ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Internet of Things: Η συνεχής εξέλιξη και η εφαρμογή του στον επιχειρηματικό κόσμο.

Internet of Things: Its continuous evolution and applications in the business world.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

ΠΑΠΑΔΟΠΟΥΛΟΥ ΔΗΜΗΤΡΙΟΥ
Η σελίδα αυτή είναι σκότωμα λευκή.
Πίνακας περιεχομένων

1 Εισαγωγή .. 1

1.1 Σκοπός Εργασίας ... 1

1.2 Όρισμος Internet of Things ... 1

1.3 Internet of Things και συνεργαζόμενες τεχνολογίες .. 2

1.3.1 Κατηγορίες Τεχνολογιών IoT ... 2

1.3.2 Όρισμα Τεχνολογιών του IoT ... 5

2 Εφαρμογές του IoT ... 17

2.1 Στην υγεία .. 17

2.2 Στον αθλητισμό ... 21

2.3 Στην εκπαίδευση .. 25

2.4 Στο εμπόριο λιανικής .. 30

2.5 Στην βιομηχανία .. 35

2.6 Στην οικονομία ... 42

3 Εξέλιξη του IoT .. 49

4. IoT στην Ελλάδα ... 51

4.1 Ηλιακά φορτιζόμενοι σταθμοί παρατήρησης και πρόγνωσης καιρού 68

4.2 «Εξυπνο» Δωμάτιο Ξενοδοχείου ... 71

Βιβλιογραφία ... 75
Εισαγωγή

1.1 Σκοπός Εργασίας

Στα πλαίσια αυτής της εργασίας παρουσιάζουμε την ανάπτυξη του Internet of Things με τις βασικές τεχνολογίες που θεωρούνται πυλώνες στην εξέλιξη του καθώς και τις μέχρι τώρα εφαρμογές του σε διάφορους κλάδους βιομηχανιών. Στη συνέχεια θα παρουσιάσουμε δύο επιχειρηματικές δραστηριότητες που θα μπορούσαν να υιοθετηθούν στην ελληνική αγορά.

1.2 Ορισμός Internet of Things

Ο όρος «Internet of Things» χρησιμοποιείται σαν πλατφόρμα/όμπρελα που καλύπτει διάφορους τομείς σχετικούς με την μετάβαση του Internet και του Διαδικτύου στο φθινό κόσμο, και χρήσιμοτεις ως μέσον την παγκόσμια εξάπλωση διασυνδεδεμένων συσκευών με ενσωματωμένη ταυτοποίηση, με δυνατότητες ενσωματωσης αισθητήρων ή ικανών επεξεργασίας δεδομένων. Το Internet of Things οραματίζεται ένα μελλον στο οποίο οι ψηφιακές και φυσικές οντότητες θα μπορούν να
είναι συνδεδεμένες, μέσω κατάληψιν πληροφοριών και τεχνολογίας επικοινωνιών, ώστε να επιτρέψει μια καινούργια κλάση εφαρμογών και υπηρεσιών.

1.3 Internet of Things και συνεργαζόμενες τεχνολογίες

1.3.1 Κατηγορίες Τεχνολογιών IoT

[Diagram showing the categories of IoT: Identification, Sensing, Communication, Services, Computation, Semantics, Industrial Internet of Things]
Το IoT συμμετέχει σε 6 διαφορετικές κατηγορίες για να επιτύχει τη μέγιστη απόδοση και λειτουργικότητα σαν πλατφόρμα

1. Ταυτοποίηση: Οι μέθοδοι ταυτοποίησης είναι σημαντικοί για την απόδοση μοναδικής ταυτότητας στα εκάστωτε αντικείμενα που επικοινωνούν μεταξύ τους, ώστε να γνωρίζουμε χωρίς ασάφεια από ποιό αντικείμενο και πότε δημιουργείται κάθε πακέτο δεδομένων. Με την πρόβλεψη ότι το IoT θα περιέχει δεκάδες δυσεκατομύρια αντικείμενα το πρωτόκολλο IPv6 δημιουργήθηκε για να καλύψει τις ανάγκες ταυτοποίησης τους, καθώς το IPv4 δε θα μπορούσε, αλλά και να αναβαθμισεί την ασφάλεια στην κρυπτογράφηση στο τελικό στάδιο της ασφάλειας του δικτύου.

2. Sensing: Η δημιουργία ενσωματωμένων αισθητήρων στα αντικείμενα που θέλουμε να συλεγούμε δεδομένα καθώς και η εγκατάσταση και η αξιοποίηση ασύρματων δικτύων αισθητήρων (WSN) ώστε να έχουμε διαθέσιμα τα δεδομένα αυτά και να τα επεξεργαστούμε, είτε στην πτυχή κόμβους αποθήκευσης δεδομένων απο από πολλά αντικείμενα (cloud computing), ήτοι στο λογισμικό επικαλύπτει τα πρωτόκολλα της ασφάλειας.

3. Επικοινωνία: Οι τεχνολογίες επικοινωνίας αναφέρονται τόσο στην ανάπτυξη του λογισμικού όσο και του υλικού. Στο λογισμικό επικαλύπτει τα πρωτόκολλα επικοινωνίας καθώς και τις προσωρυκτικές ασφαλείς. Για επικοινωνία κομπιυνών αποστάσεων χρησιμοποιούνται συνήθως οι τεχνολογίες ταυτοποίησης ραδιοσυχνότητας (RFID), επικοινωνία κομπιυνου πεδίου (NFC), Bluetooth και Bluetooth energy. Για μεγαλύτερες αποστάσεις η επικοινωνία γίνεται μέσω ενυρμάτων, ασύρματα ή δορυφορικά Ethernet, Wi-Fi, GSM και LTE. Επίσης στη κατηγορία αυτή συμμετέχει η ανάπτυξη της ασφάλειας.
επικοινωνίας (χρήση χρηστών, είσοδος στο σύστημα επικοινωνίας, ανίχνευση και πρόληψη κακόβουλης εισόδου, αναφορών…) Τέλος στο λικό αναφέρεται τα στοιχεία υλικού που αποτελούν την αρχιτεκτονική του δικτύου.

4. Λειτουργικότητα/υπολογισμός (Computation): Όπως και στην επικοινωνία η λειτουργικότητα μπορεί να χωριστεί σε λογισμικό και υλικό. Το λογισμικό κατηγοριοποιείται σε σειτουργικά συστήματα πραγματικού χρόνου και cloud-based πλατφόρμες λειτουργικών συστημάτων με δυνατότητα συλογής, υπολογισμού και ανάλυσης δεδομένων. Το υλικό αποτελείται από τις επεξεργαστικές μονάδες όπου γίνεται η ανάλυση του λογισμικού και κατηγοριοποιούνται σε μικροεπεξεργάστες και σε ολοκληρωμένα συστήματα σε πλακέτες (System-on-Chips) όπως τα δημοφιλή Arduino, Raspberry Pi, Intel Galileo κ.α.

5. Υπηρεσίες (Services): Οι υπηρεσίες κατηγοριοποιούνται σε απλές συλλογές και αποθηκεύσης δεδομένων και σε πιο πολυπλοκές διεργασίες δεδομένων για αναγνώριση μοτίβων και αποφάσεων των ανάλυσης ενεργειών που θα πρέπει να εκτελεστούν ανάλογα με την ανάλυση των δεδομένων. Οι δεύτερες περιγράφονται ως Big Data Analytics όπου χρησιμοποιούν τεχνολογίες όπως ο στατιστικός προγραμματισμός, machine learning και μοντέλα πρόγνωσης για την επίτευξή τους.

6. Σημασιολογία: Ο τρόπος περιγραφής της οντότητας, του νοήματος, των χαρακτηριστικών και της ανάλυσης των δεδομένων με ένα τυπικό πρότυπο αποτελεί την κατηγορία της σημασιολογίας. Αποτελεί ένας σημαντικός τομέας για την εύκολη προσβασιμότητα πληροφοριών δεδομένων από διαφορετικά συστήματα IoT βιομηχανιών και παραδείγματα μοντέλων προτύπων είναι το
1.3.2 Ορισμοί Τεχνολογιών του IoT

Cloud, Edge, Fog computing

Στις αρχές του Νοεμβρίου 2017 το Open Fog Consortium διοργάνωσε το πρώτο παγκόσμιο Fog συνέδριο, το οποίο ασχολήθηκε αποκλειστικά με την ανάπτυξη του Fog Computing. Το Fog Computing αποτελεί ένας σημαντικός τομέας τεχνολογίας που συνδέεται με την ανάπτυξη του IoT (Sensing, Υπολογισμός, Services, επικοινωνία) και υπολογίζεται ότι θα έχει πάνω από 700 εκατομμύρια μερίδιο αγοράς ύψους στο 2024. Παρακάτω θα αναλύσουμε την λειτουργία του και τις διαφορές του από παρόμοιες τεχνολογίες.

Το Cloud computing ορίζεται ως ένα αποκεντρωμένο μοντέλο υπολογισμών/λειτουργικότητας, όπου γεωγραφικά χωρισμένα κέντρα δεδομένων παρέχουν αποθήκευση, υπολογισμούς/επεξεργασία δεδομένων και επικοινωνιακές απαιτήσεις στα δεδομένα αυτά. Το Cloud παρέχει:

- Infrastructure as a Service “IaaS” (Αρχιτεκτονική δομή σαν υπηρεσία) όπου παρέχονται διακομιστές και χώροι αποθήκευσης δεδομένων κατά πραγματεία
• Software as a Service “SaaS” (Λογισμικό σαν υπηρεσία) όπου εγκατεστημένο λογισμικό που κανονικά θα βρισκόταν στον υπολογιστή του χρήστη βρίσκεται στο Cloud

• Network as a Service “NaaS” (Δικτυό σαν υπηρεσία) όπου παρέχεται εικονικό ιδιωτικό δίκτυο (VPN) και διασύνδεση κατά παραγγελεία

• Function as a Service “FaaS” (Υπολογισμός/εκτέλεση διεργασιών σαν υπηρεσία) όπου τμήματα υπολογισμών διεργασιών μιας μεγάλης εφαρμογής εκτελούνται από το Cloud αντί από τον υπολογιστή του εκάστωτε χρήστη.

Το Mobile Cloud computing που είναι ευρύτερα γνωστό από τους καταναλωτές χρησιμοποιείται για να λύσει τις αδυναμίες της υπολογιστικής ικανότητας των κινητών συσκευών (απόδοση, εγκατάσταση λογισμικού σε ετερογενείς αρχιτεκτονικές και λειτουργικά συστήματα, ασφάλεια) μεταβιάζοντας τον λειτουργικότητα εφαρμογών στο Cloud. Τα πλεονεκτήματα του είναι η μείωση της χρήσης της μπαταρίας, η απελευθέρωση χώρων δεδομένων για τα κινητά αλλά και αυξημένη απόδοση επεξεργασίας δεδομένων αφού η λειτουργικότητα εκτελείται στο Cloud και όχι στον επεξεργαστή του κινητού. Το πρόβλημα παρουσιάζεται στη καθυστέρηση διασύνθεσης (latency) των κινητών συσκευών με το Cloud και στη διαχείριση της ευρυζωνικότητας (bandwidth). Οι εφαρμογές που στηρίζονται στο MCC πρέπει να είναι υλοποιημένες ώστε να μην έχουν απροσδόκητους τερματισμούς με πιθανές απώλειες δεδομένων σε περιπτώσεις απερίοριστης διακοπής της σύνδεσης με το Cloud.

Το Edge Computing δημιουργήθηκε για την βοήθεια επιλύσης των παραπάνω προβλημάτων και αναπτύχθηκε μαζί με την εξάπλωση του IoT. Οπως αναφέρεται και στο όνομα του στο Edge Computing η επεξεργασία δεδομένων πραγματοποιείται
στην άκρη του δικτύου, συνήθως στους αρχικούς δρομολογητές προς το Internet. Λειτουργώντας τοπικά το Edge Computing καταφέρνει να επιτυγχάνει χαμηλή καθηστέρηση διαύγεσης χαμηλότερη ευρυζωνικότητα, πιθανώς και λειτουργικότητα των εφαρμογών στη συσκευή ακόμα και όταν βρίσκεται εκτός διαδικτύου. Η λύση που προτείνεται θα σερβίρει την καταφύγιση του «κέντρου δεδομένων σε κουτί» στην οποία οι πόροι και ο χώρος δεδομένων για την επεξεργασία διεργασιών και ολοκληρωμένης λειτουργίας μια εφαρμογής βρίσκεται σε μια τοπικά τοποθετημένη μονάδα. Τα κουτιά του Edge Computing μπορούν να κατηγοριοποιηθούν από κινητές, χαμηλής ενέργειας, χαμηλής καθυστέρησης κατανάλωσης μονάδες (Tactical Edge Computing από το CMU's Software Engineering Institute) έως και βάσεις server (Cisco Flexpod Express). Το Mobile Edge Computing αποτελεί υποκλάση του Edge Computing και προσφέρει τις δυνατότητες του σε συσκευές στο πρώτο επίπεδο ασύρματης δικτύωσης τους με τον διακομιστή (router). Οι χρήστες επωφελούνται όπως και στη MCC από χαμηλή καθυστέρηση ενέργειας των συσκευών τους, καλύτερη επεξεργασία των διεργασιών της εφαρμογής τους αλλά επιπλέον και από χαμηλή καθυστέρηση μεταφοράς δεδομένων, ακρίβειας προσδιορισμού γεωγραφικής τοποθεσίας και αυξημένης ασφάλειας και ιδιωτικότητας, ενώ οι πάροχοι ωφελούνται μέσω χαμηλής καθυστέρησης ευρυζωνικότητας και εσόδων μέσω παράθεσης.

Το Fog Computing, όπως μια νέα τεχνολογία σε συνεχή ρυθμό ανάπτυξης, έχει ελειπτική όρισμο καθώς συνορεύει και συγχέεται με το Edge Computing καθώς και με το Cloud Computing. Υπάρχουν όμως δύο επίπεδα ορισμοί που μπορούμε να χρησιμοποιήσουμε.
Από το Αμερικανικό εθνικό Ινστιτούτο προτύπων και τεχνολογίας (NIST) το Fog Computing ορίζεται σαν ένα πρότυπο φυσικών και ψυφιακών πόρων που λειτουργεί ανάμεσα σε έξυπνες συσκευές τελικού επιπέδου (δλδ με ικανότητα να παρέχουν λειτουργικότητα και αποθήκευση δεδομένων ανεξάρτητες) και παραδοσιακών Cloud κέντρων και βάσεων δεδομένων. Το πρότυπο επιτρέπει σε εφαρμογές να καθορίζουν τη κατανομή της λειτουργικότητας τους, της αποθήκευσης των δεδομένων τους σε οποιοδήποτε επίπεδο της αρχιτεκτονικής ανάλογα με τις ανάγκες καθεστέρησής τους στην επικοινωνία στην επεξεργασία ή στην αποθήκευση των δεδομένων τους.

Από το OpenFog Consortium, το Fog Computing αποτελεί μια οριζόντια επιπέδων αρχιτεκτονική ενός συστήματος οπου κατανέμει τις υπηρεσίες και τους πόρους της λειτουργικότητας, της αποθήκευσης δεδομένων, της τηλεπικοινωνίας και του ελέγχου σε οποιοδήποτε σημείο/επίπεδο του Cloud of Things.

Big Data

Η ορολογία Big Data ορίζεται ως τεραστίων μεγεθών δεδομένα, δομημένα ή δομημένα ήμισυδομημένα ή αδόμενα, με τη δυνατότητα να εξορύξουμε πληροφορία από αυτά και όπου λόγω όγκου δεν έχει πλέον σημασία μια μεμονωμένη καταγραφή αλλά το σύνολο του μεγέθους τους.

Το 2001 ο αναλυτής Doug Laney εισήγαγε τα χαρακτηριστικά των Big Data ως το μοντέλο των 3 V. Από τότε οι έννοιες των χαρακτηριστικών αυτών δημιουργούν συνεχόμενα αυξημένες προκλήσεις και με την αύξηση των χαρακτηριστικών αυτών εμφανίζονται πλέον ολοένα και περισσότερες προκλήσεις για την απεικόνιση των Big Data. Παρακάτω θα παρουσιάσουμε τα τρια αυτά χαρακτηριστικά καθώς και νέα χαρακτηριστικά που έχουν οριστεί με την έννοιας που αντιπροσωπεύουν:
1. **Volume (Όγκος):** Ο τεράστιος όγκος δεδομένων των Big Data που δημιουργείται από αισθητήρες, συσκευές συνδεδεμένα με την ανάπτυξη του Internet, των μέσων κοινωνικής δικτύωσης, του ηλεκτρονικού εμπορίου, των συσκευών GPS κ.α.

2. **Velocity (Ταχύτητα):** Ο ρυθμός της δημιουργίας, της αποθήκευσης και της επεξεργασίας των δεδομένων που διοχετεύεται, όπως τα 3 εκατομύρια Like της σελίδας κοινωνικής δικτύωσης του Facebook που γίνονται την ημέρα από τους χρήστες του ή η αναζήτηση του πιο δημοφιλούς προϊόντος σε κάποια κατηγορία.

3. **Variety (Ποικιλία):** Ορίζεται από τη βιομηχανία ως η δομή των Big Data και κατηγοριοποιείται σε:
 - Δομημένη – πίνακες δεδομένων SQL, Excel sheets, RDBMS όπως η Oracle
 - Ημί-Δομημένη – Email, tweets, αξιολογήσεις πελατών
 - Αδόμητη – Φωτογραφίες, Βίντεο, ηχογραφίες

4. **Veracity (Ποιότητα):** Αναφέρεται στους θορύβους, στις κλίσεις και στις μη ομαλές μεταβολές των δεδομένων. Η ποιότητα των δεδομένων θα πρέπει να είναι όσο το δυνατόν πιο απόλυτη για να μην επηρεαστούν τα αποτελέσματα της επεξεργασίας τους.

5. **Validity (Ακρίβεια):** Ανάλογα με το λόγο επεξεργασίας των Big Data η ακρίβεια των δεδομένων θα δώσει τη δυνατότητα ενδελεχούς έρευνας και επεξεργασίας τους.

6. **Volatility (Εκρακτικότητα):** Η εκρακτικότητα καθορίζεται από το χρόνο εγκυρότητας των δεδομένων. Ανάλογα με τη περίοδο σε πάντα τη στιγμή που δημιουργείται ένας
όγκος δεδομένων μπορεί να μην είναι έγκυρος μετά από ένα χρόνο, μετά από ένα μήνα ή ακόμα και μετά από κάποιες ώρες.

Big Data Analytics στον επιχειρηματικό κόσμο

Η έννοια Analytics ορίζεται η διαδικασία ανάλυσης και επεξεργασίας πληροφορίας για την εξόρυξη συμπερασμάτων και λήψης αποφάσεων. Δεν είναι εργαλείο ή τεχνολογία αλλά περισσότερο τρόπος σκέψης και δράσης. Η έννοια Big Data Analytics χρησιμοποιείται για τη διαδικασία ανάλυσης αδόμητης ή μεγάλων διαστάσεων βάσης δεδομένων η οποία δε μπορεί να αναλυθεί με συμβατικές μεθόδους.

