθειες για περισσότερες και καλύτερες μετρήσεις πρέπει να συνεχιστούν έτσι ώστε το μοντέλο εκτίμησης του ολικού συντελεστή απωλειών θερμότητας U να εξηγεί όσο το δυνατόν περισσότερο από την παραλλακτικότητα των μετρήσεων των απωλειών θερμότητας του θερμοκηπίου.
ΒΙΒΛΙΟΓΡΑΦΙΑ

6. Κίττας, Κ., “Μελέτη των Φαινομένων Εναλλαγής Θερμότητας σε Θερμοκήπιο”, Τεχν.Χρον.-Β, Τόμος 5, Τεύχος 4, p 45-60.
7. Κίττας, Κ., “Προσδιοριστικοί παράγοντες των θερμοκρασιακών ανυψώσεων υπό κάλυψη”,, 1985, p 61-77.