Η μέθοδος της Big Data Analytics έχει τα παρακάτω στάδια:

- **Εντοπισμός προβλήματος:** Η αναγνώριση ενός προβλήματος όπως η εντοπισμός μιας βέλτιστης κατανομής ή διανομής των προϊόντων σε ένα κατάστημα ή η αναγνώριση πελατών που είναι κακοπληρωτές κ.α.
- **Δημιουργία Υπόθεσης:** Η εύρεση των λόγων που παρατηρείται ένα πρόβλημα μέσω υπόθεσης και η δημιουργία ερωτημάτων που απαντούν στην υπόθεση για την επίλυση του προβλήματος
- **Συλλογή Δεδομένων:** Η συλλογή έχει σκοπό να απαντήσει στα ερωτήματα της υπόθεσης και να την επιβεβαιώσει. Έχει σημασία η συλλογή να μην έχει μεροληπτική, ατελής ή επιφανειακή αλλιώς η ανάλυση θα αποτύχει
- **Εξερεύνηση Δεδομένων:** Μια τυπική ανάλυση των δεδομένων συνήθως με γραφική αναπαράσταση των δεδομένων για την αρχική ενημέρωση και οικοποίηση των αναλυτών σχετικά με τις γενικές παρατηρήσεις των δεδομένων όπως σημαντικές μεταβλητές που επηρεάζουν τις παρατηρήσεις.
• Προετοιμασία Δεδομένων: Τα δεδομένα έρχονται σε μορφή που είναι δυσκολο
να αναλυθεί. Ο καθαρισμός από θορύβους, ο έλεγχος και η διαχείρισή τους
gίνεται σε αυτό το στάδιο
• Σχεδιασμός/Υλοποίηση Μοντέλου: Η διαδικασία κατασκευής της λύσης και η
εφαρμογή της για την επίλυση του προβλήματος
• Εγκυροποίηση Μοντέλου: Η εγκυροποίηση της λύσης ενός προβλήματος στον
επιχειρηματικό κόσμο στηρίζεται από πολλούς παράγοντες. Μέσω της
ανάλυσης δεδομένων, μέσω εμπειρίας, μέχρι και μέσω ενστίκτου. Η επιλογή
της λύσης μέσω ανάλυσης δεδομένων όμως εφαρμόζεται συνήθως από
επιχειρήσεις που στηρίζονται στην τεχνολογία των Big Data.
• Παρακολούθηση/Αξιολόγηση Αποτελεσμάτων: Εφόσων γίνεται η εφαρμογή
μίας λύσης γίνεται η αξιολόγησή της, δηλαδή κατά πόσο αντιμετωπίζεται το
πρόβλημα, με τι κόστος κ.α. Επίσης με τη διάρκεια του χρόνου καθώς
εμφανίζεται αλλαγή των δεδομένων αξιολογείται τη λύση, αναβαθμίζεται στα
νέα δεδομένα ή αλλάζει ολοκληρωτικά.

Τεχνητή Νοημοσύνη

Το 1956 ο Καθηγητής του Dartmouth John McCarthy δημιούργησε τον όρο
«Τεχνητή Νοημοσύνη» που αναφέρεται σε υλικό και λογισμικό που παρουσιάζει
συμπεριφορά ευφυίας ή συμφωνα με τα λεγόμενα του «η επιστήμη και η μηχανική
dημιουργίας ευφυών μηχανών και υπολογιστικών προγραμμάτων ειδικότερα.

Για δεκαετίες η τεχνητή νοημοσύνη υπήρχε μέσω προγραμμάτων λήψης
αποφάσεων από εφαρμογές αλγορίθμων. Για αρκετά όμως προβλήματα στο
πραγματικό κόσμο που είναι πιο πολύπλοκος όμως η δημιουργία τέτοιων αλγορίθμων από ανθρώπους είναι ανέφικτη. Πολύπλοκες δραστηριότητες όπως ιατρικές διαγνώσεις, προβλέψεις αστοχίας ή βλάβης μηχανών, αναγνωρίσεις ανικεμένων από εικόνες ή ακόμα και χρηματιστηριακές προβλέψεις περιλαμβάνουν χιλιάδες δομές δεδομένων και μη γραμμικές σχέσεις μεταξύ των μεταβλητών τους. Η σύγχρονη τεχνητή νοημοσύνη για να μπορέσει να ανταπεξέλθει στην ικανότητα επίλυσης αυτών των προβλημάτων, των προβλέψεων πολύπλοκων προβλημάτων ή την αναγνώριση χαρακτηριστικών, προσπαθεί πλέον να μεταβέσει το πρόβλημα από το προγραμματισμό στο πρόγραμμα μέσω του Machine learning. Το Machine learning αποτελεί υποκατηγορία της τεχνητής νοημοσύνης και είναι ένας τομέας που εξελίσσεται σημαντικά με την πάροδο του χρόνου. Το 1959 ο Arthur Samuel, πρωτοπόρος στο τομέα της τεχνητής νοημοσύνης, όρισε το Machine Learning ως κλάδος της επιστήμης που δίνει στους υπολογιστές τη δυνατότητα να μαθαίνουν χωρίς να προγραμματίζονται αναλυτικά.

Ο στόχος του Machine Learning είναι να δημιουργήσει μια μηχανή πρόβεψης για κάθε διαφορετική περίπτωση προβλήματος. Δίνοντας δεδομένα για ένα συγκεκριμένο πρόβλημα σε έναν αλγόριθμο να υπολογίζει και να προβλέπει χρήσιμα αποτελέσματα, μεταβιβάζουμε τη βελτιστοποιήση της βαρύτητας των δεδομένων στον αλγόριθμο. Μερικές φορές μπορούμε να μεταβιβάσουμε ακόμα και την επιλογή των δεδομένων που είναι απαραίτητα για την επίλυση του προβλήματος. Οι αλγόριθμοι μαθαίνουν μέσω εξάσκησης. Στην αρχή ο αλγόριθμος λαμβάνει αποτελέσματα γνωστών παραδειγμάτων, καταγράφει τις διαφορές των προβλέψεων με τα τελικά αποτελέσματα, και προσαρμόζει τη
βαρύτητα των δεδομένων ώστε να βελτιστοποιήσει τις μελλοντικές προβλέψεις.
Το κύριο χαρακτηριστικό των Machine Learning αλγορίθμων είναι ότι οι προβλέψεις τους γίνονται πιο ακριβείς μέσω «εμπειρίας». Όσο περισσότερα ποιοτικά δεδομένα δίνουμε στον αλγόριθμο τόσο πιο καλές προβλέψεις θα αποδίδει.

Τεχνολογία Blockchain

Blockchain ορίζεται ως μια διαμοιρασμένη βάση δεδομένων που διατηρεί μια συνεχώς αυξανόμενη λίστα πακέτων δεδομένων που ονομάζονται blocks τα οποία είναι ασφαλή από αλλοίωση και αντιγραφή χρησιμοποιώντας κρυπτογράφηση.

Το Block είναι ένα αρχείο όπου δεδομένα που αφορούν το δίκτυο της Blockchain αποθηκεύεται μόνιμα. Ένα block καταγράφει μερικά ή ολόκληρη τις λεπτομέρειες των ανταλλαγών που ανήκουν στη Blockchain όπου δεν έχουν καταγραφεί σε προηγούσα block. Έτσι το εκάστοτε block λειτουργεί σαν «λογιστικό βιβλίο» καταγραφής για τη blockchain. Κάθε φορά που ένα block ολοκληρώνεται δίνει τη δυνατότητα σε άλλο block να ενσωματωθεί. Τα δεδομένα ενός block δε μπορούν να μεταποιηθούν. Κάθε block περιέχει την καταγραφή των ανταλλαγών κρυπτογραφημένη μέσω μιας hash συνάρτησης. Το εκάστοτε block περιέχει τη hash συνάρτηση του προηγούμενου block με το όποιο συνδέεται, η συλλογή των οποίων δημιουργεί μια αλυσίδα που ονομάζεται blockchain.
Μια hash συνάρτηση δέχεται μια είσοδο από δεδομένα και παράγει ένα αποτέλεσμα συγκεκριμένων διαστάσεων. Η διαδικασία εφαρμογής της συνάρτησης σε δεδομένα ονομάζεται hashing και το αποτέλεσμα ονομάζεται hash. Ένα βασικό χαρακτηριστικό μιας ασφαλούς hash συνάρτησης είναι ότι είναι «μονόδρομη», δηλαδή έχοντας κάποιος το αποτέλεσμα hash είναι θεωρητικά αδύνατο να βρει ποιά ήταν τα δεδομένα εισόδου που το παρήγαγαν. Ο τεχνικός όρος της ιδιότητας αυτής ονομάζεται preimage resistance και ο τεχνικός όρος της παραγωγής μοναδικού αποτελέσματος για κάθε έισοδο δεδομένων ονομάζεται collision resistance. Οι hash συναρτήσεις χρησιμοποιούνται εκτεταμένα στις blockchains. Οι διευθύνσεις των block των blockchains προέρχονται από μια διαδικασία εφαρμογής hashing συνάρτησης από public keys.

Το δίκτυο της Blockchain χαρακτηρίζεται peer-to-peer δηλαδή, κάθε κόμβος του δικτύου είναι συνδεδεμένος με όλους τους άλλους κόμβους του δικτύου. Όταν μια ανταλλαγή ολοκληρώνεται, προστίθεται το block στην blockchain το οποίο αντικατοπτρίζεται στο αντίγραφο κάθε χρήστη στους κόμβους του δικτύου.

Σαν οικονομικό μοντέλο η τεχνολογία blockchain, όπου εφαρμόστηκε μέσω του bitcoin για πρώτη φορά, εξαλείφει τους μεσάζοντες (PayPal, πιστωτικές) για την αποδοχή εγκυρότητας μιας συναλλαγής αφού μεταβιβάζει την εγκυρότητα της κατανεμημένα στο δίκτυο της από το σύνολο των miners και παρακολουθείται δημόσια για όλους τους χρήστες της. Απαλοίφωντας ένα κεντρικό «λογιστικό βιβλίο» (central ledger) και κατανέμοντας το στους κόμβους του δικτύου του (distributed ledger) ήταν και ο βασικός στόχος της ανάπτυξης της τεχνολογίας.
Ας δούμε ένα παράδειγμα πως το IoT ενσωματώνοντας την τεχνητή νοημοσύνη, την τεχνολογία Blockchain, και το Fog Computing μπορεί να υλοποιήσει ένα επιτυχικό αυτόνομο όχημα. Παραδοσιακοί τρόποι ανάλυσης δεδομένων, επεξεργασίας, ασφάλειας και δικτυακών λύσεων δεν είναι αρκετά δυνατά και ευφυή για να δημιουργήσουν ένα υψηλά αυτόνομο όχημα. Αλλά κατανεμημένες χαμηλού κόστους τεχνητής νοημοσύνης μηχανές συνδεδεμένες μέσω υψηλών ταχυτήτων ηττερονιστικών δικτύων εσωτερικά και εξωτερικά του όχηματος μπορούν να πάρουν αποφάσεις βασισμένες σε περαιτέρω διαστάσεις υψηλής εγκυρότητας ροής δεδομένων αμετάβλητη μέσω της τεχνολογίας blockchain και επεξεργασμένη από κόμβους του Fog. Το αποτέλεσμα είναι ένα όχημα που κινήται γρήγορα, δυναμικά και ασφαλώς στους δρόμους με ελάχιστη ανθρώπινη ενέργεια.

Αν και το IoT έχει ακόμη τεχνολογικές και οικονομικές δυσκολίες στην ανάπτυξή του το μέλλον του δε φαίνεται καθόλου δυσοίων. Στο παρόν προβλέπεται η συνεργασία των παραπάνω αναπτυσσόμενων τεχνολογιών μαζί του να ενισχύεται συνεχώς. Η τεχνητή νοημοσύνη θα επιτρέπει βαθύτερη ανάλυση σε πραγματικός χρόνο ιοτ ροές δεδομένων με σκόπο να πάρει πιο ευκολές και έγκυρες αποφάσεις. Το Fog Computing δίνει τη δυνατότητα στα δεδομένα αυτά να είναι διαθέσιμα σε οποιοδήποτε επίπεδο του δικτύου είναι αυτά απαραίτητα, λυνοντας προβλήματα καθυστέρησης, ευρυζωνικότητας και εγκυρότητας σε προηγούμενες περιορισμένες αποδόσεις λύσεων του IoT.
Στο επόμενο κεφάλαιο θα αναλύσουμε πως μέχρι σήμερα η Τεχνολογία του IoT έχει ενταχθεί σε κλάδους της βιομηχανίας του εμπορίου, της οικονομίας παρουσιάζοντας κάθε φορά και ένα παράδειγμα για τον εκάστωτε κλάδο.
2 Εφαρμογές του IoT

2.1 Στην υγεία

Με την ανάπτυξη της τεχνολογίας του IoT ο κάδοςτης υγείας μπορεί να αναβαθμιστεί σε σημείο που να προλαμβάνει περιπτώσεις που σήμερα θα οδηγούσαν σε επιπλοκές και κρίσιμες καταστάσεις.

- Παρακολούθηση φροντίδας από το σπίτι των ασθενών για καλύτερη άνεση τους. Με φορητούς αισθητήρες οι ιατροί μπορούν να ελέγχουν και να ανταποκρίνονται απομακρυσμένα στη κατάσταση υγείας του ασθενούς σε πραγματικό χρόνο.

- Η διαχείριση και η συντήρηση των ιατρικών εξοπλισμών και αναλώσιμων μέσω μιας Cloud πλατφόρμας δίνει τη δυνατότητα στο ιατρικό προσωπικό να επενδύει περισσότερο χρόνο στην φροντίδα των ασθενών. Επίσης η δυνατότητα προληπτικού ελέγχου σημαντικών ιατρικών μηχανημάτων μειώνει τη πιθανότητα προβλήματος σε χρονικές στιγμές που θα είναι κρίσιμες.

- Παρακολούθηση ιατρικού εξοπλισμού για την αναβάθμιση της φροντίδας των ασθενών παρακολουθώντας πως ο εξοπλισμός αυτός χρησιμοποιείται, από
ενσωματομενους αισθητήρες στις κλήνες έως και αισθητήρες θερμοκρασίας και στους νιπτήρες αποστείρωσης.

Ο έξυπνος επίδεσμος που προάγει καλύτερη και γρηγορότερη επούλωση

Ερευνητές από το πανεπιστήμιο Lincoln της Nebraska, την ιατρική σχολή του Harvard και του MIT έχουν σχεδιάσει έναν έξυπνο επίδεσμο που μπορεί να επουλώσει χρόνιες πληγές από τραυματισμούς σε πεδία μαχής, με καθε ίνα του περιεχομένου του.

Ο επίδεσμος συνιστάται από ηλεκτρικά αγώγιμες ίνες σκεπασμένες με ένα gel (γέλη) που μπορεί να περιέχει αντιβιοτικά κατά των μολύνσεων, παράγοντες αναδόμισης του ιστού, παυσίπονα ή άλλες θεραπευτικές ουσίες.

Ένας μικροεπεξεργαστής, όχι μεγαλύτερος από ένα γραμματόσημο, που μπορεί να ενεργοποιηθεί από ένα smartphone ή άλλη ασύρματη συσκευή στέλνει μικρές διαφορές δυναμικού μέσα από επιλεγμένες ίνες. Η διαφορά δυναμικού θερμαίνει την ίνα και την υδογέλη της, ελευθερώνοντας ότι φορτίο περιέχει.

Ένας απλός επίδεσμος μόνο μπορεί να ικανοποιήσει πολλαπλές θεραπευτικές ουσίες που έχουν ορισθεί για ένα αμιγάμο είδος πληγής, λένε οι ερευνητές, ενώ παράλληλα προσφέρει την ικανότητα ακριβούς ελέγχου της δόσης και της φόρμουλας δοσολογίας αυτών των θεραπευτικών ουσιών.

Αυτός ο συνδυασμός του ελέγχου και της εξατομίκευσης μπορεί ουσιωδώς να βελτιώσει και να επιταχύνει την διαδικασία επούλωσης και είναι ο πρώτος επίδεσμος που είναι ικανός για να παρέχει δοσομετρικά, φάρμακα. Επιπλέον μπορεί να παρέχει πολυάριθμα φάρμακα με διαφορετικό τρόπο παροχής και είναι ένα μεγάλο πλεονέκτημα σε σχέση με άλλα συστήματα. Αυτή είναι μια πλατφόρμα που μπορεί να
εφαρμοστεί σε πολλά διαφορετικά πεδία βιοιατρικής μηχανολογίας και
φαρμακολογίας.

Η ομάδα οριστικοποιεί το έξυπνο επίδεσμο της να χρησιμοποιηθεί βασικά για
θεραπεία χρόνων πληγών του δέρματος που οφείλονται στον διαβήτη. Περισσότεροι
από 25 εκατομμύρια Αμερικανοί πολίτες και περισσότεροι από το 25% των ενηλίκων
Αμερικάνων από 65 ετών και άνω, μπορεί να υποφέρει από τέτοιες πληγές. Το κέντρο
για τον έλεγχο και την πρόληψη επιδημιών έχει υπολογίσει ότι οι περιπτώσεις διαβήτη
θα διπλασιαστούν ή τριπλασιαστούν μέχρι το 2050.

Το ιατρικό κόστος που συνοδεύει τέτοιες πληγές είναι τεράστιο. Έτσι είναι μεγάλη
ανάγκη να βρεθεί λύση γι' αυτό.

Εκείνοι που τραυματίστηκαν σε μάχες μπορούν επωφεληθούν από την
πολυχρησιμοποιητικότητα και την προσαρμοστικότητα του επιδέσμου είτε για να επιτύχουν
tαχύτερα επούλωση σε πληγές από σφαίρα ή χειροβομβίδα ή για να εμποδίσουν την
μόλυνση σε δυσπρόσιτο περιβάλλον. Οι στρατιώτες στο πεδίο της μάχης μπορεί να
υποφέρουν από διάφορες πληγές και μολύνσεις και θα μπορούν να αντιμετωπίζουν
dιάφορες παθογένεις με έναν μεταβλητό επίδεσμο που έχει αντίδοτα ή φάρμακα που
αντιμετωπίζουν εξειδικευμένα ρίσκα του περιβάλλοντος.
Βοήθεια από τον επίδεσμο

Οι υπάρχοντες επίδεσμοι έχουν μια γκάμα από βασικούς ξηρούς επιδέσμους έως πιο προηγμένους που μπορούν να παρέχουν παθητικά ένα φάρμακο στο οποίο έχουν διαποτιστεί.

Για να αξιοποιήσουν τα βασικά πλεονεκτήματα του έξυπνου επίδεσμου τους, στο Harvard έκαναν μια σειρά πειραμάτων όπου σε ένα από αυτά οι ερευνητές εφάρμοσαν έναν έξυπνο επίδεσμο εφοδιασμένο με παράγοντα ανάπλασης σε ένα τραυματισμένο ποντίκι. Συγκρινόμενος με έναν ξηρό επίδεσμο, ο επίδεσμος της ομάδας ανάπλασε τρεις φορές γρηγορότερα, κάτι σπουδαίο για την πρόοδο της θεραπείας.

Ένα άλλο πείραμα έδειξε ότι μια εκδοχή του επίδεσμου εφοδιασμένη με αντιβιοτικά μπορούσε να εξαφανίσει τα βακτήρια που προκαλούσαν μολύνσεις. Επίσης η θερμότητα που χρειάζεται για να ελευθερωθούν οι φαρμακευτικές ουσίες δεν επηρεάζει την αποτελεσματικότητά τους.
Αν και οι ερευνητές πιστοποίησαν την δημιουργία τους θα χρειαστούν περαιτέρω
dοκιμές σε ζώα και ανθρώπους πριν βγεί στην αγορά. Αυτό μπορεί να απαιτήσει
αρκετά χρόνια, αν και το γεγονός ότι τα περισσότερα συστατικά της δημιουργίας
έχουν ήδη εγκριθεί από το Υπουργείο Υγείας και Τροφίμων μπορεί να επιταχύνει την
dιαδικασία.

Εν τω μεταξύ οι ερευνητές προσπαθούν να συνασπιστούν με αισθητήρες
βασισμένους σε νήμα που μπορούν να μετρήσουν γλυκόζη, pH και άλλους
παράγοντες που έχουν σχέση με την υγεία και τον δερματικό ιστό. Χρησιμοποιώντας,
αυτή την ικανότητα η ομάδα θα δημιουργήσει έναν επίδεσμο που θα παρέχει
αυτόνομα θεραπεία.

2.2 Στον αθλητισμό

Στον πρωταθλητισμό οι ομίλοι βρίσκονται σε συνεχή αγώνα δρόμου για την
βελτιστοποιήση των επιδόσεων των αθλητών τους. Η τεχνολογία του IoT, όπως θα
dουμε παρακάτω όσο θα αναπτύσσεται θα βοηθά στη βελτίωση της φυσικής
κατάστασης των αθλητών αλλά δίνει και τη δυνατότητα στους αθλητικούς ομίλους να
αυξήσουν τα έσοδα τους με αινοτόμες ιδέες.

Big Data και η VR στα επαγγελματικά σπόρ

Η αγάπη των αμερικάνων φιλάθλων για τα σπορ τους έχει δημιουργήσει ένα
καινούργιο τομέα επιχειρηματικών ευκαιριών και ανάπτυξης μέσω του Big Data και
της ανόδου της VR τεχνολογίας ώστε να προσελκύσει περισσότερους οπαδούς και να αναβαθμίσει την ψυχαγωγία τους παρακολουθώντας τα αγαπημένα τους αθλήματα.

Υπάρχουν επίσης πάρα πολλοί τρόποι που οι αθλητικές ομάδες μπορούν να χρησιμοποιήσουν προς όφελος τους δεδομένα και έτσι και οι οπαδοί και οι παίκτες μαζί να επικυρώσουν από εξελίξεις στην τεχνολογία VR. Εδώ φαίνονται 4 τρόποι που η Big Data και η VR αρχίζουν να έχουν βασικό ρόλο στα επαγγελματικά σπορ.

Συσκευές VR προσαρμοσμένες στο κεφάλι δίνουν άμεση πρόσβαση

Η τεχνολογία VR γίνεται φθηνότερη και πιο εύκολα διαθέσιμη. Με αυτή την πορεία οι VR τεχνολογίες θα γίνουν σύντομα πολύ δημοφιλείς στους αθλητές και τους φίλες τους, ώστε πολλοί γνώστες της βιομηχανίας να αναπτυχθεί στο 30 δις μέχρι το 2020. Ένας παράγοντας για να γίνουν οι συσκευές VR πιο δημοφιλείς στην αγορά είναι να υπάρξει περισσότερο VR υλικό, το οποίο ακριβώς η Samsung και NBA στόχευαν να κάνουν το 2015. Το 2015 η VR ακόμα ήταν σε πιο ερευνητικό επίπεδο αλλά η ομοσπονδία απέκτησε αρκετή εμπιστοσύνη στην ποιότητα, ώστε προσέφερε ένα VR παιχνίδι την εβδομάδα σαν μέρος της προσφοράς τους στους καταναλωτές για το NBA league Pass.

Προγραμματισμός της βασικής ομάδας και παρακολομής- καταγραφής των παικτών μέσω IoT και Big Data

Όταν πρόκειται για κορυφαίους αθλητές, ένας από τους αριθμούς των παραγόντων της ποιότητας, και για την απόδοση της ομάδας συνολικά.
Μέσω του IoT, προπονητές και εκπαιδευτές μπορούν να παρακολουθούν την υγεία των παιχτών και την αντοχή τους με επαναστατικούς τρόπους.

Με αισθητήρες, κάμερες και άλλες διαθέσιμες συσκευές, που μπορούν να χρησιμοποιηθούν κατά την διάρκεια της προπόνησης, οι προπονητές μπορούν να παρακολουθούν ζωτικά δεδομένα, τα οποία μπορούν να αναλυθούν και να οδηγήσουν σε στρατηγικές αποφάσεις για τον προγραμματισμό της βασικής ομάδας, την δημιουργία συστήματος παιχνιδιού, ακόμα και την πρόσληψη των κατάλληλων θερμίδων από τον παίχτη για αποτελεσματική απόδοση.

Όταν υπάρχουν τόσο σπουδαίες ομάδες που ψάχνουν για μια θέση στην κορυφή κάθε χρόνο, αυτές οι μικρές λεπτομέρειες μπορούν να αυξήσουν την ανταγωνιστικότητα.

Προπόνηση VR για του παίχτες

Οι ομάδες επί σειρά ετών χρησιμοποιούσαν βίντεο ώστε να βοηθήσουν τους παίχτες να ξαναδούν σημαντικά παιχνίδια, όμως η VR εισάγει ακόμα μεγαλύτερη ευκαιρία για ασφαλή προπόνηση, ιδιαίτερα σε αγώνες «επαφής» όπως το αμερικάνικο ράγκμπι.

Οι νέοι παίχτες μπορούν να χρησιμοποιήσουν την τεχνολογία σαν «βιβλίο οδηγιών του παιχνιδιού» ενώ άλλοι παίχτες μπορούν να ξαναβλέπουν τα παιχνίδια τους ή να βλέπουν άλλα. Βοηθάει τους παίχτες να μένουν ασφαλείς, αφού μπορούν να «εξασκούν» επικίνδυνα παιχνίδια εκτός γηπέδου.

Μερικές ομάδες του NFL (ομοσπονδία για το αμερικανικό ράγκμπι), χρησιμοποιούν αυτή την τεχνολογία, αλλά και οι κολεγιακές ομάδες γνωρίζουν επιτυχία, όπως έγινε
με το quarterback του Stanford University, Kevin Hogaun που η αποτελεσματικότητά
tου από 63,8% ανέβηκε στο 76,3% με την χρήση STRIVR VR εκπαίδευση.

Η VR επιτρέπει στους οπαδούς να βλέπουν μέσα από τα μάτια του παίχτη

Καθώς προοδεύει η VR, περισσότερες επιλογές και διαδραστικές δυνατότητες θα
είναι διαθέσιμες στους οπαδούς. Μία ενθουσιασμού η προοπτική ανάπτυξη είναι
έλευση της «VR μέσω των εφαλμών του παίχτη». Η ελπίδα είναι ότι μια μέρα, οι
οπαδοί θα είναι δυνατόν να βλέπουν την δράση από την προοπτική του αγαπημένου
tους παίχτη και κατ’ επέκταση να τους εισάγουν στην δράση του αθλητικού χώρου.

Έξυπνες φορητές συσκευές αναπτύσσονται γρήγορα για τα επαγγελματικά αθλήματα,
με πολλές εφαρμογές τεχνητής νοημοσύνης, κάμερες, αισθητήρες και ακόμη
περισσότερα που μπορούν να χρησιμοποιηθούν για μια καλύτερη εμπειρία VR.

Μελλοντικές αλλαγές στην Big Data

Επί του παρόντος το NFL δεν επιτρέπει αισθητήρες και ανιχνευτές στα παιχνίδια, έτσι
αυτοί είναι χρήσιμοι μόνο κατά την προπόνηση. Εν τούτων υπάρχουν ενδείξεις
αλλαγών που δείχνουν ότι στο μέλλον τα πράγματα μπορεί να είναι διαφορετικά και
πιο δεκτικά για τα Big Data στον αθλητικό χώρο. Η FIFA έχει αρχίσει να χαλαρώνει
αυτούς τους κανόνες, επιτρέποντας στους παίχτες να χρησιμοποιούν φορητές
συσκευές στην διάρκεια των αγώνων. Το NFL μπορεί να μην είναι μακριά απ’ τον
αφού η ομοσπονδία παίχτων του NFL πρόσφατα συμφώνησε σε μια πεντάχρονη
συνεργασία με την WHOOP, μια φορητή συσκευή που βοηθάει τους παίχτες να
καταγράφουν τα σώματά τους και το στρές που υποβάλλονται κατά την διάρκεια της
προπόνησης. Τα Big Data αργά αλλά βέβαια γίνεται ένα από τα μεγαλύτερα
πλεονεκτήματα για τους παίχτες στα επαγγελματικά σπορ και αυτή είναι μόνο η αρχή.

2.3 Στην εκπαίδευση

Τα παιδιά είναι το μέλλον και πρέπει να είναι κοινή επιθυμία του καθενός η
εκπαίδευση να είναι προτεραιότητα. Όσο πιο μορφωμένο είναι τα παιδιά, τόσο
καλύτερο θα είναι το ανθρώπινο γένος στο μέλλον.

Βελτιώνοντας την παγκόσμια εκπαίδευση σημαίνει να χρησιμοποιηθούν ότα
απαραίτητα μέσα. Χρειαζόμαστε καλύτερους δασκάλους, περισσότερα χρήματα και
τις τελευταίες εξελίξεις της τεχνολογίας. Χρησιμοποιώντας τα Big Data και την νέα
technology, οι εκπαιδευτές και οι διαχειριστές μπορούν να αξιοποιήσουν καλύτερα τον
χρόνο τους και να δημιουργήσουν τρόπους που θα προάγουν την εκπαίδευση
παγκοσμίως.

Βρίσκοντας τις τάσεις στο πως οι σπουδαστές μαθαίνουν

Κάθε παιδί είναι μοναδικό. Έχουν την προσωπικότητά τους, τις συμπαθείες, τις
αντιπαθείες και τις προτιμήσεις στην μάθηση. Ενώ οι δάσκαλοι κάνουν ότι μπορούν
gια να προσαρμοστούν σε κάθε τύπο μαθησιακού τρόπου, μερικοί σπουδαστές δεν
θα λάβουν την ίδια προσοχή όσο άλλοι. Μέχρι τώρα αυτή είναι μια δυσάρεστη
αλήθεια.

Τώρα χάρις στην τεχνολογία παρακολούθησης, όπως κάμερες αναγνώρισης και τους
φορητούς αισθητήρες, τα σχολεία μπορούν να παρακολουθούν σπουδαστές στην

Institutional Repository - Library & Information Centre - University of Thessaly
03/08/2019 01:32:51 EEST - 54.70.40.11
διάρκεια της εκπαιδευτικής διαδικασίας. Από τα πρώτα χρόνια της εκπαίδευσης, οι εκπαιδευτές μπορούν να ταυτοποιήσουν με ποιές μεθόδους οι σπουδαστές τους μαθαίνουν καλύτερα και έπειτα να δημιουργήσουν τεχνικές που θα τους διευκολύνουν. Αυτό θα μπορούσε να περιλαμβάνει οργάνωση σπουδαστηρίων ανάλογα με τις μαθησιακές ανάγκες, εξασφάλιση ώστε οι σπουδαστές να έχουν πρόσβαση σε σχετικά βοηθήματα και εξασφάλιση ότι οι δάσκαλοι είναι κατάλληλα εκπαιδευμένοι σε αντίστοιχες διδακτικές μεθόδους.

Για να επιτευχθεί παρ’ όλα αυτά κάτι τέτοιο, τα σχολεία θα χρειαστεί να εγκαταστήσουν τρόπους παρακολούθησης των σπουδαστών και να βρουν πως μαθαίνουν. Ένα μοναδικό τέστ δεν είναι αρκετό. Η μακροχρόνια παρακολούθηση είναι απαραίτητη ώστε να δομηθεί μια ακριβή εικόνα για κάθε σπουδαστή και μια δημογραφική εικόνα για όλους.

Η ιδέα αυτή μπορεί να επεκταθεί σε online μάθηση και στο βασικό και στο πανεπιστημιακό επίπεδο. Καθώς ο σπουδαστής μελετάει online, είτε εν μέρει, είτε συνολικά, οι δάσκαλοι μπορούν να προάγουν το πρόγραμμα μαθημάτων τους εντοπίζοντας πράγματα όπως «που πηγαίνει το βλέμμα του σπουδαστή στην οθόνη ή πόσο συχνά εγκαταλείπεται μια σελίδα». Όσο περισσότερα δεδομένα μπορούν να συγκεντρώσουν οι εκπαιδευτές, τόσο περισσότερα μέσα θα έχουν να βοηθήσουν τους σπουδαστές τους.

Πιστοποιώντας τις πιο αποτελεσματικές στρατηγικές

Δεν είναι όλοι οι διδάσκαλοι της ίδιας αξίας. Το να πιστοποιήσεις την αποτελεσματικότητα του εκάστωτε διδασκάλου είναι δύσκολο καθώς τα μόνα
δεδομένα υπολογισμού είναι οι επιτυχίες των σπουδαστών στα τεστ και την βαθμολογία.

Τώρα όμως σε συνδυασμό με την τεχνολογία επιτήρησης μπορούν να παίρνουν δεδομένα για το πόσο αποτελεσματική κάθε δραστηριότητα ή παράδοσή τους είναι. Οι μετρήσεις μπορεί να περιλαμβάνουν πράγματα όπως πόσο καλά έλκουν το ενδιαφέρον των σπουδαστών τους, πόσο χρόνο χρειάστηκαν οι σπουδαστές για να επιτύχουν σωστές απαντήσεις σε ερωτήσεις εφαρμογών και ακόμα να εντοπίσουν στιγμές που οι σπουδαστές μπερδεύτηκαν ή αφαιρέθηκαν τελείως.

Δεδομένα σαν αυτά μπορούν να δώσουν στους δασκάλους διαφορετικά στοιχεία για να βελτιώνουν την εκπαίδευση τους σταθερά για να μετρούν την απόδοση. Δεν προσέχουν οι σπουδαστές στο συγκεκριμένο μάθημα, Ισως η δομή του χρειάζεται επεξεργασία. Για παράδειγμα, η ζήτηση ενός απλούτευτου και απλούτευτου σε ένα συγκεκριμένο πρόβλημα θα επιβάλει συνεχώς και στους εκπαιδευτές σταθερές για να μετρούν την απόδοση.

Βρίσκοντας αιτίες τίποτα από την συμπεριφορά

Συνδιάζοντας δεδομένα στην συμπεριφορά τόσο από σχολείο όσο και από πληροφορίες εξωσχολικές, οι διδάσκαλοι και οι εκπαιδευτές μπορεί να πληριώσουν στις αιτίες που τα παιδιά συμπεριφέρονται κατά κάποιον τρόπο. Αντί να κάνουν απλά υποθέσεις για αυτές, οι εκπαιδευτές μπορούν να βρουν αιτίες συμπεριφοράς στα δεδομένα, όπως δημογραφικές αιτίες, γεωγραφικές, οικογενειακές δομές κ.α.
Μ’ αυτό τον τρόπο, οι άνθρωποι μπορούν να βρουν γιατί κάποια παιδιά δρουν διαφορετικά από άλλα. Μαζεύοντας αρκετά δεδομένα και αναλύσεις είναι σαν να δίδονται οδηγίες στους δασκάλους και τους εκπαιδευτές για να δράσουν ανάλογα. Κάνοντας υποθέσεις δεν θεωρείται επίσημο, αν όμως οι εκπαιδευτές έχουν αριθμητικά δεδομένα ώστε να στηρίζουν μια υπόθεση, τότε μπορούν να κάνουν κάτι σημαντικό.

Προγνωστικές αναλύσεις στην εκπαίδευση

Όσο περισσότερα δεδομένα έχεις, τόσο πιο πολλά μπορείς να κάνεις μ’ αυτά. Αν αυτά τα δεδομένα είναι από πολλά χρόνια τότε μπορείς να προβλέψεις στο μέλλον. Συν τω χρόνω ανασύροντας οδηγίες που προέρχονται από δεδομένα οι δάσκαλοι μπορούν να βοηθήσουν τους σπουδαστές τους. Ξαναμελετώντας τα δεδομένα παρακολούθησης στην τάξη, οι δάσκαλοι μπορούν να παρατηρήσουν ότι σε κάποιες χρονικές περιόδους, οι σπουδαστές χάνουν ευκολότερα την συγκέντρωσή τους. Αν υπάρχουν στέπιου είδους πληροφορίες οι δάσκαλοι φτιάχνουν σχέδια μαθήματος ώστε να ξανατραβήξουν την προσοχή των σπουδαστών.

Για παράδειγμα, ίσως τα δεδομένα υποδεικνύουν ότι στη διάρκεια μιας ορισμένης εβδομάδας, οι σπουδαστές αποσπούν έντονα την προσοχή τους. Αντί λοιπόν να εισάγουν οι δάσκαλοι ένα νεό θέμα μελέτης θα ήταν καλύτερα να κάνουν μια επανάληψη ή δραστηριότητες καλύτερης συγκέντρωσης. Μια άλλη προοπτική είναι να χρησιμοποιηθούν δεδομένα που θα βοηθήσουν να διευκρινιστεί ποιοι σπουδαστές πιθανόν δυσκολεύονται σε καθορισμένα θέματα. Καθώς συλλέγονται όλο και περισσότερα δεδομένα ατομικά αλλά και σαν σύνολο για
τους σπουδαστές θα είναι δυνατόν να προβλεφθεί ποιοι συγκεκριμένα σπουδαστές θα δυσκολευτούν στο σχολείο.

Τα δεδομένα που θα προβλέπουν κάτι τέτοιο θα στηρίζονται στο πόση προσοχή δίνουν σε διάφορα θέματα, η απόδοσή τους σε παρόμοια θέματα, πως οι σπουδαστές εφαρμόζουν τις πληροφορίες και τους βαθμούς. Αναλύοντας το ιστορικό των σπουδαστών και συγκρίνοντάς τους με ήδη υπάρχοντα δεδομένα, οι εκπαιδευτές θα βρίσκουν λύσεις για να τους βοηθήσουν πριν φτάσουν σε δύσκολο σημείο.

Παραμορφών, με την βοήθεια των Big Data, οι εκπαιδευτές θα μπορούν ακόμα να προτείνουν θέματα και μαθήματα που θα απολάμβαναν οι σπουδαστές. Μ' αυτό τον τρόπο οι σπουδαστές θα έχουν τη δυνατότητα να παρακολουθήσουν μαθήματα που πραγματικά θα τους αρέσουν.

Οδηγώντας τους σπουδαστές στο επάγγελμα

Τα τρέχοντα τεστ επαγγελματικού προσανατολισμού δεν είναι ιδιαίτερα αποτελεσματικά. Πολλοί απλά ρωτούν πως αισθάνεται κάποιος σε διάφορα θέματα και ίσως θέτουν κάποιες ερωτήσεις για να δοκιμάσουν τις ικανότητές του. Αν όμως οι εκπαιδευτές υιοθετήσουν τα Big Data στο πρόγραμμά τους θα ήταν μεγάλη βοήθεια στον προσανατολισμό των σπουδαστών προς τον σωστό επαγγελματικό προσανατολισμό.

Δεν θα έχουν απλά τους βαθμούς τους αλλά και πολλά akόμα δεδομένα. Μπορεί να περιλαμβάνουν ένα σύνολο από το σε ποιά θέματα δίνουν την μεγαλύτερη προσοχή, ποιά τους αρέσουν περισσότερο, ποιά επαγγέλματα ταιριάζουν περισσότερο στα ενδιαφέροντα και στις ικανότητές τους κ.α. Μ' αυτό τον τρόπο, καθώς θα κάνουν
επιλογές για επάγγελμα ή ανώτερη εκπαίδευση θα ψάξουν για κάτι καλύτερο και όχι απλά για κάτι που ακούγεται ευχάριστο.

Αυτά τα δεδομένα μπορούν επίσης να περιέχουν πληροφορίες για την αγορά εργασίας και προβλέψεις για μελλοντικές εργασιακές ανάγκες.

Έτσι οι σπουδαστές θα πληροφορηθούν τι πρέπει να μάθουν και σε τι να στοχεύσουν ώστε να πετύχουν στην αγορά εργασίας. Χωρίς πλέον τυφλές προβλέψεις και υποθέσεις, οι σπουδαστές θα μπορούν να καθοδηγούνται και να πληροφορούνται ποια επαγγέλματα θα μπορούσαν να τους ταιριάζουν καλύτερα.

Προφανώς υπάρχει θέση για τα Big Data στην εκπαίδευση. Η ερώτηση είναι εάν θα έχουν τα σχολεία την οικονομική ενίσχυση που χρειάζονται για να την εισάγουν. Χωρίς τρόπους για λήψη και συλλογή δεδομένων, με επαγγελματίες να τα αναλύουν ποτέ τα Big Data δεν θα μπορέσουν να εφαρμόσουν. Αν όμως εφαρμοστούν, η εκπαιδευτική εμπειρία θα προαχθεί επαναστατικά.

2.4 Στο εμπόριο λιανικής

Το IoT μεταμορφώνει και αλλάζει επαναστατικά κάθε επίπεδο της ζωής μας. Είτε είναι ελεύθερα επαγγέλματα ή λιανική πώληση ή φροντίδα υγείας, σχεδόν κάθε βιομηχανία αποφασίζει να χρησιμοποιηθούν 20 έως 30 δισεκατομμύρια συσκευές συνολικής αξίας 17 δισ. Οι πιό πάνω στατιστικές ξεκαθαρίζουν όλες τις αμφιβολίες όσον αφορά την ανάπτυξη του IoT από διάφορες βιομηχανίες. Η πορεία ανάπτυξης δεν φαίνεται να

Institutional Repository - Library & Information Centre - University of Thessaly
03/08/2019 01:32:51 EEST - 54.70.40.11
ανακόπτεται και συνάδει στην καθολική υιοθέτηση. Με την αύξηση της ανταγωνιστικότητας, οι επιχειρηματίες λιανικής πώλησης παλεύουν να κάνουν τα αναγκαία βήματα ώστε να προσφέρουν πρωτοπόρες αγοραστικές εμπειρίες και να είναι πιο προσοδοφόροι αποκλειστικοί και αποτελεσματικοί.

Το IoT και η χρήση του στην Καθημερινότητα

Όπως έχουμε αναφέρει το IoT είναι ο όρος που περιγράφει τον τρόπο σύνδεσης ανάμεσα σε συσκευές, εκεί όπου συσκευές hardware και αισθητήτες αλληλεπιδρούν μεταξύ τους ανάλογα με τις ρυθμίσεις τους και το περιβάλλον τους.

Εν γνώσει μας ή ασυναίσθητα πολλοί από εμάς έχουμε χρησιμοποιήσει IoT συσκευές ή απλά κάπου τις έχουμε δει. Για παράδειγμα, ο θερμοστάτης Nest έχει υιοθετηθεί ευρύτατα από ιδιοκτήτες σπιτιών ώστε να διατηρούν την θερμοκρασία σε επιθυμητό επίπεδο. Όταν φθάνουν στην προκαθοσιμένη θερμοκρασία κλείνουν αυτόματα, γλιτώνοντάς σας από έξοδα σε ηλεκτρική ενέργεια.

Επιπροσθέτως, συσκευές IoT έχουν ευρύτατα εισαχθεί σε οικιακές συσκευές όπως air-conditioners, ξηραντές ψύξης, φούρνους και άλλες.

Όσον αφορά το λιανικό εμπόριο, το IoT επιτρέπει στους εμπόρους λιανικής να ελέγχουν την συμπεριφορά του καταναλωτή και να συλλέγουν δεδομένα, ώστε να τα χρησιμοποιήσουν σε μελλοντικές επιχειρησιακές αποφάσεις.

Το IoT στην βιομηχανία λιανικής

Πριν συζητήσουμε τα πλεονέκτημα του IoT στους επιχειρηματίες λιανικής, ας δούμε ποιά πλεονέκτημα αναφέρθηκαν από τους πρώτους χρήστες.
77% των πρώτων χρηστών βλέπει το ΙοΤ σαν ένα μέσο αλλαγής της αγοραστικής εμπειρίας του πελάτη.
89% των πρώτων χρηστών επωφελήθηκαν από τις πληροφορίες για τις προτιμήσεις και την συμπεριφορά πελατών από το ΙοΤ.
77% των πρώτων χρηστών του ΙοΣ στις λιανικές πωλήσεις είχαν καλύτερες ευκαιρίες να συνεργαστούν με νέους συνεργάτες στην αποστολή προϊόντων και υπηρεσιών προς τους καταναλωτές.

Ψηφιακή επιγραφή για τη προσέγγιση της συσκευής του καταναλωτή

Με την αύξηση της τάσης να γίνονται αγορές online η λιανική πώληση έχει πάρα πολύ επηρεαστεί όπως και οι καταναλωτές.
Οι άνθρωποι τείνουν να ψωνίζουν online γιατί τα προϊόντα προσφέρονται σε χαμηλές τιμές. Επίσης υπάρχει η δυνατότητα έρευνας αγοράς.
Εξαιτίας αυτών των λόγων οι παραδοσιακοί εμπόροι λιανικής αντιμετωπίζουν πολλές προκλήσεις. Με την ικανότητα να εξοικονομήσουν κάποια χρήματα, ευκολία και έρευνα αγοράς οι άνθρωποι ακόμα χρειάζονται την βοήθεια ενός βοηθού πωλήσεων ώστε να τους βοηθά για να ψάξουν γρηγορότερα τα εμπορεύματα που τείνουν να διαθέτουν.
Ο πόλεμος λιανικής αυξάνεται με ταχείς ρυθμούς και οι καταστηματάρχες που πωλούν οικοδομικά υλικά πρέπει να προσαρμόσουν τις τιμές τους με τις τιμές online. Αυτή είναι μια άμεση πρόκληση για τους παραδοσιακούς εμπόρους αν θέλουν να τραβήξουν το ενδιαφέρον των καταναλωτών στο κατάστημά τους.
Η τεχνολογία του IoT μπορεί να βοηθήσει λύνοντας το πρόβλημα. Για παράδειγμα οι εμποροί μπορούν να εισάγουν σε προϊόντα ψηφιακή επιγραφή που συνδέεται με κοινωνικά δίκτυα και αξιολογήσεις καταναλωτών για τους πελάτες του καταστήματος ώστε να είναι εύκολο να βλέπουν τις πληροφορίες για το προϊόν αντί να χρησιμοποιούν μια κινητή συσκευή.

Ψηφιακή επιγραφή μπορεί επίσης να βοηθήσει σε παρουσίαση ανάλογων προϊόντων που μπορεί να ενδιαφέρουν τον καταναλωτή. Επιπροσθέτως θα οδηγούν τον καταναλωτή στην θέση που μπορούν να προμηθευτούν τα προϊόντα.

Μια άλλη διάσταση του μάρκετινγκ είναι να αντιληφθούμε την συμπεριφορά των πελατών. Για να έλξουμε περισσότερους πελάτες μπορούμε να προβάλουμε μια διαφήμιση στις ειδοποιήσεις του κινητού τους μόλις μπαίνουν στο κατάστημα. Οι εμποροί μπορούν ακόμα να χρησιμοποιήσουν αυτή την μέθοδο για πελάτες μέσα στο κατάστημα παρουσιάζοντάς τους τα προϊόντα μέσα και να τους προωθούν με τον καλύτερο τρόπο στον σύμβουλο πωλήσεων.

Ο βοηθός πωλήσεων από την άλλη πλευρά, μπορεί να ελέγχει αν το προϊόν είναι διαθέσιμο στις αποθήκες και να ολοκληρώνει την συναλλαγή ανεμπόδιστα. Εδώ το IoT μπορεί να βοηθήσει, παρέχοντας την δυνατότητα στον βοηθό πωλήσεων να ελέγξει την διαθεσιμότητα του προϊόντος στο κατάστημα μέσα από ένα smartwatch.

Το smartwatch είναι συνδεδεμένο με βάση δεδομένων για όλα τα προϊόντα που είναι συνδεδεμένα με τον αισθητήρα.

Επιπλέον ο βοηθός πωλήσεων μπορεί να δείξει την χρήση του προϊόντος μέσα από ένα tablet. Εν τέλει ο βοηθός πωλήσεων θα μπορεί να χρησιμοποιήσει το ίδιο tablet για να ολοκληρώσει την πώληση σε ελάχιστο χρόνο.
Κατευθύνοντας τους πελάτες στον εντοπισμό των προϊόντων

Οι επιχειρηματίες πρέπει να απασχολούν προσωπικό για να ενημερώνει τους πελάτες για οποιαδήποτε πωλείται στο κατάστημα. Τα supermarket με την τεράστια συσόρευση διαφορετικών προϊόντων κάνει δύσκολη την εύρεση του επιθημητού προϊόντος από τον καταναλωτή. Εντούτοις το IoT μπορεί να βοηθήσει τους πελάτες στην εξοικονόμηση χρόνου, όσο και τους επιχειρηματίες να γλυτώσουν χρήματα που θα χρειάζονταν για την πρόσληψη προσωπικού. Για παράδειγμα τροφοδοτώντας το κατάστημα με αισθητήρες και ο υπάλληλος και ο πελάτης μπορούν να εντοπίσουν, ένα συγκεκριμένο προϊόν.

Επιπλέον ψηφιακές παρουσιάσεις (οθόνες) με την ικανότητα να διαβάζουν αισθητήτες μπορούν να πληροφορούν τους πελάτες για την περιγραφή του προϊόντος, τα πλεονεκτήματά του και σε περιπτώσεις τροφίμων για την διατροφική τους αξία.

Σε περιπτώσεις τροφίμων, πολλά έχουν σύντομη διάρκεια ζωής. Το IoT μπορεί να εξασφαλίσει ότι η ημερομηνία λήξης είναι σωστή πριν διατεθεί το προϊόν στην κατανάλωση.

Ευκαιρίες για το Οικοσύστημα

Οι περισσότεροι επιχειρηματίες λιανικής που πωλούν εμπορεύματα που αφορούν την βελτίωση μιας κατοικίας ή ηλεκτρονικά προσανατολίζονται για τμήματα με οικιακούς αυτοματισμούς ή smart home στο κατάστημά τους. Δεν χρειάζεται μόνο για τις επιχειρήσεις το IoT αλλά ανοίγει δυνατότητες επίσης για τον καταναλωτή γενικά.
Οι επιχειρηματίες ήδη διαθέτουν την ευκαιρία να παίξουν ρόλο στο οικοσύστημα με υποστήριξη τεχνικής βοήθειας, βοήθειας πωλήσεων και αυτοματισμού στις παραγγελίες, που θα επιτυχάνονται μέσω αισθητήρων του IoT στα σπίτια των καταναλωτών.

Σε αυτή την τεχνολογική εποχή, οι καταστηματάρχες πρέπει να αντιληφθούν την σημασία της εισαγωγής του IoT ώστε να ανταποκριθούν στον ανταγωνισμό, αυξήσουν τα έσοδα τους και να απαιτήσουν πελατεία. Εν τούτω αν δεν τα πάνε καλά με την τεχνολογία, πολλοί προμηθευτές λύσεων IoT θα βοηθήσουν στο να καταστρώσουν στρατηγική, να την σχεδιάσουν και να την εφαρμόσουν.

2.5 Στην βιομηχανία

Κατασκευαστική Βιομηχανία μηχανολογικής ακρίβειας

Είναι προφανές ότι η κατασκευαστική βιομηχανία υφισταται μια μέγιστη υποδειγματική αλλαγή. Η ικανότητα να εξοπλίζουν μηχανικά εργαλεία και υπηρεσίες με πληθώρα αισθητήρων που παράγουν τεράστιες ποσότητες αδόμητων δεδομένων επιτρέπει την μοντελοποίηση και στον έλεγχο των δεδομένων αυτών να γίνεται ολοένα και πιο ακριβής ώστε να παρέχει καθοριστικές πληροφορίες για περίπλοκα φαινόμενα σε σχέση με τις αναλυτικές μεθόδους/φόρμουλες που χρησιμοποιούνται και είναι βασισμένες σε υποθέσεις ή προκαθορισμένες πειραματικές συντελεστές. Επομένως, υπάρχει πλέον μια τάση προς τη δημιουργία μεθοδολογιών που θα είναι ικανές να αναλύσουν αυτό τον όγκο δεδομένων αποτελεσματικά με σκοπό να
καθοριστούν συσχετίσεις και μοτίβα λόγω της τάσης αυτής, οι τεχνολογίες ανάλυσεις
dedoménon γενικά και της τεχνιτής νοημοσύνης πιο συγκεκριμένα έχουν γίνει πολύ
dημοφιλή πεδία έρευνας εκείνη. Επιπλέον, τα επιπρόσθετα πλεονεκτήματα της
απομακρυσμένης διαχείρισης για παρακολούθηση συστημάτων και επίλυσης
προβλημάτων τους και η εισαγωγή τους σε βιομηχανικά συστήματα κατασκευών
παρέχουν χειροπιαστά πλεονεκτήματα στη βιομηχανία για την υιοθεσία του IIOT.

Ταυτόχρονα όμως υπαρχουν αρκετές τεχνικές προκλήσεις γύρω από τη μετάβαση
στο IIOT που πρέπει να ξεπεραστούν, με τη πιο σημαντική την διαλειτουργικότητα και
την επικοινωνία μεταξύ των αντικειμένων που χρειάζονται να συνεργάζονται μεταξύ
τους και αυτή τη στιγμή χρησιμοποιούν διαφορετικά πρωτόκολλα επικοινωνίας αλλά
και η ασφάλεια της επικοινωνίας τους. Αν και δεν υπάρχει ακόμα πληθώρα εκδόσεων
επιστημονικών μελετών που να αφορούν άμεσες εφαρμογές του IIOT στην μηχανική
ακρίβειας υπάρχουν όμως μελέτες που δείχνουν ότι ο κλάδος βρίσκεται υπό μελέτη με
αποτέλεσμα την ανάπτυξη άμεσων εφαρμογών του στον κοντινό ορίζοντα. Παραμένει
λοιπόν να δούμε αν οι μελέτες αυτές θα είναι επικεντρωμένες στη διαχείριση
dedoménon ή ότι είναι συνδιαστικές προσεγγίσεις μεταξύ ανάλυσης dedoménon και
αναπτύξεων μοντέλων μηχανολογικής ακρίβειας.

IIOT στις Μεγαλοβιομηχανία

Η ολανδική βιομηχανία μπύρας Heineken είναι μια από τις κορυφαίες εταιρείες
παραγωγής μπύρας τα τελευταία 150 χρόνια και στη σημερινή εποχή, όντας η πρώτη
βιομηχανία παραγωγής μπύρας στην Ευρώπη και η δεύτερη παγκόσμιως ανάπτυστη
και εκσυγχρονίζεται χρησιμοποιώντας αναλύσεις Big Data, την ανάπτυξη του IIOT.

Πρόσφατα οι πωλήσεις τους ξεπέρασαν τα 8,5 εκατομύρια βαρέλια από διάφορα είδη
μπύρας στην Αμερική και προσπαθώντας να ανεβάσουν τους αριθμούς πωλήσεων η
βιομηχανία θέτει σαν στόχο ένα πιο δυναμικό ανταγωνισμό στην αξιόλογη
αμερικανική αγορά μπύρας, αναλύοντας και αξιοποιώντας τις ογκώδεις ποσότητες
δεδομένων που συλλέγουν και ελπίζουν να αυξήσουν τον αριθμό των δεδομένων
αλλά και την εισαγωγή της AI augmentation στις μονάδες παραγωγής τους, στο χώρο
του marketing αλλά και στην εμπειρία του καταναλωτή.

Βελτίωση της γραμμής διανομής μέσω της ανάλυσης δεδομένων
Από την πρόγνωση μέχρι την βελτίωση της διανομής η Heineken χρησιμοποιεί τις
βάσεις δεδομένων της σε όλα τα στάδια της αλυσίδας εφοδιασμού. Η συλλογή των
δεδομένων αυτών ενημερώνουν τον συλλογικό σχεδιασμό της Heineken, την
πρόγνωση και την διαδικασία ανεφοδιασμού με στόχο να ελαχιστοποιήσει
ανεπάρκειες σε όλο το μήκος της διανομής. Μέσα από την ανάλυση των δεδομένων
μπορεί να ρυθμίσει την παραγωγή όπου υπάρχει υψηλό απόθεμα, βραδεία
παραγωγή ή καθορισμένες προθεσμίες ανεφοδιασμού και εποχιακές διακυμάνσεις
στην ζήτηση των προϊόντων.

Internet of Things και το ignite bottle της Heineken
Ο κλάδος της βιομηχανίας δεν αγνοεί την δυναμική του IoT. Μέχρι το 2025 ο IoT αναμένεται να έχει οικονομική αξία 11,1 τρισεκτομυρίων δολλαρίων το χρόνο από αυτήν την τεχνολογία παρουσιάζοντας το θεμέλιο IoT. Heineken από το 2013 έχει πειραματιστεί με την τεχνολογία παρουσιάζοντας το ignite bottle στη Milan Design Week. Πολλές βιομηχανίες συνεργάστηκαν σε μια περίοδο 10 εβδομάδων για το σχεδιασμό και την υλοποίηση του συγκεκριμένου σχεδίου. Κάθε έξυπνο μπουκάλι περιέχει μια 3D εκτυπωμένη βάση που καλύπτει τα ηλεκτρικά μέρη του τα οποία αποτελούνται από 8 led φώτα, 8 8-bit μικροεπεξεργαστές, ένα επιταχυνσιόμετρο, ένα γυροσκόπιο, μια μπαταρία και ένα πομποδέκτη ασύρματου δικτύου με κεραία. Όλα τα ηλεκτρονικά μέρη είναι τοποθετημένα σε μια πλακέτα κυκλωμάτων που είναι μικρότερη σε μέγεθος από ένα κέρμα των 2 ευρώ. Όλα αυτά τα ηλεκτρονικά μέρη ανταποκρίνονται διαφορετικά ανάλογως. Όταν δύο μπουκάλια ακουμπήσουν κάνοντας πρόποση τα led φώτα ανάβουν συγχρονισμένα, όταν το απότομο σηκώνει το μπουκάλι για να πιεί τα led φώτα αναβοσβήνουν, όταν το αφήνει στο τραπέζι το μπουκάλι μπαίνει σε λειτουργία
αδρανοποίηση. Τα led φωτα μπορούν να ενεργοποιούνται ανάλογα με τον ρυθμό της
μουσικής δημιουργώντας έτσι μια θεαματική ατμοσφαιρα και συμβάλει σε μια
αξιομνημόνευτη εμπειρία για το πελάτη.

Ανάπτυξη Μαρκετινγκ μέσω της χρήσης δεδομένων

Η τεχνική PrimeSense που εχει χρησιμοποιηθεί και απο το Xbox Kinect έχει
anαπτυχθεί και συνεχίζει να δημιουργεί ολοένα και πιο ευαίσθητους αισθετήρες 3D. Η
χρήση τους πλέον έχει χρησιμοποιηθεί από πολλές καινοτόμες υπηρεσίες , μια εκ
tων οποίων είναι η υπηρεσία Shopperception , η οποία αναλύει τη συμπεριφορά του
καταναλωτή μπροστά από τα ράφια των καταστημάτων δημιουργώντας ανάλογα
δεδομένα προς επεξεργασία από τους παραγωγούς και τους πωλητές. Η Heineken,
σε συνεργασία με τη Wallmart, δημιούργησε ένα πιλοτικό πρόγραμμα σε κατάστημα
tης Αργεντινής για να καταγράψουν και να μάθουν την αγοράστικη συμπεριφορά του
εκάστοτε καταναλωτή. Αυτή η βάση δεδομένων αποτελεί άλλη μια απο τις
υπάρχουσες βάσεις δεδομένων πρόγνωσης πωλήσεως ανά τον κόσμο (όπως καρότο
και γραμμή διανομής). Έτσι η Heineken και η Wallmart μπορούν να βρουν τα
καλύτερα σημεία πώλησης του καταστήματος αλλά και να καταλάβουν την
συμπεριφορά των πελατών τους και ως αποτέλεσμα να προσφέρουν το συγκεκριμένο
προϊόν που προτιμούν την ανάλογη στιγμή και μέρος που οι καταναλωτές επιθυμούν.
Η Heineken επίσης έχει μεγάλη συμμετοχή στα κοινωνικά μέσα δικτύωσης και συνεργάζεται με την Google και το Facebook για να κατανοήσει καλύtero τους πελάτες της. Μέσω της γνώσης αυτής η Heineken δημιουργεί προσωπικές αναπελάτη και θεματικές διαφημιστικές εμπειρίες. Μέσα από τις πλατφόρμες δικτύωσης προσπαθεί να μη δημιουργεί ενοχλητικές διαφημίσεις κοινοποιώντας επανηλειμένα τα προϊόντα της αλλά δημιουργεί διαδραστικές και πιο προσωπικές ανακαταναλωτή διαφημίσεις με προσφορές και γεγονότα που μπορεί να τον ενδιαφέρουν και παράλληλα μέσω ειδικής ταυροποίησης κάθε ανάρτησης επιτρέπει την συγκέντρωση δεδομένων για την ανταπόκριση των καταναλωτών στην εκάστωτε ανάρτηση.

Η Dual-Screen εφαρμογή StarPlayer
Με την ανάπτυξη των εφαρμογών Dual Screen οι θεατές μιας εκπομπής ή ενός αθλητικού γεγονότος στην τηλεόραση μπορούν να συμμετέχουν διαδραστικά με τα κινητά τους ή τον υπολογιστή τους σε συζητήσεις καθώς εξελίσσονται τα γεγονότα που παρακαλοθούν ή συμμετέχουν ή συμμετέχουν σε δραστηριότητες όπως προβλέψεις σχετικά με το πρόγραμμα που παρακολουθούν εκείνη τη στιγμή. Μια ανάλογη εφαρμογή, με το όνομα StarPlayer, για κινητά ανέπτυξε η Heineken κατά τη διάρκεια των ποδοσφαιρικών αγώνων του Champions League, ωντας χορηγός της διοργάνωσης για πολλά έτη. Η εφαρμογή λειτουργεί σε πραγματικό χρόνο, με άλλα λόγια οι ενέργειες της εφαρμογής συγχρονίζονται με την εξέλιξη του αγώνα και η διαδραστικότητα αυτή σε πραγματικό χρόνο με τον αγώνα δίνει μια αναβαθμισμένη εμπειρία για τον θεατή. Αφού ο θεατής συνδεθεί με την εφαρμογή κατά τη διάρκεια του αγώνα θα του δίνονται πόντους για ερωτήσεις προβλέψεων σχετικές με τα στατιστικά και το αποτέλεσμα του αγώνα, για τη πιθανότητα σκοραρίσματος στο επόμενο λεπτό ή ακόμα και από εγκυκλοpedικές γνώσεις σχετικές με τις ομάδες που αναμετρούνται και θα μπόρει να κοινοποιεί το τελικό του αποτέλεσμα πόντων στα κοινωνικά δίκτυα της επιλογής του καθώς και να συναγωνίζεται με φίλους του για το μεγαλύτερο σκορ.

Η χρήση πομπών της Heineken New Zealand

Η Heineken New Zealand έχει ξεκινήσει ένα καινοτόμο τρόπο προσέγγισης καταναλωτών όταν βρίσκονται κοντά σε εστιατόρια και μπαρ, με τη βοήθεια των χαμηλής-ενέργειας Bluetooth πομπών. Σε συνεργασία με τη Rush Digital που έχει ρυθμίσει 500 πομπούς και τη Darkhorse NZ που έχει εγκαταστήσει τους πομπούς σε 120 διαφορετικές επιχειρήσεις στη χώρα δίνει τη δυνατότητα μέσω της εφαρμογής
Heineken Live που έχει αναπτυχθεί από την εταιρία Saatchi & Saatchi να λαμβάνει και να διαχειρίζεται τα δεδομένα των εγκατεστημένων πομπών στέλνοντας ενημερωτικά μηνύματα και προσφορές στους καταναλωτές που βρίσκονται σε κοντινή απόσταση. Οι πομποί είναι ρυθμισμένοι ώστε να χωρίζονται σε δύο κατηγορίες ανάλογα με την απόσταση εκπομπής τους για να εναρμονίζονται με τους νόμους προώθησης αλκοολούχων προιόντων. Οι μακρινής απόστασης εξωτερικοί πομποί είναι προσαρμοσμένοι ώστε να ενημερώνουν στοχευμένα τους καταναλωτές στην ευρύτερη περιοχή για την επιχείρηση που συμμετέχει στο πιλοτικό πρόγραμμα καθώς και προσφορές σε μη αλκοολούχα προιόντα της, ενώ οι κοντινής απόστασης εσωτερικού χώρου έχουν εμβέλεια μόνο εντός της επιχείρησης και επικοινωνούν με τον καταναλωτή καλωσορίζοντάς τον, τον ενημερώνοντας για προσφορές σε αλκοολούχα προιόντα και αναλόγως με τον καταναλωτή και την συμμετοχή του στο πιλοτικό αυτό πρόγραμμα των ανταμοιβών με τον καταναλωτή καλωσορίζοντάς τον, τον ενημερώνοντας για προσφορές σε αλκοολούχα προιόντα και αναλόγως με τον καταναλωτή και την συμμετοχή του στο πιλοτικό αυτό πρόγραμμα των ανταμοιβών με πόντους που του δίνουν καλύτερες προσφορές. Πέρα από τους πομπούς η εφαρμογή συνδέεται και μέσω geotagging για την ενημέρωση του καταναλώτη της αποστασής του από επιχειρίσεις που εφαρμόζουν το πιλοτικό πρόγραμμα.

2.6 Στην οικονομία

IoT και blockchain

Το IoT δεν έχει μόνο μια τεράστια δυναμική αφού προκειται να το συναντάμε παντού όλο και πιο συχνά αλλά επίσης έχει και αρκετά προβλήματα που για κάποιοι από αυτά λύση μπορεί να αποτελέσουν οι distributed ledgers. Οι βασικές εφαρμογές τους
είναι M2M πληρωμές (πληρωμές ανάμεσα σε συσκευές), ασφάλεια των IoT πλατφόρμων (ταυτοποίηση), και αυτοματοποιημένες εκτέλεσεις διαδικασιών.

Η συνεργασία του Blockchain με το IoT είναι ακόμα σε πρώιμο στάδιο. Οι τεχνολογικοί περιορισμοί είναι προφανείς στη παρούσα κατάσταση. Τα δυο κυρίωτερα προβλήματα είναι η ικανότητα επέκτασης και οι εισφορές συναλλαγής από τους miners.

Στα bitcoin ήδη βλέπουμε τις συνέπειες ενός πρωτοκόλλου που είναι εγγενώς περιορισμένο, αλλά σκοπεύει να τεθεί σε χρήση από ένα ευρύτερο κοινό. Πάνω από 200000 ανεπιβεβαίωτες συναλλαγές γίνονται την στιγμή που γράφεται το παρόν. Αυτό είναι άβολο για τους χρήστες και δείχνει ότι η πλειοψηφική των περιπτώσεων χρήσης δεν μπορεί να εκτελεστεί, απλά επειδή δεν θα μπορέσουν να επιβεβαιώσουν τις συναλλαγές τους. Ένας μεγάλος οργανισμός δεν μπορεί να περιμένει ή να πληρώσει μεγαλύτερες χρεώσεις συναλλαγής με την αβεβαιότητα άν θα γίνει η επιβεβαίωση της συναλλαγής.

Αν υπάρχει αβεβαιότητα για το ποσόν που τελικά θα μεταφερθεί σε μια οικονομική συναλλαγή σημαίνει ότι υπάρχει αβεβαιότητα στο κατά πόσον αυτό το επαγγελματικό μοντέλο λειτουργεί σωστά. Πόσα χρήματα θα κερδίσει κάποιος πουλώντας μια πηγή πληροφοριών (π.χ. για ηλεκτρισμό, εύρος συχνοτήτων, υπολογισμό-computation) από την μια μηχανή στην άλλη, όταν οι χρεώσεις συναλλαγής είναι συχνά απρόβλεπτες?

Ακόμα και αν βλέπουμε μεγάλη δραστηριότητα έρευνας σε αυτόν τον τομέα, τα συνολικά συμπεράσματα είναι ότι η τεχνολογία Blockchain δεν είναι ακόμα έτοιμη και οι περισσότερες περιπτώσεις χρήσεως που συζητούνται μπορεί να εκτελεστούν σε ευρεία κλίμακα. Κάθε τεχνολογία σε αυτόν τον τομέα σήμερα, ακόμα και το bitcoin, είναι μια ιδέα υπό έλεγχο.

Η είσοδος του IOTA

Όλοι οι δημιουργοί του IOTA (David Sønstebø, Sergey Ivancheglo, Serguei Popov, Dominik Schiener) ασχολήθηκαν στον χώρο της τεχνολογίας Blockchain. Από το 2010 έως το 2011, το IOTA αναπτύχθηκε κάτω από πραγματικές ανάγκες επίλυσης.
για το προφανές πρόβλημα του διακανονισμού των συναλλαγών για το IoT, και της έλλειψης υπαρχουσών λύσεων σήμερα.

Όντας πρωτοπόροι στις τεχνολογίες blockchain 2.0 (όπως το πρώτο πλήρες Proof of Stake Blockchain που ονομάζεται Nxt, το οποίο είχε χαρακτηριστικά όπως αποκεντρωμένη ανταλλαγή αγαθών, ονομαστικό αρχείο και άλλα), συνειδητοποίησαν νωρίς ότι χρειαζόταν να ξεκινήσουν από το μηδέν, ώστε να αντιμετωπίσουν τις προκλητικές απαιτήσεις του IoT δημιουργώντας το Tangle.

Το TANGLE

Η κύρια πρωτοτυπία πίσω από το IOTA είναι το TANGLE. Είναι μια νεωτεριστική αρχιτεκτονική distributed ledger που βασίζεται σε ένα DAG (Directed Acyclic Graph = κατευθυνόμενο ακυκλικό γράφημα). Κάποιος θα μπορούσε αναφερθεί για αυτό σαν ένα Blockchain χωρίς Blocks και Chain. Στον πυρήνα του το Tangle διατηρεί ακόμα τις ίδιες υποκείμενες αρχές όπως ένα Blockchain. Είναι ακόμα μια διανεμομένη βάση δεδομένων, είναι ακόμα ένα P2P δίκτυο και ακόμα στηρίζεται σε ένα μηχανισμό επικύρωσης και επικρατούσας άποψης (consensus and validation).

Αλλά αν πρόκειται να συγκεντρώσουμε τις βασικές διαφορές, ανάμεσα στο Tangle και στο Blockchain, οι δύο πλέον εμφανείς είναι έχει δομηθεί το Tangle (να έχει δομηθεί το Tangle (σε DAG), και το πώς επιτυχάνουμε την συμφωνία στο σύνολο των συναλλαγών.

Στο IOTA δεν υπάρχουν “blocks” με την κλασσική έννοια. Αντίθετα, μια μόνο απλή συναλλαγή παραπέμπει σε δύο συναλλαγές στο παρελθόν: Αυτή η αντικατάσταση των συναλλαγών θεωρείται σαν μια επιβεβαιωθείται και αντικατάσταση μια μικρή
ενότητα του δικτύου για τη γενική συμφωνία (miners/stakers), ολόκληρο το δίκτυο ενεργών μετόχων (π.χ. συσκευές που κάνουν συναλλαγές) αναμειγνύονται άμεσα στην επιβεβαίωση των συναλλαγών. Έτσι η επιβεβαίωση στο IOTA δεν διαχωρίζεται από τη διαδικασία της συναλλαγής. Είναι ένα εγγενές τμήμα της και αυτό επιτρέπει στο IOTA να εφαρμόζεται χωρίς χρεώσεις συναλλαγής.

Η διαδικασία συναλλαγής στο IOTA είναι μια απλή διαδικασία 3 βημάτων:

1) Υπογραφή: Υπογράφεται η συναλλαγή με ιδιωτικούς κωδικούς.

2) Επιλογή υποδείξεων (tip): Η MCMC (Markov Chain Monte Carlo) χρησιμοποιείται ώστε να επιλεγούν τυχαία δύο κανόνες (π.χ. ανεπιβεβαίωτες συναλλαγές), οι οποίοι θα έχουν σχέση με τη συναλλαγή [μεμονωμένη κλασσική συναλλαγή (branch transaction) και ομαδική συναλλαγή (trunk transaction)].

3) Απόδειξη Εργασίας: Για να γίνει η συναλλαγή αποδεκτή πρέπει να υπάρχει κάποιο αποδεικτικό πράξεως (Proof of Work) - παρόμοιο με το Hashcash spam και το syphil resistance). Εφόσον γίνουν αυτά, η συναλλαγή θα αναφερθεί στο δίκτυο. Κάποιος θα τη δει, θα επιλέξει τη συναλλαγή στη διαδικασία επιλογής κανόνων (tip selection) και θα την επικυρώσει. Και κατ’ αυτόν τον τρόπο η συναλλαγή έχει επιβεβαιωθεί.

Consensus στο IOTA

Όπως και σε κάθε διακομιστή ledger η ερώτηση είναι:

Πως το δίκτυο συμφωνεί στο παρόν επίπεδο; Μέσω της παρακάτω εικόνας θα εξηγηθεί ο τρόπος αμοιβαίας συμφωνίας
Τα πράσινα τετράγωνα είναι επιβεβαιωμένες συναλλαγές (π.χ. συναλλαγές που έκλεισαν με κάποιες εγγυήσεις ασφαλείας). Τα κόκκινα τετράγωνα συναλλαγές που είναι ακόμα αβέβαιο αν θα γίνουν πλήρως αποδεκτές. Τα γκρι τετράγωνα: tips υποδείξεις (ανεπιβεβαίωτες συναλλαγές). Ο στόχος κάθε συναλλαγής είναι να γίνει πράσινη, να επιβεβαιωθεί και να γίνει αποδεκτή από ολόκληρο το διαδίκτυο. Το ερώτημα είναι, πως περνά από το γκρι στο κόκκινο και τέλος στο πράσινο; Όταν παρατηρούμε την εικόνα η κύρια διαφορά ανάμεσα στα πράσινα και τα κόκκινα τετράγωνα, είναι ότι τα πράσινα τετράγωνα δεν συνδέονται άμεσα με τα γκρι τετράγωνα. Αυτό σημαίνει ότι για κάθε επιβεβαιωμένη συναλλαγή υπάρχει μια απευθείας διαδρομή, που οδηγεί σε αυτήν μέσα από μια υπόδειξη (tip). Έτσι, είναι εύκολο να καθοριστεί το στάδιο επιβεβαίωσης (confirmation level) της συναλλαγής. Εκτελώντας τον MCMC αλγόριθμο Ν φορές, η πιθανότητα του να γίνει η συναλλαγή αποδεκτή Μ στη Ν (όπου Μ είναι ο αριθμός των προσπαθειών που βασίζεται σε μια υπόδειξη για μια απευθείας λύση για τη συναλλαγή). Η λογική εκτέλεσης συναλλαγών μέσω του IOTA, είναι απόλυτα αυτορυθμιζόμενο και εξασφαλίζει και την ασφάλεια και την ικανότητα επέκτασης (scalability). Μερικά από τα κύρια χαρακτηριστικά του IOTA είναι

Χωρίς τέλη συναλλαγών
Επειδή το IOTA επιτυγχάνει επιβεβαίωση στην αξιοπιστία των συναλλαγών χωρίς τη συμμετοχή κάποιων miners, δεν έχουμε να πληρώσουμε κάποια τέλη.

Κλιμακώνεται χωρίς περιορισμούς

Το IOAT σχεδιάστηκε να επιτρέπει εκτέλεση συναλλαγών σε κλίμακα. Εφόσον η επιβεβαίωση παραλληλίζεται και δεν πραγματοποιείται σε δευτερεύουσες ομάδες επεξεργασίας (intervals of hatches) όπως γίνεται στο Blockchain, το δίκτυο είναι ικανό να αναπτύσσεται και να κλιμακώνεται δυναμικά ανάλογα με τον αριθμό των συναλλαγών. Όσο πιο πολλές συναλλαγές πραγματοποιούνται τόσο πιο ασφαλές και αποτελεσματικό γίνεται το Tangle.

Συναλλαγές offline

Μέσω του Tangle είναι εφικτή η πραγματοποίηση συναλλαγών και εκτός διαδικτύου. Αυτή η διαμέριση είναι ριζική ώστε να προσαρμόζεσαι στις αυστηρές απαιτήσεις ενός μη συγχρονισμένου υπολογιστή του IoT.

Δε μπορεί κάποιος να είναι πάντα συνδεδεμένος σε δίκτυο και για αυτό είναι αναγκαίο να μπορούν πραγματοποιηθούν συναλλαγές και να εξασφαλίζονται δεδομένα ακόμα και όταν κάποιος είναι εκτός σύνδεσης. Το IOTA καθιστά κάτι τέτοιο δυνατό για μια ομάδα συσκευών ώστε να αποσυνδέονται και παρ’ όλα αυτά να πραγματοποιούν συναλλαγές: χρησιμοποιούνται διάφορα πρωτόκολλα επικοινωνίας (Zigbee, Bluetooth LE, κλπ) για την P2P επικοινωνία.

Machine Economy
Ο κύριος λόγος που δημιουργήθηκε το IOTA είναι για να επιτρέψει και να γίνει η ραχοκοκαλιά της οικονομίας των μηχανών. Σκοπός είναι ένα μέλλον που οι μηχανές θα ανταλλάσουν πόρους (υπολογισμούς, ηλεκτρική ενέργεια, αποθήκευση, εύρος συχνοτήτων, δεδομένα κτλ) και υπηρεσίες μεταξύ τους χωρίς τη μεσολάβηση κάποιου τρίτου - αμιγώς μηχανή προς μηχανή. Καθώς το IoT αρχίζει να εξαπλώνεται, η ανάγκη για "έξυπνη αποκέντρωση" γίνεται προφανής.

Το IOTA είναι μία από τις πλέον καινοτόμες δημιουργίες στον χώρο. Η βασική ομάδα είναι αφιερωμένη και δεσμευμένη να δώσει στο IOTA εκατομμύρια αν όχι δισεκατομμύρια συσκευές και να δεί να ξεδιπλώνεται το όραμά μας για μια οικονομία μηχανών.
3 Εξέλιξη του IoT

Η βιομηχανία είναι ακόμα στα πολύ αρχικά στάδια μιας μεγάλης τεχνολογικής μεταμόρφωσης καθοδηγούμενη από το IoT και τις τεχνολογίες που συνεργάζεται κάτι το οποίο είναι αναπόφευκτη συνέπεια το αναδυόμενων και αναβαθμισμένων τεχνολογιών που εμφανίζονται στο λογισμικό, στο υλικό, στις τηλεπικοινωνίες και στα συστήματα που επηρεάζουν κάθε τομέα της παγκόσμιας οικονομίας.

Μερικές εταιρίες ήδη όπως είδαμε παραπάνω χρησιμοποιούν το IoT για να αυξήσουν τη παραγωγικότητά τους και να παράγουν νέα καινοτόμα προοίματα και υπηρεσίες. Καθώς οι τιμές για πιο ανεπτυγμένους αισθητήρες, συσκευών επεξεργασίας δεδομένων συνεχίζουν να μειώνονται, οι μεγάλες βιομηχανίες αλλά και οι μικρότεροι ανταγωνιστές τους και οι πάροχοι, θα στρέφονται στο IoT για να παραμείνουν ανταγωνιστικοί και να βρουν νέες ευκαιρίες για ανάπτυξη.

Όμως σοβαρά εμπόδια υπάρχουν ακόμα για την εξέλιξη του IoT στη βιομηχανία. Ανυσχία για την ασφάλεια, την έλλειψη ειδικευμένου προσωπικού, και τη δυνατότητα διασύνδεσης των συσκευών οδηγούν πολλές βιομηχανικές εταιρίες να είναι επιφυλακτικές, ενώ άλλες έχουν σοβαρές αμφιβολίες για τα πλεονεκτήματα, το κόστος, και για τις απολαβές της επένδυσής τους. Οπως είδαμε και στην εισαγωγή πολλές από τις τεχνολογίες που συνεργάζεται το Internet of Things είναι σε πρώιμο στάδιο
και ακόμα δυσκολεύονται να αναπτυχθούν λόγω τεχνικών και φυσικών ορίων του παρόντος (για παράδειγμα ο χρόνος ζωής των μπαταριών).

Υπάρχει επίσης η πρόκληση της ενσωμάτωσης νέων τεχνολογιών στα καταστήματα και στις γραμμές παραγωγής. Ο μοντέρνος βιομηχανικός εξοπλισμός μπορεί να είναι ισχυρός και πολύπλοκος αλλά στις περισσότερες περιπτώσεις δεν έχει δυνατότητες διαδικασικής σύνδεσης. Και μια μεγάλη γκαμα βιομηχανικού εξοπλισμού είναι τόσο ειδικευμένη και χρησιμοποιείται από λίγες γραμμές παραγωγής που μπορεί να μην καταφέρει ποτέ να ενσωματωθεί στο Internet of Things για αρκετό χρόνο ακόμη. Η αντικατάσταση ή η αναβάθμιση είναι δυνατή και ίσως στο μέλλον να ακαθοριστεί αναγκαία. Το 2015 μια έρευνα σε κατασκευαστές έδειξε ότι σχεδόν το 50% των ερωτηθέντων δεν έχουν κάποια σψέδια στο απότελεσμα μέλλον να χρησιμοποιήσουν δεδομένα από αισθητήρες για να βελτιώσουν την βιομηχανία τους. Παρ’όλες τις επιφυλάξεις υπάρχουν πολλοί που θεωρούν την επένδυση στο Internet of Things μια περάστια ευκαιρία. Καινοτόμες βιομηχανίες αλλά και start-ups στην ενέργεια, στις μετακινήσεις και στις κατασκευές ασχολούνται ενέργεια με επενδύσεις στο IoT και στα Big Data προσπαθώντας να έχουν το προβάδισμα στο μέλλον και την δυνατότητα να βρίσκονται στο προσκήνιο σε όποια νέα εφεύρεση ή τεχνολογία μπορεί να αναπτυχθεί στο μέλλον που θα μπορούσε να τους επιφέρει σημαντικά κέρδη. Στην συνέχεια θα αναλύσουμε την οικονομική κατάσταση των start-ups που επενδύουν στο IoT εως και εγκαθιδρυμένων βιομηχανιών.
3.1 Οικονομική κατάσταση

Οι νέες επιχειρήσεις του IoT για τον καταναλωτή είχαν μια άσχημη οικονομική χρονιά. Για παράδειγμα η εταιρία Otto (έξυπνο κλείδωμα) που είχε $37M κεφάλαιο ανοίγματος έκλεισε, τελευταία σε μια μακρά λίστα εταιρειών με παρόμοια τύχη τους τελευταίους 18 μήνες. Αυτή η λίστα περιλαμβάνει την Kickstarter (αισθητήρες ύπνου) με $2M για είσοδο και $ 40 M σε επενδύσεις, τη Narative (life - logging camera - $12 M, τη Lily (drone καταναλωτή - $34 M) προ πώλησης - $15 M επένδυση, τη Skully (AR motor cycle helmet - $15 M επένδυση), Teforia ($17 M), Doppler Labs ($50 M), Juicero ($118 M).

Και η λίστα θα ήταν μεγαλύτερη αν συμπεριλαμβάναμε έναν αριθμό από αποτυχημένες εξαγορές πιο μεγάλων εταιρειών (Pebble, Electric Objects, κτλ).

Ακόμα και οι πιο προχωρημένες νέες επιχειρήσεις, αλλά και αρκετές εισηγμένες στο χρηματιστήριο, αποτυχήσαν, όπως η Jambone που έκλεισε ($1 δις σε εταιρικό κεφάλαιο χρηματοδότησης), η Fitbit, η GoPro και η Parrot με πολύ χαμηλότερες αξίες στο χρηματιστήριο από τα έτη 2015, 2016. Η GoPro μάλιστα ανακοίνωσε έξοδο από τον τομέα drone με μείωση του προσωπικού κατά 20% και σχέδια για πιθανή πώληση. Για το IoT το 2017 ήταν οικονομικά "φτωχός χρόνος" για την έξοδο νέων επιχειρήσεων. Από όλες τις αξιόλογες αγορές - λίγες σε αριθμό - καμία δε ξεπέρασε το όριο των $500 εκατομμυρίων.

Η χρηματιστηριακή αγορά όσον αφορά το IoT ενώ ξεκίνησε εκρηκτικά συνέχισε με ένα πιο συγκρατημένο ρυθμό, αν και τα κεφάλαια που επενδύονται συνολικά παραμένουν σε υψηλό επίπεδο.
Σύμφωνα με τα δεδομένα του CBInsights, το συνολικό ποσό που επενδύθηκε στο IOT το 2017, παρουσίασε πτώση σύμφωνα με τις τιμές του 2016: $3,77 δις σε σύνολο, έναντι $ 3,83 δις, μια μείωση του 1,6%. Όπως και σε άλλους τομείς του επιχειρηματικού κόσμου, αλλά ακόμα στο IOT, το κλειδί της επιτυχίας φαίνεται να είναι μια διείσδυση προς ευρύτερες και συγκεντρωμένες επενδύσεις σε έναν μικρότερο αριθμό εταιρειών που ευρίσκονται σε ετίπεδο ανάπτυξης. Αυτό γίνεται φανερό από την έντονη μείωση του αριθμού παραγγελιών: 295 οικονομικές συμφωνίες το 2017, με πτώση 37,9% έναντι των 475 οικονομικών συμφωνιών το 2016.

Μέχρι πρόσφατα, οι περισσότερες νέες επιχειρήσεις που χρησιμοποιούσαν IOT ήταν νεοφυείς εταιρείες (seed companies) ή νέες εταιρείες χαμηλού ακόμα κεφαλαίου (Series A companies). Μερικές από αυτές όμως τώρα που έχουν καταφέρει να εξελιχθούν αγγίζουν πλέον τους μεγάλους επενδυτές. Εν τω μεταξύ οι πόροι για τις νεοφυείς και χαμηλού κεφαλαίου εταιρείες εν μέρει ελαττώθηκαν. Το 2016 περίπου 73% των οικονομικών συμφωνιών έγιναν για αυτού του τύπου τις εταιρείες: το 2017 αυτός ο αριθμός μειώθηκε κατά 53%.

Όπως και στα προηγούμενα χρόνια, μια από τις ιδιαιτερότητες του IOT είναι ότι οι πλέον ενεργοί επενδυτές του χώρου είναι σε πολύ μεγάλο βαθμό νέες επιχειρήσεις που προέρχονται από τολμηρά ανοίγματα επενδυτών στην αγορά. Οι Intel Capital και η GE Ventures κυριαρχούν χωρίς να υπολείπεται και η Qualcomm Ventures. Καθώς πολλές μεγάλες εταιρείες απεμπλέκονται από το hardware, αυτές οι εταιρείες έχουν κατά πολύ εισέλθει στο χώρο

Η γιγαντιαία εταιρεία Softbank vision έκανε μια ισχυρή είσοδο στον χώρο. Το IoT είναι κεντρικός πυλώνας για $ 100 δις εταιρικές επενδύσεις. Η Softbank vision επένδυσε σε πολλά, όπως στην αεροπονικής καλλιέργειας (vertical farming), εταιρεία Plenty ($200
Series B), στην Mapbox (χαρτογραφική εταιρεία) ($165 M Series C), στην εταιρεία αυτοματοκινούμενων οχημάτων Nauto ($159 M Series B), αυτοματοποιημένης ρομποτικής Brain Corp ($114 M Series C). Για καλύτερα αποτελέσματα η Softbank πέτυχε μερίσματα στη NVIDIA, iRobot, το BioT OSiSSoft και αγόρασε τις εταιρείες ρομποτικής Boston Dynamics και Shaft from Alphabet.

Βιώνουμε το τέλος της πρώτης φάσης μιας προσπάθειας που τελικά μοιάζει σαν ένα "μεγάλο πείραμα". Μια ανάμνηση από τα έτη 2012, 2013 όταν όλος ο ενθουσιασμός για το καταναλωτικό IoT αναθερμάνθηκε, και δημιουργήθηκαν δύο βασικές ελπίδες. Η πρώτη ήταν προσθέτοντας συνδεσιμότητα σε ένα αντικείμενο θα αλλάζαμε τα πάντα. Με το που θα συνδέονταν οι συσκευές μεταξύ τους, θα μεταμορφώνονταν σε επιθυμητά αντικείμενα, που θα έλκυαν ισχυρά το ενδιαφέρον του καταναλωτή και θα απαιτούσαν αυξημένη τιμή αγοράς.

Η δεύτερη ήταν ότι το hardware θα γινόταν "λιγότερο δύσκολο". Πολλοί προγραμματιστές του IoT ήταν νέοι στον χώρο, αλλά με ελεύθερες πηγές (open source), προσαρμοζόμενα εξαρτήματα, νέας εξέλιξης πλατφόρμες, εκτυπώσεις 3D και συλλογική χρηματοδότηση, θα μπορούσαν να αποδώσουν σχεδόν όπως οι προγραμματιστές software.

Η πρώιμη επιτυχία όπως της Nest και της Oculus VR φάνηκε να οδηγούν σε μια νέα εποχή. Ακολούθησε μια εκρηκτική εμφάνιση νέων εταιρειών και προϊόντων. Αν όμως ξανακοιτάξουμε τα αποτελέσματα σήμερα, οι προγραμματιστές του IoT βιώνουν μια σκληρή επαναφορά στην πραγματικότητα.
Η συνδεσιμότητα δεν αλλάζει τα πάντα. Οι πρώτοι καταναλωτές μπορεί να προθυμοποιηθούν να πληρώσουν υψηλότερες τιμές για μια καινοτομία. Αν όμως αυτή επεκταθεί στον κοινό καταναλωτή, αυτός θα απαιτήσει αδιαμφισβήτητη αξία πέρα από τον παράγοντα του μοντερνισμού. Επιπρόσθετα, ο προγραμματισμός hardware δεν έγινε πιο εύκολος. Τα λάθη στον σχεδιασμό εξακολουθούν να είναι ακριβά, αναφύονται η δυσκολία στην αλυσίδα ανεφοδιασμού και το λιανικό εμπόριο είναι δύσκολο. Πολλά πράγματα βελτιώθηκαν αλλά η βασική πραγματικότητα του να δημιουργηθούν, να συναρμολογηθούν και να μετακινηθούν λογισμικά, εν γένει σε διάφορα σημεία του πλανήτη, παραμένει βασικά ακόμα απαγορευτικό.

Τέλος, ο ανταγωνισμός από μεγάλες εταιρείες ήταν έντονος για τους νέους επιχειρηματίες, τόσο από τους Ασιάτικους κατασκευαστές (λόγω χαμηλού κόστους), όσο και από τους τεχνολογικούς κολοσσούς των ΗΠΑ και της Ασίας. Αυτό πάντα ήταν ένα πρόβλημα αλλά τώρα χειροτέρεψε πολύ περισσότερο, καθώς οι ισχυροί αυτοί παίκτες προχώρησαν από το πειραματικό επίπεδο στην πλήρη είσοδο τους σε αυτόν τον τομέα ευκαιριών.

Φυσικά κάτι τέτοιο δεν συνεπάγεται ότι οι νέοι επιχειρηματίες - προγραμματιστές του IoT είναι καταδικασμένοι. Έτσι και αλλιώς πάντα για κάποιον από τους πιο πάνω λόγους αποτύχηκαν και στο παρελθόν. Εν μέρει αυτό που συμβαίνει είναι η φυσική φθορά σε ένα πεδίο που αναπτύχθηκε εκρηκτικά επί σειρά 3-4 ετών, πιθανόν πάνω σε ασταθές υπόβαθρο. Αυτές οι αποτυχίες τραβούν περισσότερο από την προσοχή του τύπου και των ιστοσελίδων όταν εμφανίστηκαν στην αγορά.
Μερικές εταιρείες του IoT αναπτύσσονται καλά και συγκεντρώνουν μεγάλα χρηματικά ποσά στο στάδιο της ανάπτυξης τους. Τέτοιες είναι οι Peloton (cycling/fitness - $325 M), η Ring (doorbell - $119 M).

Δημιουργήθηκε μια ολόκληρη γενιά προγραμματιστών - επιχειρηματιών hardware. Με την πάροδο του χρόνου αναμένουμε ότι όλη αυτή η εμπειρία που συγκεντρώθηκε τα τελευταία λίγα χρόνια θα έχει σαν αποτέλεσμα να δημιουργηθούν σπουδαίες εταιρείες καταναλωτικών αγαθών, καθοδηγούμενες από βετεράνους του είδους που θα προέρχονται από τις επιτυχείς και τις αποτυχημένες νέες επιχειρήσεις του IoT.

3.2 Κατάσταση στην Τεχνολογία

Σε σύγκριση με το καταναλωτικό IoT, η πλευρά του B2B (Business to business) προχώρησε πολύ καλύτερα. Το Βιομηχανικό IoT, ιδιαίτερως κεντρίζει το ενδιαφέρον μεγάλων οικονομικών οργανισμών, σαν τμήμα μιας ευρύτερης προσπάθειας προσπάθειας εξέλιξης της βιομηχανίας (Industry 4.0). Αυτή περιλαμβάνει τη ρομποτική και την επιχειρηματική 3D εκτύπωση. Η ευκαιρία αυτή για το IoT είναι ευρύτατη, όπως ακριβώς και οι βιομηχανίες στις οποίες απευθύνεται (κατασκευαστικές, ενέργειες, εφοδιασμού, μεταφορών κτλ.).

Αν και το BIoT ανήκει στη γενική κατηγορία της τεχνολογίας επιχειρήσεων, με τους ανάλογους αργούς ρυθμούς πωλήσεων, οι νέοι προγραμματιστές του BIoT έχουν σαν πλεονέκτημα - έναντι των προγραμματιστών του καταναλωτικού IoT - ότι γενικά δεν απαιτείται πλήρης μεταβολή συμπεριφοράς στις βιομηχανίες. Κυρίως προσφέρουν τρόπους ώστε να εξάγονται και να αναλύονται δεδομένα από μηχανές, είτε αυτές
βρίσκονται μέσα στις βιομηχανικές μονάδες ή στα σημεία εξόρυξης πετρελαίου, κάτι που μέχρι ενός βαθμού είχαν ήδη κάνει οι μεγάλες βιομηχανίες επί σειρά ετών. Ως εκ τούτου, μπορούν εύκολα να εμπλακούν στη ροή εργασίας, να συνδυαστούν με προϋπάρχοντα επιχειρησιακά τεχνολογικά πλαίσια (Operational Technology [OT] frameworks), και έχουν έτσι τη δυνατότητα να παρουσιάσουν εύκολα επενδυτικό κέρδος.

Όμως, το BiIoT ακόμα είναι σε πρώιμο στάδιο. Υπάρχουν διάφορα βασικά τεχνικά προβλήματα που δεν έχουν λυθεί, όπως η συνδεσιμότητα από απόσταση ή οι δύσκολες συνθήκες περιβάλλοντος χώρου. Χρειάζεται να συλλέξουμε δεδομένα, πριν να εισάγουμε και να εφαρμόσουμε τεχνητή νοημοσύνη, και αυτό παραμένει ακόμα ένα δύσκολο πρόβλημα, ιδιαίτερα αν σκεφτούμε τη μεγάλη κλίμακα των μηχανημάτων παλαιώς τεχνολογίας στον χώρο, πράγμα που εξετάζει μια ισλόκληρη σειρά νέων προγραμματιστών (Augury, Arch Systems, Petasense, κλπ).

Οι μεγάλες βιομηχανίες βρίσκονται σε πειραματικό επίπεδο, εξετάζοντας σχέδια και με νέους προγραμματιστές και με ισχυρότερους παρόχους. Ένα ακόμα σημάδι ανωριμότητας στον τομέα είναι ότι πολλές ομάδες IT που ανήκουν σε βιομηχανίες σκέπτονται να δημιουργήσουν μόνοι τους την απαιτούμενη τεχνολογία - έχουν ακουστεί παραδείγματα που τέτοιες ομάδες συγκεκριμένες χώρους εργασίας με αυτό τον σκοπό (Arduinos, Raspberry Pis).

Πάντως τον τελευταίο χρόνο λάβαμε ένα μεγάλο μάθημα: Όσον αφορά το BiIoT και τις πλατφόρμες του, δεν ισχύει το “ένα μέγεθος που ταιριάζει σε όλους”, πράγμα που υποδηλώνει ότι δεν μπορούν οι κοινοί αισθητήρες ή το Software για εταιρείες (horizontal software) να απευθύνεται και στο περιορισμένο κοινό (vertical software) με μικρές προσαρμογές. Αφού ήρθαν αντιμέτωποι με τη σκληρή πραγματικότητα ότι
πρέπει να πουλήσουν και να αναπτύξουν τα συστήματά τους σε πελάτες με
dιαφορετικού είδους ανάγκες, πολλοί προμηθευτές, μικρής και ευρείας κλίμακας,
anαγκάζοντας να αλλάξουν πορεία και να εξειδικευτούν σε καθορισμένες
βιομηχανικές ανάγκες. Για παράδειγμα, η Samara ξεκίνησε με το φιλόδοξο σχέδιο
dημιουργίας μιας ευρείας πλατφόρμας και τώρα αναπροσαρμόστηκε στην άμεση
καταγραφή (fleet monitoring). Ο βιομηχανικός γίγαντας General Electric, ξεκίνησε
tολμηρά την προσπάθεια της ευρείας χρήσης πλατφόρμας Predix και αναγκάστηκε
να προσαρμοστεί σε πιο μικρής κλίμακας εφαρμογές.

Το IoT έχει βασιστεί σε μια κοινή αρχή (την εξαγωγή και την συλλογή ψηφιακών
dεδομένων από τον φυσικό κόσμο), καθώς επίσης και κοινά χαρακτηριστικά
(συνδυασμός hardware - software), ευκαιρίες (ατομικοποίηση, ευφυΐα, άμεσες
υπηρεσίες) και προκλήσεις (συνδεσιμότητα, ασφάλεια κ.α.). Εν τούτοις, πίσω απ’
αυτά υποβόσκουν περιοχές πολύ ευρύτερες, όπως οι οικιακοί αυτοματισμοί, τα
εμπορικά ρομπότ, η βιομηχανική λειτουργία, τα αυτόνομα οχήματα, τα οποία ανήκουν
σε πολύ διαφορετικές βιομηχανικές δυναμικές.

Το IoT περνάει μια φάση “πρώιμης εφηβείας” - πολλά επετεύχθησαν σε διαφόρους
tομείς, δεν πέτυχαν όλα, ούτε εξελίχθηκαν όπως θα θέλαμε, αλλά συντελείται μια
μεγάλη βασική ανάπτυξη.

Τεχνητή Νοημοσύνη

Η υπόσχεση του IoT ήταν πάντα να δημιουργήσει “έξυπνα” αντικείμενα - είναι
βεβαίως ωραίο να λαμβάνεις δεδομένα από τον φυσικό κόσμο και αποκτάς
ενορατικότητα, αλλά βασικά ο στόχος είναι να μπορείς να δράσεις σύμφωνα με αυτά τα
δεδομένα, ιδεατά δε, με έναν άμεσο, αυτοματοποιημένο και έξυπνο τρόπο. Αυτήν
ακριβώς τη δυνατότητα μας παρέχει η τεχνητή νοημοσύνη.

Το 2017 σαν “κύρια συλλεκτική συνείδηση” (main collective consciousness), μια τάση
που έχει απασχολήσει αντίστοιχα άρθρα το 2017. Όπως ακριβώς και σε πολλές άλλες
βιομηχανίες η τεχνητή νοημοσύνη έχει πλέον κυριεύσει ένα μεγάλο τμήμα των
συζητήσεων που γίνονται με θέμα το IoT. Από την πλευρά των καταναλωτών η
τεχνητή νοημοσύνη αντιπροσωπεύει τον πυρήνα για τους πιο συναρπαστικούς
tομείς. Οι πλατφόρμες “φωνής”, χωρίς αντίρρηση ένα από τα λαμπρότερα σημεία για
tους καταναλωτές το IoT είναι το μήλο της άγριας ανάμεσα στο Alexa του Amazon και
to Assistant του Google (με τις Apple, Samsung, Tencent, Alibaba και πολλές άλλες
να ετοιμάζονται να μπουν στη μάχη). Είναι πολύ φανερό ότι ο αγώνας δεν είναι για να
πουληθεί hardware - γιατί αν και το Amazon έχει ένα πλήθος δικών του προϊόντων
(Echo, Dot, κτλ.), έχει σαν σκοπό να εξελιχθεί το Alexa σε third party hardware,
περιλαμβάνοντας τα Sears, Kenmore και μια ποικιλία από συσκευές που φοριούνται
ή προϊόντα οικιακού αυτοματισμού (όπως η κάμερα ασφαλείας Canary, σύμφωνα με
μια πρόσφατη ανακοίνωση του CES). Ο απόλυτος στόχος είναι η συσσώρευση
tεράστων όγκων δεδομένων και η δημιουργία δικτύων για τα αποτελέσματα των
dεδομένων, ώστε να βελτιώνεται συνεχώς η τεχνητή νοημοσύνη. Αν τελικά “η φωνή”
gίνει το UI του μέλλοντος, τότε εκείνος που θα έχει τη καλύτερη τεχνητή νοημοσύνη θα
κερδίσει τον πόλεμο.

Παρομοίως και ο τομέας του αυτόνομου οχήματος, στον οποίο έγιναν πολλές
eπενήδυσης και δόθηκε πολλή προσοχή το 2017 (και υπολογίζεται ότι αυτή η τάση θα
συνεχιστεί το 2018) είναι βασικά και αυτός μέρος της τεχνητής νοημοσύνης. Αν και
πολύ πιθανώς βρισκόμαστε πολύ μακριά από το επίπεδο 5 της απόλυτα αυτόνομης
οδήγησης που θέλουν να μας αφήνουν να πιστεύουμε, η τεχνητή νοημοσύνη έχει προοδεύσει εξαιρετικά τα τελευταία δύο χρόνια, περιλαμβάνοντας σ’ αυτό το πώς λαμβάνει εκπαίδευση ακόμα και μέσω του ιδιου. Αυτό που ξεκίνησε σα μια προσπάθεια του φυσικού κόσμου, με οχήματα που κυκλοφορούν συλλέγοντας δεδομένα, έχει καταλήξει σε μια εικονική προσπάθεια εκπαίδευσης. Ένα από τα καλύτερα άρθρα του 2017 είναι αυτό της Atlantic για το πώς το Waymo κυκλοφόρησε τα αυτοκινούμενα οχήματα για κάμποσα εκατομμύρια μίλια στον πραγματικό κόσμο, αλλά και μερικά δισεκατομμύρια μίλια σε έναν κατά παραγγελία, τεχνητά προσομοιωμένο εικονικό κόσμο.

Στον επιχειρησιακό και βιομηχανικό κόσμο του IoT (BIoT), επίσης, η γνώση των μηχανών και τη τεχνητή νοημοσύνη είναι βασικό θέμα. Σε αντίθεση με το IoT, για τον καταναλωτή που χρειάζεται μια μεγάλη εμπορική επιτυχία σε ένα προϊόν ώστε να είναι σε θέση να συλλέξει αρκετά σημαντικά δεδομένα ώστε να γίνει μια πραγματικά αξιοσημείωτη τεχνητή νοημοσύνη, στο ΙΤ οι εταιρείες μπορούν να συγκεντρώσουν τα δεδομένα από τους βιομηχανικούς τους πελάτες. Πολλές μηχανές, γραμμές παραγωγής και αγωγοί έχουν ήδη χιλιάδες αισθητήρες προσαρμοσμένους πάνω τους.

Βεβαίως, υπάρχουν πολλά προβλήματα και τεχνικά (τα δεδομένα είναι συχνά παγιδευμένα και δύσκολο να εξαχθούν) και πολιτισμικά (η μετάβαση από δεκαετίες στατιστικής ανάλυσης επί μικρού όγκου δειγμάτων σε ένα καινούριο τρόπο προσέγγισης μέσω Software, σε ένα πλαίσιο όπου μια αποτυχία μπορεί να είναι καταστροφική). Παρ’ όλα αυτά, η τεχνητή νοημοσύνη μπορεί να αλλάξει εντελώς το παιχνίδι στις βιομηχανίες. Εκτός από αυτά, η τεχνητή νοημοσύνη πρόκειται να γίνει απαραίτητη στα πάντα, από μη αναμενόμενες εφαρμογές, όπως στη γραμμική
καλλιέργεια έως τις υποδομές, όπως το edge computing. Πλην της τεχνητής
νοημοσύνης, αξίζει να επισημάνουμε ότι και το ΙoΤ επίσης αναμειγνύεται και εξάγει
οφέλη σε ανάλογες περιοχές, όπως η επιστήμη των υλικών, τα γονιδιώματα, η
νανοτεχνολογία, τομείς που επίσης έχουν γρήγορη εξέλιξη.

Ασφάλεια

Πριν από 10 χρόνια η λέξη smartphone δεν υφίστατο. Σε μια δεκαετία θα μιλάμε για
όλες τις συσκευές μας πολύ πιθανά με τον ίδιο τρόπο. Από φούρνους έως
γκαραζόπορτες, από συσκευές χορήγησης ινσουλίνης έως οχήματα, πολλές από τις
συσκευές μας θα συνδεθούν στο ΙοΤ με τον ίδιο τρόπο που τώρα είναι συνδεδεμένα
tα τηλέφωνα μας.

Εκ των πραγμάτων αυτές οι συσκευές θα ανταποκρίνονται η μια στην άλλη
ανεξάρτητα από την ανθρώπινη ενέργεια. Αυτό θα ήταν θαυμάσιο, αλλά επίσης
αυξάνει ευρέως την ποσότητα καταστάσεων που θα μπορούσαν να «πάνε λάθος»,
ιδιαίτερα όσον αφορά το απόρρητο. Αυτό μπορεί να φαίνεται αυτονόητο, μέχρι να
σκεφτείτε ότι πολλές από τις επιχειρήσεις που κατασκευάζουν αυτές τις συσκευές
ποτέ δεν είχε χρειαστεί να ανησυχούν για την ασφάλεια των προϊόντων τους στο
παρελθόν. Για παράδειγμα το πλυντήριο πιάτων. Κατά βάσει είναι απλές μηχανές.
Όμως ένας hacker μπορεί να κάνει ένα πλυντήριο να δουλεύει ασταμάτητα, κάνοντας
πολλαπλούς κύκλους, σταταλώντας πάρα πολύ νερό, να σας χρεώνει πολύ και
πιθανά να πλημμυρίσει το σπίτι σας. Αν και οι κατασκευαστές πιθανά είναι
φανταστικοί μηχανικοί ή ακόμα και σπουδαίοι πραγματιστές, δεν συνεπάγεται
αναγκαστικά ότι είναι κατάλληλοι να προστατεύσουν τους χρήστες internet από
eξωγενείς παράγοντες.
Αν υπήρχαν ακόμα αμφιβολίες ότι η ασφάλεια είναι ένα σοβαρό θέμα για το IoT, οι προηγούμενοι 18 μήνες το εξάλειψαν τελείως.

Ξεκινώντας από το Mirai "Botnet of Thing", που ακόμη και το MIT το επεσήμανε, η λίστα των hackers αλλά και άλλων ενοχλητικών σε θέματα ασφάλειας συνεχώς αυξάνει.

Φαίνεται πιθανόν να γίνουν σοβαρότερες επιθέσεις στο μέλλον. Σε επιχειρηματίες που χρησιμοποιούν IoT έχει καταστεί προφανές, ότι μέχρι σήμερα, η ασφάλεια πολύ συχνά εξακολουθεί να λαμβάνεται υπ’ όψιν εκ των υστέρων.

Αυτό δεν έγινε λόγω ανευθυνότητας ή κακής πρόθεσης - στην πράξη πολλοί από τους ερευνητές το IoT πιστεύουν πώς ότι η ασφάλεια ότι σημαντικότερο. Εν τούτω, η αλήθεια είναι ότι αυτό το θέμα βρίσκεται πολύ χαμηλά στη λίστα προτεραιότητας δεδομένων των πολλών προκλήσεων που πιέζουν άμεσα όταν πρόκειται για την παράδοση κάποιου προϊόντος. Και φυσικά δεν βοηθάει το ότι η ασφάλεια του IoT είναι πολύ σύνθετο θέμα που ξεπερνάει πολύ την εμπειρία του μέσου προγραμματιστή του IoT, και απαιτεί πολύ χρόνο και προσπάθεια, ενώ το αποτέλεσμα δεν είναι κάτι που θα βοηθήσει αμέσως για την πώληση του προϊόντος.

Βεβαίως μια ιβριδική βιομηχανία έχει ευαισθητοποιηθεί για θέματα ασφαλείας του IoT, και πολλοί από τους μεγάλους παραδοσιακούς παρόχους ασφαλείας, έχουν προτείνει λύση για το IoT. Εντούτοις, αυτές οι εταιρείες στοχεύουν σε βασικές ανάγκες ασφαλείας σε εταιρείες του Fortuna 1000, χωρίς να ασχολούνται με τον μέσο προγραμματισμό με αυτούς που έχουν μικρό κεφάλαιο.

Η ανάγκη μιας υποδομής μέσω cloud για το IoT βέβαια ως απαίτηση. Δυστυχώς, όμως, μάλλον θα βιώσουμε πιο καταστροφικές επιθέσεις ευρείας κλίμακας και προβολής πριν η ασφάλεια γίνει βασική απαίτηση.
Αξίζει να αναφέρουμε ότι το προηγούμενο καλοκαίρι εισήχθη ένας νέος λογαριασμός - το IoT Cybersecurity Improvement Act of 2017 - που καθορίζει βασικά standards ασφαλείας για συσκευές του IoT που πωλούνται στην κυβέρνηση, περιλαμβανομένων routers και κάμερας ασφαλείας. Αυτή ουσιαστικά ήταν μια προσπάθεια να στείλει η ομοσπονδιακή κυβέρνηση ένα καθαρό μήνυμα στη βιομηχανία του IoT ενεργοποιώντας όλο της το κεφάλαιο για IT. Το μήνυμα ακόμα δεν έχει περάσει.

Συνδεσιμότητα του IoT

Το πόσο καλά θα συνδεθούν τα αντικείμενα στο IoT (κατά τρόπο αξιόπιστο, αναβαθμιζόμενο, φθηνό και ενεργειακά εύκολο) εξακολουθεί να είναι ένα θέμα έντονα ανταγωνιστικό και επαναστατικό, παρά τα τόσα χρόνια και τις τόσες ανακαλύψεις όσον αφορά τον τομέα.

Οι περισσότερες συσκευές θα συνεχίσουν να συνδέονται μέσα από τεχνολογίες μικρής εμβέλειας όπως wi - fi, Bluetooth, Zigbee, Z-wave. Είναι αξιοσημείωτο ότι το wi - fi έχει πολλά πλεονεκτήματα για χρήση σε εσωτερικούς χώρους (π.χ. οικιακούς οικιακούς αυτοματισμούς), έχει όμως σημαντικά μειονέκτημα όσον αφορά την κατανάλωση ενέργειας και το κόστος για μια ευρύτερη χρήση του IoT. Τα πρότυπα IEEE, 802.11ah και 802.11ax θα μπορούσαν να βοηθήσουν αλλά είναι ακόμα πρώιμα.

Η συνδεσιμότητα ευρύτερης ζώνης αναπτύσσεται πολύ. Η Sigfox (ένα εξειδικευμένο ψηφιακό δίκτυο που δημιουργήθηκε από Γάλλους νέους προγραμματιστές και χρηματοδοτήθηκε με περίπου $310 M επενδυτικά) και η LORA (επίσης γαλλικής τεχνολογίας) προάγουν LPWAN ασύρματες τεχνολογίες, που έχουν σχεδιαστεί ειδικά για να διασυνδέουν χαμηλών συχνοτήτων, συσκευές ενεργοποιούμενες με μπαταρία, με συσκευές με low bit rates σε μεγάλη εμβέλεια.
Το 2017 οι μεγάλοι πάροχοι μας προσφέρουν τους εξής δύο τύπους:

Το Narrow - Band IoT (NB - IoT), ένα εγκεκριμένο πρότυπο (σε αντίθεση με τα Sigfox και LORA που δεν έχουν εγκριθεί) που στηρίχθηκε από τους επενδυτές επικοινωνιών.

Το NB - IoT είχε μεγάλη επιτυχία με την Telecom το 2017. Και πρόσφατα η T - Mobil ανακοίνωσε ότι θα εφαρμόσει για πρώτη φορά το σχέδιο NB - IoT στη ΗΠΑ.

Εξαγγελίες επί αυτού έκανε και η Dish Networks για ένα δίκτυο NB - IoT, πιθανά σε συνεργασία με την Amazon. Επίσης, η Verizon και η AT & T εφάρμοσαν τα δικά τους IoT δίκτυα στις ΗΠΑ πάνω σε ανταγωνιστικές ασύρματες τεχνολογίες, LTE Cat M1.

Και οι δύο τεχνολογίες, το NB - IoT και το Cat M1, έχουν πλεονεκτήματα και μειονεκτήματα αλλά αν χρησιμοποιηθούν για μεγάλη ποσότητα συσκευών του IoT, το κόστος θα παίξει καθοριστικό παράγοντα. Η νέα προσφορά της T-mobile για το NB - IoT θα κοστίσει $6 το χρόνο για κάθε συνδεδεμένη συσκευή και αναγγέλθηκε: “Το ένα δέκατο απ’ ότι θα κοστίζει το αντίστοιχο σχέδιο Cat - M της Verizon”.

Υπάρχουν υψηλές προσδοκίες για το 5G, με τις δραματικά ταχύτερες δυνατότητες μεταφοράς δεδομένων. Αυτά τα γρήγορα δεδομένα θα δώσουν καλύτερα αποτελέσματα σε επιτακτικές περιπτώσεις του IoT, όπως τα αυτόνομα οχήματα. Αλλά ίσως να χρειαστεί ακόμα και μια δεκαετία για να γίνει ευρύτερη εφαρμογή του 5G τουλάχιστον στις ΗΠΑ.

Cloud Computing

Το Cloud πάντα αναφέροντας στις συζητήσεις για το IoT, όμως τελευταία εμφανίζεται μια αβεβαιότητα. Κατ’ αρχάς οι γίγαντες εταιρείες του Cloud πίστευαν ότι οι βασικές
προσφορές τους που αφορούσαν το IoT θα το εξυπηρετούσαν χωρίς να απαιτούνται πρόσθετες εργασίες και πάνω σ’ αυτό λειτούργησαν.

Από την άλλη πλευρά όμως διάφορες μικρές και μεγάλες εταιρείες του IoT πειραματίζονταν φτιάχνοντας ατομικές προσφορές Cloud.

Μέσα στο 2017 η κατάσταση εξελίχθηκε δραματικά. Η Microsoft πρόσθεσε αρκετά σημαντικά χαρακτηριστικά (κεντρικό IoT, πλήρως ελεγχόμενη προσφορά SaaS για πελάτες IoT που δεν επιθυμούσαν ατομικό Cloud κτλ.), όπως έκανε και η Amazon (AWS IoT One - Click για να ενεργοποιούν οι απλές συσκευές το Lambda, AWS IoT Device Defender για την ασφάλεια πολλών συσκευών IoT, IoT Device Manager για την εξ αποστάσεως διαχείριση πολλών συσκευών IoT κλπ).

Και τέλος εντελώς συμβολικά, η Google μπήκε στον πεδίο και παρουσίασε το IoT Cloud Core, που παρέχει τη δυνατότητα σύνδεσης και χειρισμού πολλών συσκευών IoT, άσχετα με τη θέση εγκατάστασης, καθώς και την ενοποίηση με άλλα προϊόντα της Google Cloud, όπως τα Big Query, Data Flow και το Pub/Sub.

Η General Electric οπισθοχώρησε από το "Predix Cloud" και επικεντρώθηκε στη δημιουργία εφαρμογών AWS με υποστήριξη από την Azure. Πολλοί νέοι προγραμματιστές αποθηκεύουν τα σχέδια για τεχνολογία Cloud και επικεντρώθηκαν σε λύσεις που στέλνουν συσκευές δεδομένων στους μεγάλους δημόσιους προμηθευτές Cloud.

Μια ισχυρή υποδομή Cloud θα είναι μια σπουδαία εξέλιξη για το IoT, καθώς θα παρέχει μια σίγουρη υπόσχεση ότι θα μειώθει η πολυπλοκότητα στον σχεδιασμό και την ασφαλή ανάπτυξη των συσκευών του IoT που είναι τα μεγαλύτερα εμπόδια για την επτυχία σε αυτόν τον χώρο.
Βεβαίως το cloud μπορεί να μην είναι λειτουργικό για όλους τους πελάτες του IoT, ιδιαίτερα για τις βιομηχανίες που επιθυμούν υψηλή προστασία για τα δεδομένα τους. Ευτυχώς η ανάγκη για ευφυή προγραμματισμό θα επιτρέπει προοδευτικά σε αυτούς τους πελάτες να αποκτούν τα δεδομένα τους σε επί τόπου.

Η εμφάνιση του edge και του fog computing

Για κάποιο χρονικό διάστημα το edge computing αποτελούσε ένα καυτό θέμα, όμως γνώρισε πραγματική ανάπτυξη το 2017. Το σχέδιο ήταν να μεταφέρουμε νοημοσύνη από το Cloud στο edge, αναφερόμενοι σε συσκευές ή αισθητήρες που χαρακτηρίζονταν «χαζά» αντικείμενα ως τώρα. Συμφωνά με τη λειτουργία του το edge απομακρύνει τα άχρηστα δεδομένα και στέλνει μόνο τα σχετικά στο cloud, ώστε να μειώσει το κόστος και η προσβασιμότητα. Σε άλλες περιπτώσεις θα ληφθούν αποφάσεις επί τόπου και θα οδηγήσουν σε σχετικές ενέργειες. Φυσικά όλα αυτά προδιαθέτουν τη γνώση των μηχανών και την επί τόπου εφαρμογή τεχνητής νοημοσύνης. Εκτός από νέους προγραμματιστές, που κάνουν ενδιαφέρουσα δουλειά, άσενη τόσος η AWS παρουσίασε το Greengras, η Microsoft το Azure IoT Edge, η Dell ανακοίνωσε επένδυση $1 δις στον χώρο, το Edge X Founder ένα σχέδιο ανοιχτής χρηματοδότησης υποστηρίχθηκε από 50 συμμετέχοντες συμπεριλαμβανομένης και της Dell και ανακοινώθηκε την άνοιξη του 2017.

Με τη γρήγορη ανάπτυξη της τεχνολογίας της τεχνητής νοημοσύνης (AI), της βασικής πρόοδος στη συνδεσιμότητα και την ανάγκη εξειδικευμένων προσφορών του IoT από
όλους τους μεγάλους προμηθευτές cloud φάνηκαν πια να είναι τα βασικά στοιχεία υποδομής που χρειάζονται για να επιτύχει το IoT. Μένει ακόμα να γίνει πολύ δουλειά σε ό,τι αφορά την ασφάλεια.

Η νέα τεχνολογία πρέπει να προχωρήσει "προοδευτικά, έπειτα ξαφνικά". Αυτό σημαίνει ότι οι διάφοροι τομείς του IoT θα συνεχίσουν να αναπτύσσονται κατά κάποιον τρόπο εξειδικευμένα με εξειδικευμένη ιδιαιτερή δυναμική, αλλά καθώς το κυρίως οικοδόμημα θα συνεχίσει να διαμορφώνεται θα φτάσουμε ξαφνικά σε μια φάση εκρηκτικής προώθησης προς έναν παγκόσμιο συνδεδεμένο φυσικό κόσμο.
4. ΙoΤ στην Ελλάδα

Η παρουσία του Internet of Things στην Ελλάδα είναι ακόμα σε ερευνητικό επίπεδο και επί του παρόντος γίνονται τα πρώτα βήματα εφαρμογής στις επειχηρηματικές δραστηριότητες της. Η χώρα έχει καθυστερήσει σημαντικά στην υιοθέτηση των νέων τεχνολογιών, καθώς είναι 26η ανάμεσα σε 28 χώρες της ΕΕ στην ψηφιακή οικονομία για το 2016, ενώ υστερεί σημαντικά και στη συνδεσιμότητα μεταξύ ανθρώπων και κεφαλαίου στις νέες τεχνολογίες. Κάπως καλύτερη είναι η εικόνα στο e-government όπου η χώρα μας είναι στο μέσο όρο της ΕΕ. Επίσης η ανάγκη βελτίωσης της πρόσβασης σε υπηρεσίες και της αξιοποίησης της ψηφιακής διακυβέρνησης και το εθνικό σχέδιο ευρυζωνικής πρόσβασης επόμενης γενιάς, το οποίο αφορά έργα άνω των 400 εκατ. ευρώ σε ευρυζωνικές υποδομές, θα μπορούσε να αποτελέσει ένα πρωτό μήχαν από σημαντικής υπηρεσίας. Στη συνέχεια παρουσιάζονται δύο επιχειρηματικές ιδέες, μια στο πρωτογενές τομέα (γεωργία) και μια στο τριτογενές (τουρισμό) δείχνοντας την δυνατότητα ευρείας εφαρμογής και ανάπτυξης της τεχνολογίας σε όλο το φάσμα των επιχειρήσεων στον ελλαδικό χώρο.
4.1 Ηλιακά φορτιζόμενοι σταθμοί παρατήρησης και πρόγνωσης καιρού

Αρχικά

Στη γεωργία ανεξάρτητα εάν μιλάμε για επαγγελματία αγρότη με μαζικές παραγωγές γεωργικών προϊόντων για πώληση ή για ερασιτέχνες με σκοπό τη προσωπική κατανάλωση των προϊόντων τους οι καιρικές συνθήκες των κτημάτων τους παίζουν πρωταρχικό ρόλο στην απόδοση της παραγωγής τους αλλά και στο προγραμματισμό των εργασιών τους σε αυτά. Ένας σταθμός παρατήρησης και πρόγνωσης καιρικών συνθηκών σε απομακρυσμένες αγροτικές καλλιέργειες θα έδινε τη δυνατότητα στον εκάστοτε αγρότη να πάρει αποφάσεις για τις αγροτικές εργασίες χωρίς να χρειαστεί ο ίδιος να βρεθεί εκεί, για παράδειγμα, η ικανότητα άροσης του εδάφους ανάλογα με την υγρασία του ή η δυνατότητα ψεκαμού των αγρών ανάλογα με την πρόγνωση βροχής στις επόμενες ώρες.

Δομή του σταθμού

Ο σταθμός θα έχει τις εξέτες δυνατότητες:

- Ηλιακά φορτιζόμενος
- Ανάλυση δεδομένων θερμοκρασίας, ανέμου και υγρασίας
- Αισθητήρες για υπεριώδους ακτινοβολίας, σκόνης και μέτρησης γύρης της ατμόσφαιρας
- Δημιουργία και ενημέρωση πίνακα δεδομένων με το ιστορικό των καιρικών συνθηκών
• Ικανότητα επίβλεψης και αναφοράς προβλημάτων για τον ηλιακό φορτιστή, τους αισθητήρες του και γενικά το σύστημά του.
• Αυτόματη καταγραφή διαχείριση των ρυθμίσεων του με σύνδεση μέσω κινητού, tablet ή υπολογιστή.
• Σύνδεση στο IoT μέσω wi-fi, Cellular, με μέσα κοινωνικής δικτύωσης (twitter), e-mail, messaging.

Το ηλεκτρικό υποσύστημα αποτελείται από ένα διαχειριστή ηλιακής ενέργειας που ελέγχει τα ηλιακά panels, φορτίζει τη μπαταρία και παρέχει ενέργεια στα υπόλοιπα υποσυστήματα του σταθμού. Επίσης περιέχει αισθητήρες καταμέτρησης της ενεργειακής παραγωγής και της κατανάλωσής της μέσω της μπαταρίας στα υπόλοιπα υποσυστήματα.

Το υποσύστημα των αισθητήρων αποτελείται από ένα σύνολο αισθητήρων που έχουν τη δυνατότητα καταγραφής των παρακάτω καιρικών συνθηκών:

• Ταχύτητα ανέμου
• Κατεύθυνση ανέμου
• Βροχή
• Εξωτερική θερμοκρασία
• Εξωτερική υγρασία αέρα
• Υγρασία εδάφους
• Εσωτερική θερμοκρασία σταθμού
• Εσωτερική υγρασία σταθμού
• Μέτρηση ατμοσφαιρικής πίεσης και ύψους
• Μέτρηση υπεριώδους ακτινοβολίας
• Μέτρηση ατμοσφαιρικής σκόνης

Αισθητήρες Βροχής και ανέμου
Δυνατότητα πρόγνωσης

Ο σταθμός καιρού θα μπορούσε να προσαρμοστεί κατάλληλα με τη δυνατότητα επικοινωνίας με τοπικά γειτονικούς εγκατεστημένους σταθμούς αλλών αγροτών αποκτώντας με αυτό το τρόπο την ικανότητα λήψης δεδομένων των καιρικών φαινομένων της γύρω περιοχής. Αποκτώντας αυτή τη γνώση θα μπορεί να ενημερώνει πιο συγκεκριμένα τον χρήστη για τις καιρικές συνθήκες που επικρατούν στη γύρω περιοχή και την πιθανότητα μεταβολής των καιρικών συνθηκών στο συγκεκριμένο σημείο που είναι τοποθετημένος ο σταθμός δίνοντας μια πιο πλήρη εικόνα της κατάστασης και την ικανότητα πρόγνωσης του καιρού στον εκάστωτε αγρότη. Ακόμα με αυτό το τρόπο ο αγρότης θα μπορεί να έχει έναν μεγαλύτερο χρόνο αντίδρασης σε περίπτωση επικύνδηνων καιρικών φαινομένων για τη πρόληψη εκτεταμένης ζημίας στη σοδειά του.

4.2 «Έξυπνο» Δωμάτιο Ξενοδοχείου

Αρχικά

Η BI Intelligence, η ομάδα έρευνας του Business Insider, αναμένει το αριθμό των συσκευών για smart homes να αυξηθεί από 83 εκατομμύρια που ήταν το 2015 σε 193 το 2020. Αυτό περιλαμβάνει όλες τις έξυπνες οικιακές συσκευές (όπως πλυντηρια, στεγνωτήρες, ψυγεία), έξυπνα συστήματα ασφαλείας οικίας(αισθητήρες, οθόνες, κάμερες και συστήματα συναγερμού) και ενεργειακός εξοπλισμός έξυπνης οικίας όπως θερμοστάτες και έξυπνα φώτα. Το πρώτο και κύριο πλεονέκτημα είναι η άνεση, αφού όσο περισσότερες συσκευές αυτοματοποιούνται λειτουργίες του σπιτιού
(φωτισμός, θερμοκρασία) τόσο πιο λίγες οι ενέργειες που πρέπει να κάνει ο ένοικος ελευθερώνοντας το χρόνο του για άλλες. Πέρα από αυτό όμως οι έξυπνες συσκευές βοηθούν στη μείωση κατανάλωσης ενέργειας. Η ενεργοποίηση του air condition πριν ο ένοικος φτάσει στην οικία του θα δημιουργήσει μια άνετη ατμοσφαιρά για αυτόν, αλλά σε περίπτωση που το ξεχάσει ανοικτό όταν έχει φύγει από το σπίτι θα μπορούσε να κλείσει αυτόματα μειώνοντας έτσι την κατανάλωση ενέργειας. Στο προηγούμενο κεφάλαιο είδαμε επίσης ότι μόνο ένα μικρότερο ποσοστό των καταναλωτών διατίθεται να επενδύσει σε «έξυπνες συσκευές» που κοστίζουν περισσότερο μόνο για την καινοτομία. Όμως στη περίπτωση μιας ξενοδοχειακής μονάδας αν και το κόστος το επωμίζεται η ίδια για τον πελάτη της προσφέρει μια πρωτοποριακή εμπειρία διαμονής σε ένα «έξυπνο» διαμέρισμα ξεχωρίζοντας την επιχείρησή του α’πο το τοπικό ανταγωνισμό αλλά δινοντάς του και τη δυνατότητα απόσβεσης της επένδυσής του μέσω της μειωμένης κατανάλωσης ενέργειας και μέσω εσόδων διαφημιστικής προώθησης τοπικών καταστημάτων και προιόντων στον ένοικο.

Εξοπλισμός δωματίου

Ο εξοπλισμός ενός «έξυπνου» δωματίου έχει πολλές παρόμοιες λειτουργίες με ενός «έξυπνου» σπιτιού αλλά με κάποιες επιπλέον υπηρεσίες που προσφέρουν περισσότερες δυνατότητες τόσο για τον πελάτη όσο και για τον ιδιοκτήτη. Παρακάτω παρουσιάζεται μια λίστα με τις πιθανές προσαρτήσεις.

- Αυτοματοποιημένος φωτισμός: Ο φωτισμός ελεγχόμενος από τον ένοικο έχει τη δυνατότητα μεταβολής της έντασής του, δυνατότητα ενεργοποίησης στην ώρα αφύπνισης που καθορίζει ο ένοικος και απομακρυσμένη
απενέργοποιήση του για μείωση της ενεργειακής κατανάλωσής σε περίπτωση που έχει ξεχαστεί ανοικτός.

- Αυτοματοποιημένος κλιματισμός και εξαερισμός: Παρομοίως με τον φωτισμό ο ένοικος μπορεί να μπει στο δωμάτιο του μέσω σύνδεσης (WiFi, Bluetooth, NFC, ή Cellular) εφαρμογής του κινητού του χώρις τη χρήση κλειδιών.

- Αυτοματοποιημένος καθρέπτης/έξυπνη τηλεόραση/πίνακας ελέγχου: Οι δυνατότητες που προσφέρει στον ένοικο η εγκατάσταση της έξυπνης συσκευής είναι πολλές. Λειτουργία αφύπνησης, προσωποποιημένα μυνήματα καλωσορίσματος, βοήθεια στην εξάσκηση με δυνατότητα ελέγχου των καρδιακών παλμών (συνδεσμευμένη με smartwatch), ενημέρωση τοπικών και παραγγελεία πρωινού, παραγγελεία αγαθών από συνεργαζόμενα καταστήματα, προτάσεις δραστηριοτήτων και event που συμβαίνουν σε τοπικό επίπεδο, ενημέρωση και προτάσεις μέσω τοπικού τουριστικού χάρτη. Ο ένοικος ενημερώνεται για το μέρος που επισκέπτεται άνετα με τη δυνατότητα να κάνει αγορές από το
δωμάτιο του, ενώ ο ιδιοκτήτης προωθεί καταστήματα και προορισμούς που συνεργάζεται αυξάνοντας τα έσοδα του μέσω διαφημίσεων. Τέλος, μπορεί να ενημερώνει τους ενοίκους για διαθέσιμες μονάδες πλυντηρίων-στεγνωτηρίων (exopliasménes με beacons) που μπορεί να χρησιμοποιήσει ή ακόμα και διαθέσιμων γυμναστικών οργάνων / γηπέδων τεννίσ στην περίπτωση που το ξενοδοχείο έχει αυτές τις παροχές.

- Έξυπνες οικιακές συσκευές: Απομακρυσμένες ελεγχόμενες οικιακές συσκευές όπως βραστήρες φούρνοι δίνουν τη δυνατότητα στον ένοικο να αξιοποιήσει το χρόνο του σε άλλες ασχολίες ενώ για παράδειγμα ενός εξυπνού ψυγείου, έαν έχουν χρησιμοποιηθεί τα προϊόντα που παρέχει ο ξενοδόχος από τον ένοικο, μπορεί ο ιδιοκτήτης να ενημερώνεται αυτόματα για ελείψεις και να παραγγέλνει κατάληκτα για την επανατοποθέτησή τους.

IoT - VR και προώθηση πριν την κράτηση

Καθώς η τεχνολογία VR αναπτύσσεται με γρήγορους ρυθμούς, δίνοντας τη δυνατότητα σε όλους να περισσότερες καταναλώτες της εμπειρίας του VR μέσω exopliasmou VR όπου οι τιμές τους κυμαίνονται ανάλογα με το budget που διαθέτει, ο ιδιοκτήτης ενός τουριστικού καταλύματος μπορεί να προσφέρει μια διαφορετική και καινοτόμα εμπειρία στην έρευνα κράτησης δωματίων των πιθανών πελατών του. Ο ξενοδόχος μπορεί να ανεβάσει στην ιστοσελίδα του ένα εικονικό πλάνο των δωματιών που παρέχει ώστε ο εκάστοτε πιθανός πελάτης, χρησιμοποιώντας τον VR exopliasmο του να περιηγηθεί και να έχει μια πιο άμεση άποψη για τις διαστάσεις και το περιβάλλον του χώρου του θα θελήσει να κάνει κράτηση.
Βιβλιογραφία

“About the Technology.” NFC Forum, nfc-forum.org/what-is-nfc/about-the-technology/.

Schiener, Dominik. “A Primer on IOTA (with Presentation) – IOTA.” *IOTA*, IOTA, 21 May 2017, blog.iota.org/a-primer-on-iota-with-presentation-e0a6eb2cc621.

“Virtual Training for Football Is Becoming a Reality.” *Virtual Training for Football Is Becoming a Reality / Ohio University*, onlinemasters.ohio.edu/virtual-training-for-football-is-becoming-a-reality/.

“Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges”
Rafiullah Khan ∗ , Sarmad Ullah Khan † , Rifaqat Zaheer ‡ and Shahid Khan §

“Internet of Things - Applications and Challenges in Technology and Standardization”
Debasis Bandyopadhyay · Jaydip Sen

“Interacting with the SOA-based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services “
Dominique Guinard1,2 , Stamatis Karnouskos1 , Vlad Trifa1,2 , Bettina Dober1 , Patrik Spiess1 , Domnic Savio1 SAP Research1 and Distributed Systems Group, ETH Zurich2 .

“Internet of Things and Industrial Applications for Precision Machining”
P.G. Benardos , G.-C. Vosniakos

Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions
Jayavardhana Gubbi,a Rajkumar Buyya,b* Slaven Marusic,aMarimuthu Palaniswami